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Supplementary Material

S1 Proof of the equality (3.3)

Under assumption 2, it can be easily shown that B̂>ZZT B̂ is invertible and

for any given h, the matrix B̂>ZZT B̂ also has full rank in a neighborhood

of t = 0. Then we have D(ω) = d(B̂(ω)). Firstly, we expand d(A) at

A = B̂:

d(A) = d(B̂) +

{
∂d(A)

∂vec(A)

∣∣∣∣
A=B̂

}T

vec(A− B̂) +
1

2
vec(A− B̂)

T

∂2d(A)

∂vec(A)∂vec(A)T

∣∣∣∣
A=B̂

vec(A− B̂) + o[tr{(A− B̂)T(A− B̂)}].

From d(B̂) = 0 and 0 ≤ d(A) ≤ 1, we know B̂ minimizes d(A) and
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∂d(A)/∂vec(A)|A=B̂ = 0. Hence,

d(A) =
1

2
vec(A− B̂)

T ∂2d(A)

∂vec(A)∂vec(A)T

∣∣∣∣
A=B̂

vec(A− B̂)

+o[tr{(A− B̂)T(A− B̂)}]. (S1.1)

As D(ω(0) +th) = d{B̂(ω(0) +th)},substituting A in (S1.1) by B̂(ω(0) +th)

under assumption 2 gives

D(ω(0) + th) =
1

2
vec{tFB,h + o(t)}T ∂2d(A)

∂vec(A)∂vec(A)T

∣∣∣∣
A=B̂

vec{tFB,h

+o(t)}+ o(tr[{tFB,h + o(t))T(tFB,h + o(t)}]).

Then the equality (3.3) holds obviously and its proof has been finished.

S2 Proof of Lemma 1

Let V̂ = ZTB̂, Ĥ = PZTB̂, Ṽ = ZTA and H̃ = Ṽ(ṼTṼ)−1ṼT. To

simplify the proof, we employ some matrix differentiation techniques. Now

we define some notations. For any vectors ξ1 and ξ2, let ∂ξ1/∂ξ2 denote

the matrix with its (i, j)th element ∂ξ1,j/∂ξ2,i where ξk,j denotes the jth

element of ξk. For any matrix Ξ = (ξ1, . . . , ξm)T with ξi the ith row

vector of Ξ, let vecR(Ξ) = (ξT
1 , ξ

T
2 , . . . ξ

T
m)T. For any matrices Ξ and Γ, let

∂Ξ/∂Γ = ∂vecR(Ξ)/∂vecR(Γ).

(i) We first calculate ∂d(A)/∂A. Note that d(A) = 1 − K̂−1tr(ĤH̃).
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Then we have

∂d(A)

∂A
= −K̂−1∂H̃

∂A
vecR(Ĥ) = −K̂−1∂Ṽ

∂A

∂H̃

∂Ṽ
vecR(Ĥ), (S2.1)

where ∂Ṽ/∂A = Z ⊗ IK̂ . The expressions of ∂H̃/∂A can be derived as

follows. Firstly,

∂H̃

∂Ṽ
=

∂Ṽ

∂Ṽ
[In ⊗ {(ṼTṼ)−1ṼT}] +

∂(ṼTṼ)−1ṼT

∂Ṽ
(ṼT ⊗ In)

= In ⊗ {(ṼTṼ)−1ṼT}+
∂(ṼTṼ)−1

∂Ṽ
(ṼT ⊗ ṼT)

+
∂ṼT

∂Ṽ
[{(ṼTṼ)−1ṼT} ⊗ In]. (S2.2)

Moreover,

∂(ṼTṼ)−1

∂Ṽ
= −∂ṼTṼ

∂Ṽ
{(ṼTṼ)−1 ⊗ (ṼTṼ)−1},

and then we have

∂(ṼTṼ)−1

∂Ṽ
= −∂ṼT

∂Ṽ
[(ṼTṼ)−1 ⊗ {Ṽ(ṼTṼ)−1}]− {Ṽ(ṼTṼ)−1}

⊗(ṼTṼ)−1. (S2.3)

Combining (S2.2) and (S2.3), we have

∂H̃

∂A
= (Z⊗ IK̂)

(
In ⊗ {(ṼTṼ)−1ṼT} − H̃⊗ {(ṼTṼ)−1ṼT}

−∂ṼT

∂Ṽ
[{(ṼTṼ)−1ṼT} ⊗ H̃]

+
∂ṼT

∂Ṽ
[{(ṼTṼ)−1ṼT} ⊗ In]

)
. (S2.4)
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Note that

(Ξ⊗ ΓT)vecR(Ψ) = vecR(ΞΨΓ)

for any matrices Ξ, Γ and Ψ of appropriate dimensions. Hence, combining

(S2.1) and (S2.4) gives

∂d(A)

∂A
= −K̂−1(Z⊗ IK̂)

[
vecR

{
ĤṼ(ṼTṼ)−1 − H̃ĤṼ(ṼTṼ)−1

}
−∂ṼT

∂Ṽ
vecR

{
(ṼTṼ)−1ṼTĤH̃− (ṼTṼ)−1ṼTĤ

}]
. (S2.5)

It can be shown that

∂ΞT

∂Ξ
vecR(Ψ) = vecR(ΨT)

for any matrices Ξk×l and Ψl×k, and so (S2.5) can be written as

∂d(A)

∂A
= −2K̂−1(Z⊗ IK̂)vecR

{
ĤṼ(ṼTṼ)−1 − H̃ĤṼ(ṼTṼ)−1

}
= −2K̂−1vecR

{
Z(I− H̃)ĤṼ(ṼTṼ)−1

}
. (S2.6)

(ii) