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Supplementary Material

S1 Proof of the equality (3.3)

Under assumption 2, it can be easily shown that BT ZZ”B is invertible and
for any given h, the matrix BTZZ"B also has full rank in a neighborhood

of t = 0. Then we have D(w) = d(B(w)). Firstly, we expand d(A) at

A=B
d(A) = d(B) + { % A—E} vec(A — B) + %VGC(A — B)T
8vec<aAz>d§fel<A>T __ vee(A=B)+ofir{(A -B)"(A - B)}]

From d(B) = 0 and 0 < d(A) < 1, we know B minimizes d(A) and
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Od(A)/0vec(A)|,_g = 0. Hence,

vec(A — B)

A=B

1 57 0%d(A)
d(A) = 5Vec(A—B) dvec(A)dvec(A)T

+oltr{(A — B)T(A — B)}]. (S1.1)

As D(w()+th) = d{B(w(o) +th)} substituting A in 1) by B(w(o) +th)

under assumption 2 gives

D*d(A)
Ovec(A)Ovec(A)T

+o(t)} + o(tr[{tFpn + o(t))" (tFBn + o(t)}]).

1
D(w@y +th) = évec{tFBJn +o(t)}*

vec{tFth
A=B

Then the equality (3.3) holds obviously and its proof has been finished.

S2 Proof of Lemma 1

Let V.= Z™B, H = Py, V = ZTA and H = V(VTV)"'VT. To
simplify the proof, we employ some matrix differentiation techniques. Now
we define some notations. For any vectors &, and &,, let 0&,/0&, denote
the matrix with its (¢, j)th element 0& ;/0&2; where & ; denotes the jth
element of &,. For any matrix E = (§,,...,&,,)T with &, the ith row
vector of B, let vecy(E) = (£],&,,...£5)T. For any matrices 2 and T, let
02/0T = Ovecg(E)/0vecg(T).

(i) We first calculate dd(A)/OA. Note that d(A) = 1 — K~ 'tr(HH).
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Then we have

od(A) . 0H . . OVOH
(‘3—A = —K 8_AVGCR(H) = —K a—AwVeCR(H) (821)

where OV /OA = Z @ I.. The expressions of 9H/OA can be derived as

follows. Firstly,

oH oV e 1ory . OVIV)TIVT
ov v VIV g Vel
_ Tx\—1x/T 8(VT )_1 T o vT
=1 ®~{(V V)TV s S (Ve VY
OV T 1T
v {HVTV)" VT e L. (S2.2)

Moreover,

1\ -1 VAR Y o _
IVIV) VIV org
ov oV

and then we have

A(VTV)1 ovVT
ov A%

g_i = eIy (Le {(VIV) V) - He {(V1V) V)
VT
Y {(V'V)"V'} @ H]
ovT o o
v (VVIEViel, ]> (S2.4)
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Note that

(2@ I')vecg (W) = vecy (EPT)

for any matrices E, I' and ¥ of appropriate dimensions. Hence, combining

(521) and (S2) gives

0d(A)  _ -1 ) T VTN -1 TR (VTN -~
S = Rk Zely) [vecR{HV(V V)l - HHV(VTV) }
oV’ TN -1V THH TN~ 1V TH
% vecR{(V V)"'WWTHH - (VIV)'V HH (S2.5)

It can be shown that

"

—_
0=
e

vecy (W) = vecg (¥")

for any matrices Egy; and Wy, and so (S2.5)) can be written as

% = 2Kz e Tg)veer {HV(VIV) ! — HAV(VIV) ]

~ A~ ~ ~

_ 9K Yyecy {z(I - H)HV(VTV)_l} . (S2.6)

(i) Next we calculate 9%d(A)/dvecr(A)dvecr(A)T|,_g-Let S = S;S,

where §; = Z(I — H)H and S, = V(VTV)~L. Then it holds that

0%d(A) _ 1 S, = OS2 &t
Ovecg (A)dvecg (A)T —2K 8_A<Ip ® Ss) + (9_A(Sl ®@1Ig) p .(S2.7)

As H is idempotent, we have S|, _g = Z(I — H)H = 0. Therefore,

— _92K! 8_@1
A—B 0A

D*d(A)
Ovecg (A)dvecg (A)T

(Ip ® S2|A:f3>‘ (82‘8>

A=B
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Combining (S2.4)), (S2.8) and the equation

gives

0%d(A)
Ovecg(A)ovecg (A)T | A_p

— 2K YZI-H)Z"} @ (VTV)"'. (S2.9)

Then the equality in Lemma 1 can be easily shown from (S2.9)).

The proof of Lemma 1 has been finished.

S3 Proof of Theorem 1

The proof of Theorem 1 is straightforward and omitted.

S4 Proof of Theorem 2

Let Z* be a p X n matrix with the ith column z; = x] —X* where X* denotes

the sample mean of x*. According to the definition of space displacement,

. 1
D (UJ) = 1- Etr{PZ*TB*PZ*TB*(w)}, (841)

A ~

where B* = M(B*), B*(w) = M{B*(w)}, B* = (bj,...,b%.) and

B*(w) = (b}(w),...,b%. (w)) in which b},... b

K*

and bj(w),..., b}, (w)
denote, respectively, the estimates and perturbed estimates of dimension

reduction directions for x* obtained by sliced inverse regression. By the
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similar reasoning as in [Li (2000), we show that B*(w) = (AT)'B(w)
as follows. Under the multiplicative scheme, the samples of x is per-
turbed to x;(w) = wix;(i = 1,...,n), and the samples of x*, the trans-
formed variate vector, are perturbed to x}(w) = w;Ax; (1 = 1,...,n).

Let X(w) = (x1(w),...,x,(w)), X" (w) = (xj(w),...,x}(w)) and ﬁ)i(w)

r

denote the perturbed estimate of the covariance matrix of x*. Note that

X*(w) = AX(w). Then
Yo(w) = n XM (w)(I-n1,10)X (W) = A (w)AT. (S4.2)

Let x(w) = > x;(w)/ny, X(w) = éxi(w)/n, X (w) = > xf(w)/n; and

1€1 1€,
X*(w) = > xf(w)/n. Then x*(w) = AX(w) and X} (w) = AX;(w). Hence
i=1

T
*

J@) = Y X (@) - X(w) HE (@) X" (w)}"

=1

= A, (w)AT. (S4.3)

NgE

Hence, ﬁ?;(w)b — A3, (w)b is equivalent to 3, (w)(ATb) = A2, (w)(ATh).
Moreover, the equalities b™3. (w)b = 1 and a™S, (w)b = 0 are, respec-

tively, equivalent to the equalities
(ATH) TS, (w)(ATb) =1, (ATa) TS, (w)(ATb) = 0.

That means K* = K and (AT)"'by(w),...,(AT)"'bs(w) are the per-

turbed estimates of dimension reduction directions for x* in sliced inverse
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regression. Then we have shown that B*(w) = (AT)"'B(w), which also
indicates B* = (AT)"!'B. In addition, Z* = AZ. Therefore, it holds that
Z*"B* = Z"B and Z*"B*(w) = Z"B(w) which indicate D*(w) = D(w).

The proof of Theorem 2 is finished.

S5 Proof of Lemma 2

1. We prove that A(t) and b(t) are differentiable at ¢ = 0 and continuous
in a real neighborhood of ¢t = 0.

Note that A(t) and b(t) satisfy
(@) +th)b(t) = A()Ex(w(o)+th)b(t) and b(t) S (w+th)b(t) =

Let 3(t) = Sy (w()+th) /25, (woy+th) Sy (woy+th) ™2, where 3, (w(o)+
th)~/2 is well defined since 3, (w gy + th) will be proved to be positively

definite in a real neighborhood of t = 0. We have
S(Hb(t) = AW)b(1),
where b(t) = 3, (w(g) + th)/?b(t) and b(t)Tb(t) = 1. That is,
b(t) = S (w() + th)~/?b(t)

and A(t) and b(t) are, respectively, the eigenvalue and corresponding stan-

dardized eigenvector of 3(t).
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Firstly, we prove that 3 (w(0) +th) is positively definite and ﬁ?x(w(o) +
th)~1/2 is differentiable in a real neighborhood of + = 0. Some related
concepts and theorems can be found in the section 1 of the chapter II in
Kato| (2013). Note that f]x(w(o) +th) is well defined and holomorphic in a
complex neighborhood of t = 0, say Cy. Then the number of eigenvalues of
2,(((.‘)(0) + th) is a constant s independent of ¢, with the exception of some
special values of ¢, and there are only a finite number of such exceptional
points ¢ in each compact subset of Cy. Since f]x(w(o) +th) is diagonalizable
when ¢ is a real number, a real number in the neighborhood will not be an
exceptional point. Hence, there exists a complex simple subdomain of C,
containing a real neighborhood of ¢ = 0 but no exceptional point. Let C
denote this subdomain. Let Ax1(t) > -+ > A (t) and Px1(1), ..., Py (t)
be all the eigenvalues of ﬁ]x(w(o) + th) and eigenprojection matrices for
these eigenvalues. Then Mg (%), -+, Axm(t) and Py 1(2), ..., Pxn(t) are all
holomorphic in C. On the other hand, for ¢ in the above real neighborhood
of t = 0 contained in C, which is denoted by Cy, flx(w(o) +th) is symmetric
and hence diagonalizable. Note that 3, = f]x(w(o) + th)|;—o is assumed
to be positively definite indicating that Ax1(0),- -, Axm(0) are all positive.

Then there exists a real neighborhood of ¢ = 0, which is contained by

C, and denoted by C,, such that for ¢ in Co, Ac1(t), -, Am(t) are all
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positive, which means ﬁ?x(w(o) + th) is positively definite for ¢ in Cy. Since
C, is contained by C, we have A 1(t), -+, A (t) and Px1(t), ..., Pxm(f)
are all differentiable in Cy. Furthermore, for ¢t in Cs, f)x(w(o) + th)~1/2 is

diagonalizable and

m

So(woy + )2 = " A ()PP (1),

=1
Then f]x(w(o) +th) /2 is differentiable in Cy, which is a real neighborhood

of t = 0. That also means, for ¢ in Cy, 3y (w) 4+ th)~"/2 can be written as

~

S(wo) + th) 2 = 5.7 £ 1555 + o(t), (85.1)

for some matrix EA]XQ.

As both 3 (w(g) +th)~"/? and 3, (w ) + th) are differentiable in a real
neighborhood of ¢t = 0, we have 3(t) is differentiable in this real neigh-
borhood. Note that \ is a simple eigenvalue. According to the section 5.1
of the chapter II in Kato| (2013)), the dimension of the total eigenspace for
the S\—group equals the dimension of eigen-subspace of 5\, which is one, and
S\(t) and its eigenprojection matrix are continuous in a real neighborhood
of t = 0, which also means that b(t) can be chosen to be continuous from
the two standardized eigenvectors in the one-dimensional eigenspace of ;\(t)

in this neighborhood. Then b(t) is continuous in the real neighborhood of

t = 0 where both 3, (w) + th)"/? and b(t) are continuous. Moreover,
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according to the theorem 5.4 in the section 5.4 of the chapter II in Kato
(2013), A(t) and P,(t) are both differentiable at ¢ = 0, where Py(t) is the
eigen-projection matrix for S\(t), and furthermore, since the dimension of
the total eigenspace for the X—group equals one as discussed above, the stan-
dardized eigenvector b(t) for A(t) is differentiable at ¢ = 0, which means

b(t) can be chosen in such a way:

b(t) = b +tv + o(t). (S5.2)

Note that b(t) can also be chosen as —b — tv + o(t), but this does not

change QCy, (see Theorem 1). Combining (S5.1) and (S5.2) gives that b(¢)

is differentiable at t = 0 in the real space.

The above proof needs a comment that, the theories for the operators
given by Kato (2013), which are mentioned above, hold for the matrices
because the matrices can be regarded as operators.

2. We prove (6.2) and (6.3).
(i) Note that 32, (w() + th)b(t) = A(t)Zx(w() + th)b(t). Substituting

A(t) = A+ tA1 + o(t), b(t) = b + tf + o(t),
3, (W) +th) =3, + 3,1 + o(t), and By (wo) + th) = 3y + 1351 + o(t)
into this equality and equating coefficients of ¢ in it gives

~ ~ ~

(27} - Xﬁx)f - )\*Jﬁle) + 5\2){716 - 277711). (S53>
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Note that 3,b = AX,b and bT3,b = 1. Then premultiplying (S5.3) by
bT gives (6.2).

(i) Next we prove (6.3). Firstly, we rewrite (S5.3) as

= e e SnEl = s b s 0b
~—1/2 A ~
D ST SN (S5.4)
_1/

2 ~
— M is not invertible. Substi-

We try to solve (S5.4]) though ﬁ);l/gﬁ)nﬁl

X

tuting b(t) = b + tf + o(t) and 2, (w() + th) = 3, + 3, + o(t) into
b(1) T3 (w() + th)b(t) = 1
and equating coefficients of ¢ gives the equality

2b" S, f + b 3, b =0,

which means
it SEDS e TS SN S

A —1/20, o172 ¢ ~1/24
Moreover, zero is a simple eigenvalue of 3 / bI I / — I with EX/ b asso-

/24, a—1/2

ciated standardized eigenvector, which means the space M(3 22 —

Al) is the orthogonal complement of M(Ej{/zf)) Hence,

/2

25t 1578, b e m(s, s, 8 A,

Let P, be the orthogonal projection matrix of the space M(2;1/22n2_1/2

X
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~

AI). Then

L —1/2. ~—1/2

P, =(2.’8,5 SRS B i

DY S0 D > YD §

-
and

J2¢

Sab) =25’ 5 %S

P23+ 3 S 1b. (85.5)

A —1/2

On the other hand, zero is also a simple eigenvalue of (3, 3,3 V2 AL)*

~1/2.
with Ex/ b associated standardized eigenvector, which means

(5. 75,5. —nr=/"b) = 0. (S5.6)
o S1/2¢ o125
From (S5.5) and (S5.6), premultiplying (S5.4) by (X, " 3,3, — AI)*
gives (6.3).
The proof of Lemma 2 has been finished.
S6 Simplifying the expression of f in Lemma 2
Now we simplify the expression of f in Lemma 2. Let 5\2, ey ;\p be the other

A a—1/2

A —1/2~ o —1/2 a—1/2
eigenvalues of 3 / DI IN / . Since 3 / Y, " is symmetric, there ex-

ists an orthogonal matrix P, , such that

2;1/22772;1/2 _ mediag(j\, 5\27 ey j\p)P;,x

Then it holds that

.28, 5.7 3Dt = Py diagl{0, (e — )7L (A — A)UPT

n7x ’
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A —1/2

EX

—1/2 »

(s, 7°8,8, 2 _1)ts

= 3.P, diag{0, (e — V7L A (0, — NPT S b,

SN0 SRS S SHRENDY |55 A0V S W 5
A —1/2 ) I S o n ST a-l2e ¢
= X, Ppadiag{O, A(A2 = A)7, .. AN, = A) TP, B 3 1b
S IRRI0 YRS Y SURAIDY | £5 SRRE{0 S Y Y NEEDY S0 )
A1~ ~
_s's.b
= 3. P, diag{—1,20(h — )7L 200, — NPT S, b
= 3."P, diag(-1,0,...,0)P] 5,5, b +
12 S3 Rt S enpT w2 o
S, 7P, wdiag{0, 20(% — )71, 208, — A)PL S, b
faTa a2 a1/2, &
S N0 ST D SHRAT0 SRR Y SRS | A5 SHRAIC)V W 3]

Hence, we have

\—1/2

f=-3_

/24, o—1/2 < ~—1/2

~ N ~ | IPSPSN ~
(3,782 AN, (2, - A2, )b — §bbT§]x71b.

Moreover, it can be shown that

~—1/2

$ ~1/22

)31 SURGIDY |65 58

~1/2 . fa

(=, =Py, (2, — AZK) TPy,

X

where Py, = I — bb'3, is the projection matrix along M(b) to the
orthogonal complement of M(Zyb). Then we have

~ ~

(b"b)PL3, b,

A A A

f=—Psy(5, — AZ) P, (2,1 — A2 )b —
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where Py, denotes the orthogonal projection matrix on ./\/l(E))

S7 Lemma 3 and its proof

Lemma 3. Under the sliced inverse regression and scheme (5.1) with w =

w(o) + th, the matrices ﬁ]XJ and ﬁ)n,l defined in lemma 2 satisfy

. 1 1
3.6 = —Xdiag(Z"¢)h + —Zdiag(X™¢)h,
n n

. 1, .. 1 )

3,6 = ﬁXdlag(ZgC)h + ﬁanlag(XTC)h,
for any vector ¢, where Z,, is a p X n matriz with the ith column z; = X; — X
forie 1.
Proof: (i) We first prove the expression of EAJXJC. Let z;; denote the jth
sample of X;, that is, the ith element of x;. Under (5.1), z;; is perturbed

to zij(w) =w;ay (j=1,...,m,4=1,...,p). Then Xy (w) = (54.4;(w))pxps

where

Goii(w) = 0t Y {ra(w) — Tu(w) Haju(w) — 25.(w)}

n n n
= n! Z(xzkwk —nt Z Tiywy) (T Wi — nt Z T jyWy)
k=1 u=1 =1

with Z;.(w) =n ! 3 zg(w). As w = w(g) + th with wey = (1,...,1)T, we
k=1
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have Owy, /0t = hy, and

8&17@ (U.))
ot

= p! Z{(%khk —n7t Z Tiwhy) (T — Tj.)

t=0 k=

(:Ezk x]khk’ —n E xj’l) v

where Z;. is the sample mean of X, that is, the jth element of X, and Ay
is the kth element of the vector h. Let ( 21(); denote the ith element of

ﬁ]lec. As f],gl = (06,,ij(w)/0t|t=0)pxp, it is obvious that

(iz,IC)i = n xzkhk —-n szu u) Zgj(xjk - :fj )}

n

+n_1 xzk ZC] l']khk _1 ijvhv)}
v=1

k=

where (; denotes the jth element of {. Note that

Z[(Z xiuhu) Z{Cj(ajjk - 53])}] = (Z Tiuhoy Z{C] Z Ljk — f])} =0

k=1 wu=1

and

Z Tik — Ti Z{CJZ zjuhy)}] = 0.

Hence, it holds that
~ n L
(ZenQ)i = 0" {lwiwhe) > Glap — 25}
k=1 j=1

07ty {(wn — 22) Z Gi(jrh) }
= n7'[(¢"Z){diag(x")h} + 2" diag (X" ¢ )]

= 0 YxDTdiag(Z"¢)h + 2z diag(X"¢)h},
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where x and z® are, respectively, the original and centralized sample
vectors of X;. As x and z are the transposes of the ith rows of X and
Z, respectively, the expression of 2,(,1( given by Lemma 3 has been proved.

(i) Next we prove the expression of 3, 1¢. It is obvious that 3, (w) =
(07,15 (w))pxp, where

Opij(w) =n~ an{nz D wier — T (@) Hn DY wjper — 75 (w) ).

ke, keT,

Moreover, it can be shown that

a&n,ij(w) 1 .
5 =n E nif{(n E Tiphy —n~ E Tih ) (Ti; — T5.)
t=0 =1 keT,
+(ZTy — T;.) E Tiphy —n~ E Tjphy)
keT;

where z;; denotes the jth element of the vector X;, the [th slice mean of x.
Let ( 1,1C)i denote the ith element of En 1€ As En 1= (06,,(w)/0t]i=0) pxp

it is obvious that

T

(277,101‘ = n! Z Z Tiphy —n~ szu hu) Z{Cj(flj - f])}]

T

+TL_1 Z[nl(fli — .’i‘,) Z{C] Z I’thk —-n Z[L'JU )
=1 Jj=1

ke,

As Z{nl(xl] —Z;)} = Z > Xk — Z xji = 0, it holds that

=1keI;

Z Z Tiuha) Y16 (@ = 2,)}] = 0

=1
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and

T

> (@ — ) Z{CJ 12% »

=1 j=1

Hence,

T

(in,IC)i = n Z szkhk Z{C] xl] _~ ]
=1 keI

T

+n 12 Xy — X Z{CJ Zx]khk

] 1 kEIl

Let =; and =, denote, respectively, the first and second terms in the

above equation. Then we have =, = n™! Z S (zixhizf¢) and 2, =
—1keT,
nt Z S (Zihext€), where z; = %X, — X and %, denotes the ith element
=1keI;

of z;. The kth elements of the vectors diag(ZgC)h and zs,i) are, respec-
tively, hkzl ¢ and Zzj; for k € Z;, where zn) denotes the ith column of ZT
and the kth element of the vector diag(X™¢)h is hpz{¢. Then we have
== nilx(i)Tdiag(ZEC)h and =y = nilzgf)Tdiag(XTC)h indicating the ex-
pression of ﬁ]n’lc given by Lemma 3.

The proof of Lemma 3 is finished.

S8 Proof of Theorem 3

Note that 3y (w) = (64.4(w))pxp, Where

n n n

Opij(w) = nt Z(xlkwk —nt Z Tigwy) (Tjpwr — nt Z T jyy)

k=1 u=1 v=1
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and 3, (w) = (6,.4;(w))pxp, Where

T

Gpif(w) =0 n{n D wpwr — Zo(w)Hn Y e — T5.(w)}

=1 keZ; keZ;
with 7; (w) = nlki Tip(w) and z;;(w) = wirij. As w = w(g) + th, we
=1

have w; = 1 + th;, where h; is the ith element of h. Hence, both &, ;;(w)
and 6,,;;(w) are quadratic functions of ¢. It is well known that all the poly-
nomial functions are holomorphic in the complex plane. Moreover, f]x(w)
and f)n(w) are both obviously symmetric, and ﬁ]n and ¥y are, respectively,
symmetric and positively definite matrices. In addition, it is assume that
rk(Z) = p and the eigenvalues My, S\K of 2,7 with respect to ¥y are all
simple. In summary, all the conditions demanded by Lemma 2 are satisfied.
Then according to Lemma 2, Assumption 2 holds, and combining Lemmas
2 and 3 gives that vec(Fppn) = (Ag 4, .-, A;K)Th. From Lemma 1, sub-
stituting this equality into the expression of QCy, gives QCy, = h™D, o R

The proof of Theorem 3 is completed.

S9 About the condition of simple eigenvalues

~ A

In Theorem 3, there is a condition that the eigenvalues 5\1, A of By
with respect to 3, are all simple. Here, we make a comment about it,

using the case of sliced inverse regression as an example. That ) is a simple
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eigenvalue of fln with respect to 3, is equivalent to that \is a simple

. S—1/28, —1/2 . . .
eigenvalue of ¥, ° 3,3 . We show that, in sliced inverse regression,

12 is not

it is not a usual case that a nonzero eigenvalue of 3 %/ Y >
simple. In the sliced inverse regression, ¥, = cov(E(x | Y)), and without
loss of generality, we assume 3, = I. Now suppose a nonzero eigenvalue,
say A, of 3, is not simple. Then the dimension of eigen-subspace for this

eigenvalue, denoted by B, will be at least two. On the other hand, for any
standardized vector 3 in B,, it always holds that
var{E(8'x [ Y)} =B'%,8 = A,
E{var(8'x | Y)} =var(8'x) —var{E(B'x | Y)} =1 - \.

That means for any standardized vector B in By, var{E(8'x | Y)} and
E{var(8"x | Y)} are both constant independent of 3. This is not a usual
case. To illustrate this, we further give an simple example as follows.

Consider a model Y = ¢(8] x, B, x), where x ~ N(0,1), 8 = (1,0,...,0)7,
By =(0,1,0,...,0)7, and g(-,-) is given as follows:

g(x1,29) = 1, for 1 € (—o0,a;) and x5 € (—00, ay);

g(x1,29) = 2, for 1 € (—00,a1) and x5 € [ag, +00);

g(x1,29) = 3, for z1 € [a1, +00) and x5 € (—00, ay);

g(x1,29) =4, for z1 € [a;,+00) and 3 € [ag, +00).

Then it can be shown that cov(E(x | Y)) is a diagonal matrix with the first
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two diagonal elements, respectively,

p(a1)?/{®(a)®(—ar)} and  p(az)?/{P(az)P(—az)},

and the other diagonal elements all zero, where p(z) and ®(x) denote the
density function and distributional function of N(0,1). Hence, in this ex-
ample, unless a; = ay or a; = —a9, the nonzero eigenvalues are always
simple.

Moreover, for 3/ ’y, 20 172 when 3, and Xy are substituted by their
estimates, the chance of nonzero eigenvalues which are not simple may be

even smaller, due to the errors of estimates.

S10 About re-weighting-case perturbation scheme

As commented in Remark 1 in the main content, we can also consider the
re-weighting-case perturbation scheme. Let F' and F,, denote the cumula-
tive distribution function and empirical distribution function of (x*,Y)7T,
respectively, and let 7 be the functional that satisfies 7(F) = B and
T(F,) = B. We perturb F), to Fow=>1, wié(x;;’yi)T with > 7 w; = 1,
and then B(w) = T (F,w), where &, denotes the distribution with proba-

bility massed at a.

We now give some properties in this section. The columns of B(w),
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~ ~

bi(w),...,bg(w), are the standardized orthogonal eigenvectors of 3, (w)
with respect to 3x(w) associated with the largest eigenvalues A (w) > ... >
A (w), where

Zw) = ) Q) wm(@x(w) - x(w)x(w)",

=1 i€

Se(w) = Zwixix}—x(w)x(w)T, (S10.1)

in which %(w) = >0, wixi, Xi(w) = 30,7 {(wi/ 30z, wi)xi}, and 370, wi
= 1. Under this scheme, w) = (1/n,...,1/n)". We have the following
invariance property.

Theorem S1. Letxj,...,x) denote the sample of x* under the invert-
ible affine transformation x* = Ax and D*(w) denote the space displace-
ment function under the model where Y is regressed on x*. Then under
the re-weighting-case perturbation scheme, it holds for sliced inverse regres-
sion that D*(w) = D(w), which means the space displacement function,
the quasi-curvature and the influential direction are all invariant under this
transformation.

PROOF:

Let f]i(w) and f};(w), respectively, denote the matrices 3 (w) and

ﬁ]n(w) defined by (S10.1) with xy,...,x, replaced by x7i,...,x’. It can

* A~

be easily shown that ﬁl;(w) = A3, (W)AT and 2, (w) = AZ,(w)AT.
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Then by similar reasoning as that in the proof of Theorem 2, we can get

D*(w) = D(w). The proof of Theorem S1 is completed.

To obtain the expression of the quasi-curvature under the re-weighting-
case perturbation scheme, we need the following lemma.
Lemma S1. Under (510.1) with w = w) + th, the matrices 2,(71 and

27711 defined in Lemma 2 satisty

3.1¢ = Xdiag(Z"¢)h + Zdiag(X"¢)h — Xdiag(XT¢)h, (S10.2)

¥,1¢ = Xdiag(Z;¢)h + Z,diag(X"¢)h — X, diag(X} ¢)h,(S10.3)

for any vector ¢, where X, is a p X n matrix with the 7th column x; for
1€ 7.

PROOF:

(i) We first prove the expression of 3y ,¢. We still let &,,;(w) be the

(i, 7)th element of 3y (w). Then

00, (W + th - - -
73( 8(2?) ) = Z hkxikxjk — Ty Z hiTii — Z;. Z hk$jk-
=0 k=1 k=1 k=1

Let (imf)i denote the ¢th element of ﬁ)xJC. As ﬁ?xJ = (064 (w)/0t|1=0) pxps
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it holds that

p

(im,lf)i = Z(Z hrxipz i — T5. Z hixa, — ;. Z hix k)G
k=1 k=1

j=1 k=1

n p n p
= Z by, Z(l‘jk —Z;)G+ Z (@i — ) Z%‘ij
k=1 j=1 k=1 Jj=1
n p
- Z by, Z ZjkGj
k=1 Jj=1

= xDTdiag(ZT¢)h + 2z diag(XT¢)h — xDTdiag(XT¢)h.

Then (S10.2) has been proved.
(i) Next we prove (510.3)). We still let 6,,;;(w) be the (7, j)th element

of 3, (w). Then

T

= N -0 hauay + (O hiwa)y

96y, (w(o) + th)
ot

t=0 =1 keT, kez,
n
+jlz(z hkx]k)} — (Z hkl‘zk)i‘]
ke, k=1

—.f'i. (Z hle]k) .
k=1

Let (3,1¢); denote the ith element of 33, 1¢. As 3,1 = (96,.4;(w)/Ot]1=0) pxp;
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it holds that

T

(in,IC)i = Z G [Z{—(Z hi) % - Toj + (Z hixix)Tij + flz(z by i) }

=1 keT, keT, kez,

O hwaa) Ty — 2.0 )]
k=1 k=1
T p

= Z Z Z(—hkffu!fljﬁj + PTG + i jrZud;)
I=1 keT; j=1
n p

— Z Z(hkxzk@(’] + haZj1:.Cj)
k=1 j=1
T p p
= Z Z{_hk-@li Z Z1;C 4 hpxig Z(flj - jjj‘)Cj
j=1

=1 keI, 7=1

+hi (T — T4.) Z TG}

J=1

Let x$f’ denote the ith column of Xg. From the above equality, we have
(80,1Q); = —xWTdiag(XT¢)h + x DT diag(Z] ¢)h + z{) " diag(X"¢)h.

Then the equality has been proved. The proof of Lemma S1 is
concluded.

If the eigenvalues 5\1, e 5\K of ﬁ)n with respect to ¥y are all simple,
Lemma 2 and Lemma S1 indicate that, under the re-weighting-case scheme,
vec(Fpn) = (AB}?T, e AgE)Th, where

R 1 o ol R . . -
Agﬂ? — 5(277,)(72-2,72,( + A, — 2, {Xdiag(ZTh;) + Zdiag(X"b;)

—Xdiag(X"by)} — 2, xi{Xdiag(Z1b;) + Z,diag(X"b;)

~

—X,diag(X} b))} (i=1,...,K).
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Combining Lemma 1, Lemma 2 and Lemma S1 gives the following
theorem.

Theorem S2. Under the re-weighting-case perturbation scheme, the
quasi-curvature of lifted line along h at wy can be expressed as QCp =

thg()O)h, where DS}()O) denotes

K
- (R 2 BT R
D‘(-‘-’()o) - nf( ; A§3,l)<: {Z(I - PZTE)ZT}A%,J)C.

We now study the influential direction under the re-weighting-case per-
turbation scheme. Since there is a constraint » . w; = 1 under the re-
weighting-case scheme, we slightly modify the definition of influential di-
rection and aggregate contribution vector under this scheme. As we set
w = w(g) + th, the constraint Z?:l w; = 1 is equivalent with 17h = 0,
where 1 = (1,...,1)T. Inspired by Shi and Huang| (2011), the influential

direction under the re-weighting-case scheme is naturally defined as

h,.. =arg max QC.
Ih[|=1,1"h=0

Moreover, the aggregate contribution vector under this scheme is defined

as

M, = Z )\ER)ﬂES)’
i=1

where 91 = (92,... 92T, 9, is the jth entry of 9;, and (A" ;) and
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()\,(gp”), ¥%) denote the solutions of

h"Dyy, b 10.4
Ihetdtheo | WO (S10.4)
and
T (R)
S h Dw(o>h’ (810.5)

Ih)|=1,1Th=0,nT1, j=1,....k—1
respectively, and v is the number of non-zero A;CR)S.
Let Pyo = I, — 117 /n. Then P41 is the projection matrix onto the

orthogonal complement of M(1) and 1Th = 0 is equivalent with h €

M(Py1). Then (S10.4) and (S10.5)) are equivalent with

WP, D P . h
Ihl=theat®, ) T We 1

and

. n
max hTPlLD‘(‘,)O P;.h,
Ihf=1heM(P, 1) hT;,j=1,..k—1 ©

respectively, because P;ih = h when h € M(P;1). Note that all the

eigenvectors of P [")ffffo)PlL associated with non-zero eigenvalues fall into

M(P.). Then AP .. A are the non-zero eigenvalues of Py ljﬁff()o)PlL

and v, ...,19, are the orthonormal eigenvectors associated with these non-
(R)

_ . (R . .
zero eigenvalues, where g denotes rk(PllD((*J()O)PlL>. Moreover, as Dw<0) is

non-negative and

.
max hTPPD;?O)Pth
|hl|=1,he M(P, ; ),hTY;,j=1,...g
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< max hTPPD@O)PHh — 0,

|h[|=1,hT1; j=1,....

it holds that

R
max h'P;. D) Pyih =0,
|h||=1,he M(P, | ),hT1; j=1,....9

which means v = ¢g. That is v = rk(PlL]j‘(jj()O)PlL). Then we have
PIJ_]jgzo)PlJ_ = >, )\Z(»R)ﬂiﬁ;r, which means M, defined above is the
vector that consists of the diagonal elements of Py D((_mePlJ_. To sum up,
we give the following proposition.

Proposition S1. Under the re-weighting-case perturbation scheme,
the influential direction is the eigenvector of P]_J_]j((f}()O)PIJ_ associated with
its largest eigenvalue and the aggregate contribution vector My s the vector
that consists of the diagonal elements of Plibg()o)PlL.

Because Y " ,w; = 1, the influential direction is the eigenvector of
PlL]jg()o)PlJ_ associated with its largest eigenvalue (Shi and Huang, [2011)),
and the aggregate contribution vector My is the vector that consists of
the diagonal elements of Pliljg()mPlL, where P;1 = I, — 117 /n and
1 =(1,...,1)T. Let u; be a vector with the ith entry 1 and the other

entries 0. It holds that

P]_J_U.‘ n
D —t ) = Mo it* + o(t? S10.6
(w(o) HP]_J_ulH) n — 1 0, +0( )7 ( )

where My ; is the ith element of My. On the other hand, for ¢t = 1/{n(n —
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D2,

Pllul‘ n N2
D —tr= | = — t 10.
<w(0) ||P1J-ui||) — 1SIFC(2) : (510.7)

where SIFC(7) is the influence measure of the ith observation given by the
case-deletion method proposed by |Prendergast and Smith (2010). In this
sense, the quasi-curvature method under the re-weighting-case scheme is
similar to the case-deletion method.

Now we prove the equalities (S10.6) and . These two equalities
indicate that the quasi-curvature method under re-weighting-case scheme
is similar to the case-deletion method proposed by |[Prendergast and Smith
(2010)) in a sense. First, from the definition of the quasi-curvature, it holds

under the re-weighting-case scheme that,

D(w(g) +th) = *h"DE) h+ o(t), (S10.8)

Since My is the vector that consists of the diagonal elements of P« DS}()O) P

and obviously ||Py1w|? = (n—1)/n, the equality is proved by tak-
ing h = —P,.u;/||Pyrw in (S10.8), where u; is a vector with the ith
entry 1 and the other entries 0. The following is the proof of .
Let to = 1/{n(n — 1)}!/2, it holds that w() — toPy.u;/[|P11uy] is a vec-

tor with the 7th entry 0 and the other entries 1/(n — 1). Let w(; denote
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w(o) — toP111;/||Py1w;l|. Then it holds that
F, b o
nWa T Z ()T
G=1, i,
Let ]é(i) denote the estimate of B using sliced inverse regression with the

ith observation deleted. Then

A ~

B(w(i)) = T(me(i)) = B(i). (810.9)

Because SIFC(i) = (n — 1)%{1 — tr(PzTEPzTB( >)/[A(} according to [Pren-

i

dergast and Smith| (2010 and ¢2 = 1/{n(n — 1)}, combining the definition

of D(w) and the equality (S10.9) completes the proof of (S10.7). The proof

is completed.

S11 Local influence of dMAVE

S11.1 A brief review of MAVE based on conditional density

function

MAVE based on conditional density function (AIMAVE) was proposed by
Xial (2007). Its idea is based on the fact that the column space of the gra-
dient Omy(x,Y)/0x is the subset of the central subspace, where my(z,y) =
E{Hy(Y —y)|x = x}, H(v) is a symmetric density function, and H,(v) =

b= H(v/b) with b > 0 a bandwidth. Suppose the structural dimension K is
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known. By minimizing G(a,d, B), which is defined as

n

n= ZWZ{HM k) — az — dpB x; 2 K,(B x;)  (S11.1)

k=1 j=1

3

n

with a and d being vectors containing, respectively, a;zs and djzs for
J,k = 1,...,n, with respect to ajz, djr,j = 1,...,n and B : B'B = I,
dMAVE method obtains the central subspace estimate B = M(B), where
B,di,djr,j = 1,...,n is the minimizer, K,(u) = h~¢K(u/h) with d
the dimension of u, K(v) = Ky(v'v), Ky(v?) is a univariate symmet-
ric density function, A > 0 is a bandwidth, H,;(y) = Hy(vi — y), xij =
Xi = Xj, Pjk = p(fe, (XJ>)p(fY,b(yk))a fraly) =n~! et Hoi(y), fon(z) =
n1S"  Ku(BT(x; — 1)), p(-) is a bounded function with bounded second
order derivatives such that p(v) > if v > wvp; p(v) = 0 if v < vy for some
small vy > 0.

Xia| (2007) proposed the following algorithm to implement the estima-
tion.

Step 0. Let B(;) be an initial estimator of the central subspace direc-
tions. Set s = 1.

Step 1. Let B = By, calculate the solutions of (az, djx),j, k =1,...,n,
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to the minimization problem in (S11.1)):

-1
s sT
(agk)’ (s) {Z Kh Xz] 1 X; B(S)) (1,X;;B( ))}
X ZKh (%) (LxiB)  Hy i(ye),  (S11.2)

where hg and b, are two bandwidths.

Step 2. Let pﬁ) = ,o(fB(5>7hs(xj))p(fyvbs(yk)). Fixing a;, = aﬁ) and

d;, =d

ix» calculate the solution of B or vec(B) to (S11.1):

—1
pGth)  — { Z p] Khs XZ])XZ(;IEI(X’E;]Z:)T}

ka 1

x Z pﬂf)Kh B(xi;) 'ij{Hb i (Yr) —aEk)}
k,j,i=1

where xgjl)C dgf;;) ® X

Step 3. Calculate Ayry = {(VOEITV(DOE)} and By =

V(b)) x ALY}

(s11), Where Vv, .., v))T) = (vi,...,v,). Set s :=s5+1

q
and go to step 1.

Step 4. Repeat Steps 1-3 until convergence. The final value of B can
be taken as B.

In the above algorithm, X = (x1,...,%,) and y = (y1,...,¥n) "
assumed to be standardized. Now we let X and y denote the original data

and X = (Xy,...,%,) and ¥ = (§1,...,9»)" be the standardized data. Then

the central subspace estimate associated with the original data should be
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B = M(B), where B = 2;1/213 and B is the final value of B, in the above

algorithm with X and y replaced by X and y, respectively.

S11.2 A local influence analysis of dAMAVE

Now we try to assess local influence of the original observations (x; ,4;)",i =
1,...,n on BB under the above AMAVE algorithm. Inspired by [Zhu and Lee
(2001)), we assess the local influence of the original observations on B =

A —1/2

M(X, " B(s;1)) in the final iteration of the IMAVE algorithm. Firstly, we

set the following perturbation scheme.
X(w) = Xdiag(w) and y(w)= diag(w)y. (S11.3)
Under (S11.3), x;(w) = x;w; and y;(w) = y;w;. In the final iteration under
the perturbation (S11.3), b&*+Y is perturbed to
b+ (w)

{Z P (W) K (W<w>>>~<§§;<w><f<§;,1<w>f}

k,ji=1
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%00 (w) = df (@)@%i;(w), 45 (@) = p(F57) . (&5 (@) p(f5) Gr(w))),

R ) *ZHb W), f50(2) = —IZKhS (w)—a)),
7i(w) = (yi(w)=F(w))/ /Sy (W), fw) = n~ Zyz

Y ) =5(w))*

and

(@) (w),d' (w)")"

{Z K, (B{y%j(w ))(17iij(w)TB(s))T(laiz‘j(w)TB(s))}

D K (B R 1)) (1,55 () Bro) T, (5() = ).

Then the central subspace estimate is perturbed to

~

B(w) = M{ﬁjx(w)_l/2B(s+l)(w)}a

where

By (w) = V(b (W) A g1y (w) 2,

in which Agi1)(w) = {V(bE (W)} TV (0OE (w)). Let

~—1/2

By (@) = Zi(w) V(B () and By = B, TV(bETY),

In the expression of D(w), taking B and B(w) to be B(SH) and B(Hl)(w),

respectively, we can employ the proposed methodologies of quasi-curvature.
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Here we omit A 1)(w)™/? and A(;i_/f) in the expression of By, 1)(w) and
B (s11) because from theorem 1, this omission brings no change of D(w).
Let

b (w) = (T ® By(w)2)b ) (w).

Then we have

0%d(A)
QCp, = vec(Fgp) ' - vec(Fgn),
Ovec(A)Ovec(A) A=Bp)
where
3 T
8b(5+1>
vec(Fgn) = TM h.
dO)
Hence, to obtain hy,,,, we only need to calculate dbGt)(w)/dw . Let
dO)

Z P (W) K, (Bl %y ()X (w) (X ()T,

k,ji=1

Z P (W) K, (Bl % (w)) X (w) L Hy, (§:(w) — i (w)) —al) (w)},

k,j,i=1

Z Khs BT Xz] ))(17 iij (w)TB(S))T(lv iij(‘*’)TB(S))’

ZKhs (BoXij(w))(1,%(w) "Bys)) " Ho, (5i(w) — r(w),

X(;) be the ith row of X, w -V or V - w be the scalar multiplication of the
scalar w and matrix V, and E,; be a n x 1 vector with the ith element

one and the others zeros. The calculation of db6)(w)/dw is given
O
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by the following expressions:

obttD(w)  abtHD(w) O3 (w) 12

= (Ix @3y (w) /) + o (VB (w)@l,);
W _ _%(ﬁzx(w)*/? ® S (w) V2,
82,})(;0)1/2 82;( ){I D3 (W) 3 (W) 2L} Y
0Ly (w)

= n_l(diag(x(l))7 ..., diag(xp)){I, ® (P X(w)")}
e lding(x] . X {(PLX(w)) @ T}

Obl+) (w) 0C;(w) 0Cs(w)

= {C1(w) @b (w) )+ 5, Ci(w) b
Oe) 3 [P BLAD o o o)
k,ji=1
+8X£jk( (‘;ZS’)C(W)T ~{,5§~2)(W)Khs<B(Ts))~(ij<w)>} :
8’2§;’1(wgi§;’l(wf = aig%fwﬁw@i;i( ) %) @)
@Xglzu( 2 aagzw){IK@zij(W)TH@XU( ){dyk< ) @i}

R BLX@) )

ow ow
0K, (B, (s)Xii (w)) ~(s)
+ aw p]k: ( )7
0Cs(w) &
;—w = Z (CZ gk + C( 2,ijk + CZ gk + Cglz]k)

k,j,i=1
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O = 2 (3 (@) K, (B iy (@) L (7(w) — () — 57 (@)},

875 (w
Cn = pguﬁ Lo (BT 00) i o) — ) — 5 )} )
aK BT i"] (s - ~(s ~(s T
oy = 2t o~ D)5 o) (1) — () — @)},

o JOHLGiw) —i(w) a7 (w)
295k T Ow Ow

%) (@) K, (Bl % (@))% (@) s

0(a) (w),d\y) (w))T oD (w) N A ATAT
= o Di(w) ! @ (@) (). A (@) )}
+8Dai()w)D1( ) 17
[ OK( BT fcw -
aDl [ w ”{(1 %;(w) "By) ® (1, %;(w) "By}

A(1, %ij(w) "By (1, %ij (@) Bey) _
ow

0%, ) )
(O, Xaj(f)W> B(S)) {IK+1 ® (l,Xij(w)TB(S)) + (17Xz'j<w)TB(s)> ® IK_H};

DA 3 (0.2 ) - 56, (BT %) 160) — )}

:éKh B )Niij w
JOFn 8(‘3 ( ))Hbs(gi(w)_gk(w))(l,f(ij(w)TB(s))
+8Hbs(§i(°gzd U (w ))Kh (B], %;j(w)) (1, %3;(w) By | ;



S11. LOCAL INFLUENCE OF DMAVE 37

(9ﬁ§f,?(w) {n—l - aKhs(BZs)iij(w))} Op(v)
ow

w w w
X ; —1/2 A
&;c(:a) _ ((;;) (1@ (%10~ %))+ (B 3T~ 1X T ) S ()2
Ii(w) ISy (w) /2 ) )
yai’ ) - Y(aw) {yiwi—g(w) }+(E, ;y;i—n ly)Sy(w) 1/2;
a5S -1/2 198
Y(a+) — 2 5( )Sy(w)ig/z;
05,()

I 2n " 'diag(y )Py (w).

Remark S1 For dMAVE, we conduct the influence analysis directly for
the algorithm minimizing G(a, d, B), because the central subspace estimate
depends on the algorithm including some important respects such as the
selection of the bandwidths which are changed for each iteration. Theoret-

ically, we have another option of the influence analysis method for AMAVE
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which starts from the objective function. Here we just present the basic

idea. Since the central subspace estimate is obtained by minimizing
G(a,d,B,A) = G(a,d,B) — (1/2)tr{A(B'B — Ix)}

where A is a Lagrange multiplier, we can perturb G(a,d, B, A) to G(a,d, B, A|w)
in some scheme such as weighting scheme. Then the profile of G (a,d,B, Alw)

for B can be obtained as
G*(B,w) = G(a(B|w),d(Blw), B, A(B|w)|w).

As B(w), the minimizer of G(a, d, B, A|w), is also the minimizer of G*(B, w),

we have
0G*(B,w)

=0.
oB B=B(w)

Differentiating both sides of the above equation with respect to w, we can
construct an equation by chain rule, and solving this equation will give
OB(w)/0w. The remaining steps are just similar to those of the given
method. This method does not depend on the specific algorithm of min-
imization except that we need the algorithm to obtain B, which is used
to substitute B in the expression of dB(w)/dw, and we need to select the
bandwidths. In addition, the equation based on chain rule involves two
second-order differentiation matrices, and that, combined with the summa-
n

tions > (-), may bring very heavy computational burden.
Jikri=1
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S12 Local influence of cumulative mean estimation

The cumulative mean estimation (CUME) was proposed by Zhu et al.
(2010). This method is based on the fact that M (M) is a subset of 3,8,
where M is the CUME matrix defined as M = E{m(Y)m(Y) "W (Y)}, in
which Y denotes an independent copy of Y, m(j) = E{x1(Y < )} with
1(Y < g) being a indicator function, and W(-) is a nonnegative weight

function. Let m,(7) =n"' > (x; — x)1(y; < ) and
i=1

M, =n"! Z{mn(yi>mn(yi>TW<yi)}‘

By assuming a known K, the K eigenvectors of M, with respect to ¥4
associated with the largest eigenvalues are used as an estimate of the basis
of B. We consider the scenarios where Y is continuously distributed. In
that case, v, ..., ¥y, are different from each other in probability one and a
perturbation small enough to y; will not change the estimate of B. Hence,

we still use the perturbation scheme (5.1), that is,
X(w) = Xdiag(w).

Under this perturbation scheme, we try to obtain QC; = hT]j((_S()O)h for

CUME, which is a quadratic form of h with DES()@ to be calculated. It can
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be shown that, for any p x 1 vector ¢,

O{M,,(w(g) + th)}
o{t} -

= <n—1 Z[n_le)l(yi) . {mn<yi)TCW(yi>}

=1

¢

g ()¢ TXD () - W ()] + 07 M(¢)) by (812.1)

where 0{A(t)}/0{t} denotes the matrix with its (¢, 7)th element being the

derivative of the (7, j)th element of A(¢) with respect to t,

D1 (y;) = D1(y:) — {n"'1, D1(y:)1,} - I,

D (y;) = diag{1(y1 < i), ..., 1(yn < i)},

and M, (¢) denotes a matrix with the ith column being

U=Yi }

To save space, we omit the proof of (S12.1)) since it is somewhat direct.

mn(yi)mn(yi)TC : {yldVdV_I(Lu)

Combining lemma 1, lemma 2, the expression of XA]XJC in lemma 3 and

512.1]), the matrix f)ggo) is given for CUME.

S13 Simulation studies

In each of the following models, x4, .. ., x,, are independently generated from

N(0,Xy) with X, = diag(o2,...,02,). The errors ey, ..., €, are indepen-
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dently generated from N(0,02). We always first generate all the observa-
tions from the model under study, and then we change several observations
into artificial outliers by resetting some of their entries and keeping all the

other entries unchanged. We first consider
yi = (21 — 3xi2)° + & (i =1,...,100), (S13.1)

where z;; is the jth element of x;. Under (513.1), we let p = 20, o = 1,
Oz1=2,050=0.7and 0,;, =1fori=3,...,p, and consider two settings
of artificial outliers. In setting (S-I), we reset x192 = 50,2, and in setting

(S-1I), we reset z191 = Ho,1. Moreover, we also consider

Ti1

where the function expression was proposed by Li (1991). Under (S13.2)),
p = 10, o = 0.2, and 0,;, = 1 for ¢« = 1,...,p. In this model, we
first consider two settings, called (S-III) and (S-IV). Under (S-III), let
T101=%102=%10,3=5. Under (S-IV), let x191= 2102=2103=5, T11,1=011,2=211,3=4.9,
T121 = T122 = T123 = 4.8, y11=1.1y10, and y12=1.2y19. The three artificial
outliers are set to be close to each other under (S-IV). That is to check
whether the quasi-curvature method can overcome the difficulties brought
by masking effect, since the local influence methods are supposed to have

some advantage over the case-deletion methods in the scenarios where sev-
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eral outliers are close to each other. Moreover, we assign specific numbers
to the artificial outliers, instead of generating them randomly, to make them
outlying stably in all the replications.

Under each of these four settings, we assess the influence of observations
on B given by sliced inverse regression. For the slicing strategy, we obtain
[n/vs] slices with each of the first [n/vs] — 1 slices containing vs observations
and the last slice containing the remaining observations, where [£] denotes
the integer closest to &. For comparison, three methods are used, including
our quasi-curvature approach, which is denoted by QcC, and two sample
influence functions, which were proposed by Prendergast| (2006|, 2007)) and
Prendergast and Smith| (2010) and denoted by SIFB and SIFC, respectively.
The latter two are both case-deletion methods, and we denote the influence
measures that they provide for the ith observation by SIFB(i) and SIFC(7).
For both of them, the slices are always kept unchanged after the deletion of
each observation. For the quasi-curvature method, the influential direction
h,,.x under the perturbation scheme (5.1) is used with |hpax;:| to be the
influence measure of the ith observation.

We conduct 200 replications. The estimate K is obtained through se-
quential tests with the test level being ar/p in each step. For now, we

take ar = 0.05. Table presents the numbers of replications in which
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Table S1: Numbers of replications with artificial outliers identified

setting | (S-I) | (S-IT) | (S-III) (S-1V) (S-1V)
Vs 25 | 25 25 20 15

outlier | 10th | 10th 10th 10th  11th 12th all | 10th 11th 12th all

SIFB 137 164 198 112 115 117 &4 126 119 123 91

SIFC 199 200 200 183 181 162 152 | 162 156 146 123

QC 198 197 200 197 193 187 184 | 193 187 18 173

Note: The columns ‘all’ include the numbers of replications where all the 10th, 11th and 12th observa-

tions are identified as influential.

the artificial outliers are identified as influential among the 200 total repli-
cations. The results show that the quasi-curvature method under scheme
(5.1) has stable performance under all the settings. Prendergast’s method
using SIFC(7) performs well under settings (I), (II) and (III), but its detec-
tion power sharply decreases under setting (IV), which may be due to the
masking effect. We have also obtained the index plots of influence measures
for observations given by the quasi-curvature method under scheme (5.1) in
a replication under settings (S-1)—(S-IV). They are presented in Figure
and Figure[S2] respectively. In all these plots, the artificial outliers all stand
out, as expected.

We also consider a scenario where the elements of x are correlated.
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Figure S1: Index plots of influence measures for observations given by quasi-curvature
method under scheme (5) with bench-marks M + 1.645s,, (solid line) for one replication

in the simulation under the settings (S-I)—(S-III).
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Figure S2: Index plots of influence measures for observations given by quasi-curvature
method under scheme (5) with bench-marks M +1.645s s (solid line) for one replication

in the simulation under the setting (S-IV).
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The model (S13.2) is still considered with cov(x) = I, + £€£¢' and the
other settings not changed, where & = (1,—1,1,—1,1,-1,1,—-1,1,—1)".
This covariance matrix means some predictors are positively correlated
and some are negatively correlated. Firstly, we set artificial outliers with
51710,1:1'10,2:3310,3:5 X \/57 51711,1:56'11,2:3311,3:4-9 X \/57 T12,1 = X122 = X123
= 4.8 x V2, yii=1.1y10, and y15=1.2y15. Let 7 = (my, 71, T2, T,), Where
T, ™1 and 7y denote, respectively, the numbers of replications in which
the 10th, 11th and 12th observations are identified as influential among all
the 200 replications, and 7, denotes the number of replications in which
the 10th, 11th and 12th observations are all identified as influential. It
turns out under scheme (5.1) 7 for QC, SIFC, and SIFB is, respectively,
(185,180,179,165), (172,163,153,134) and (119,130,128,95). When we
keep the model unchanged, but set only one artificial outlier with x¢,
= T2 = T103 = O X V2, my for Qc, sIFC, and SIFB is, respectively,
200, 198, 199.

We now show that several outliers may result in a sharp decrease in
the accuracies of K and B and that data trimming is helpful in reduc-
ing this decrease. Our data trimming strategy is to conduct sliced in-
verse regression after deleting the influential observations detected by the

quasi-curvature method under (5.1). The benchmark is still taken to be
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M + 1.645s),. Four types of settings (S-V)—(S-VIII) are considered un-
der model with vy = 20, where (S-V) means x191=2102=%103=5,
211,1=211,2=211,3=4.8 and y;1=1.2y10; (S-VI) means for i = 10,12, z;1=
Ti9=T;3=D, Tit11=Tit12=Ti+13=4.8 and y;11=1.2y;; (S-VII) means for
t=10,12,14,16,18, z;1= x,2=2.5, Ti11,1=2i+12=2.3 and y;11=1.2y;; and
(S-VIII) means no artificial outliers. We still perform 200 replications. For
the estimate of K, the performances of the sequential tests and Bayesian
information criterion are both investigated, which depend on the test level
and C,,, respectively. For the former, we take the test level to be ar/p in
each step. The accuracy of K is described by the percentage of K = K in
200 replications. We present the scatter plots of the accuracies of K versus
ar and C,, in Figure[S3|and Figure [S4] respectively, where the accuracies of
K with and without data trimming can be compared. These figures show
that data trimming makes K considerably more robust with respect to
the values of C,, and az under (S-V)—(S-VII), and under (S-VIII), the loss
caused by data trimming, if any, is very slight. The performances of B with
and without data trimming are compared in Table [S2| which shows that
the data trimming provides a substantial improvement in the robustness of
B.

For the re-weighting-case scheme, equalities (S10.6|) and (510.7) can be
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Table S2: Accuracy of B and K by sliced inverse regression with and without data

trimming

% of the corr. % of K =K

setting data COTT. corr. <0.6 <0.7 <08 <0.85 bytest by BIC
mean std

(S-V) original  0.870  0.060 0 2.5 9 30.5 82.5 86.5
(S-V) trimmed  0.9360 0.028 0 0 0 0.5 94.5 98.5
(S-VI) original ~ 0.816 0.069 0.5 7.5 36 63.5 71.5 70.5
(S-VI) trimmed  0.924  0.048 0 1 2 6 89.5 96
(S-VII)  original 0.864 0.070 0.5 3.5 15 32.5 58 62
(S-VII)  trimmed 0.904 0.050 0 1 3.5 12 87 88.5
(S-VIII) original  0.937 0.026 0 0 0 0 95 98.5
(S-VIII)  trimmed 0.937 0.026 0 0 0 0.5 97 99.5

Note: The corr.=tr[B(BTB)"!BTB(BTB)~!B7T]/K since cov(X) = I in the simulation. The percent-

ages are calculated among the 200 replications. For the estimate of K, we take ap = 0.05 and C,, = 0.3.

‘Std’ means standard deviation.
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Figure S3: Plots of accuracy of K versus ap in the sequential tests with (circles) and

without (stars) data trimming.
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Figure S4: Plots of accuracy of K versus C, using Bayesian information criterion with

(circles) and without (stars) data trimming.
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illustrated by the following simulation. In the replications under setting
(S-IV) with vs = 20, the mean and standard deviation of cosines of the
angles between the aggregate contribution vectors (Mgs) based on quasi-
curvature under the re-weighting-case scheme and (SIFc(1), ..., siFc(n))’s
are 0.9877 and 0.0085, respectively, whereas the quasi-curvature method
under scheme (5.1) using hy,., performs quite differently. Moreover, under
the re-weighting-case scheme, the methods using Mgs and h,,,, identify all
three artificial outliers in only 123 and 80 replications, respectively.

The invariance property can also be illustrated by numerical studies.
For example, under (S-IV), we make the transformation x; = Ax;, i =
1,...,n and obtain the influential direction based on (yi,x}1),. .., (yn, x:T)
under scheme (5.1) with its absolute value vector denoted by (|A} .15 - - -
|Waxnl) ', Where A=(a;;) is a 10 x 10 matrix with the diagonal elements

being 1,3,2,5,4,4,5,2,3,1, a;;41 = 1 for i = 1,...,9 and all the other ele-

ments being zeros. The mean of > " | ||fmax,

— |hf e il|/n among the 200

max,

replications is 3.6727 x e~ 19

, which appears to be extremely small and is
only caused by calculation errors.

Now we conduct a simulation study for the local influence analysis of

dMAVE. Inspired by Xia| (2007), consider the model

Y = sign(2x' B, + 0.1€;) log(|2x" By + 4 + 0.1¢|),
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where sign(-) is the sign function. The predictor vector x ~ N(0,1I,) with
p = 10 and the random errors ¢; ~ N(0,1) and €3 ~ N(0,1) are indepen-
dent. For 3, the first four elements are all 0.5 and the others are zero. For
B, the first four elements are 0.5, —0.5,0.5, —0.5, respectively, and all the
others are zero. One hundred of replications are conducted. In each replica-
tion, one hundred of observations are produced from the above model with
three artificial outliers. For the artificial outliers, we set x; = x; + 1 % 0.2,
x3 = x;—1%0.2, and y; = sign(2x, B;+0.1¢;) log(|2x; B, +4+0.1¢|) + 100y,
where o, is the standard deviation of Y. Here we artificially set the value of
X1, X2, X3 to make the outliers close to each other. We compare dAMAVE and
SIR in this simulation. Figure presents the plots of (i, Baﬂ-), where Ba,i
denotes the mean of the absolute values for the 7th elements of h,,,.s among
all the replications. For AMAVE; the plot (a) shows that the artificial out-
liers produce much stronger influence on the central subspace estimate in
the sense of average performance. However, in the plot (b), the artificial
outliers seems not very influential. It seems that, in this simulation, SIR is
more robust than AMAVE. Let p(B, B) = tr(PzPg)/K, where P4 denotes
the projection matrix on the subspace A. Then p(B, B) can describe the
accuracy of B as the estimate of B. For SIR, the mean and standard devi-

~

ation of p(B, B)s among the replications are, respectively, 0.908 and 0.055,
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and under the data set without artificial outliers, they are 0.927 and 0.043.
However, for AMAVE, the mean and standard deviation of p(B,B)s are,
respectively, 0.877 and 0.100, while under uncontaminated data set, they
are 0.954 and 0.027. The estimating accuracy of dAMAVE decreases much
sharper than SIR when they suffer the same artificial outliers. That means,
in this simulation, the results of the influence analyses for AIMAVE and SIR
coincide with their performance on the estimating accuracy. In a real data
analysis, where the estimating accuracy is generally unknown, the influence
analysis may give some useful information for the selection of the central
subspace estimate method. Normally, a method with no or less extremely
large value of influence measures for the observations may be preferred.

A simulation study is conducted for CUME. We consider the model
and the setting (S-III). Under this setting, we compare CUME and
SIR. Figure [S6| presents the plots of (i, h,;) for CUME (a) and SIR (b).
For both CUME and SIR, the plots show that the artificial outlier produces
much stronger influence on B than the other observations in the sense of
average performance, and the difference between CUME and SIR is not
significant in this figure. Now we check the decrease of p(B, B) produced by
the artificial outlier for SIR and CUME, respectively. For SIR, the mean

and standard deviation of p(B, B)s among the replications are, respectively,
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Figure S5: Index plots of mean influence measures for observations given by quasi-

curvature method using dAMAVE (a) and SIR (b).
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Figure S6: Index plots of mean influence measures for observations given by quasi-

curvature method using CUME (a) and SIR (b).
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0.902 and 0.039, and under the data set without the artificial outlier, they
are 0.933 and 0.028. Similarly, for CUME, the mean and standard deviation
of p([;’, B)s are, respectively, 0.907 and 0.037, while under uncontaminated
data set, they are 0.936 and 0.028. The artificial outlier leads to similar
decreases of the estimating accuracy for CUME and SIR. That means, in
this simulation, the results of the influence analyses for CUME and SIR

coincide with their performance on the estimating accuracy.
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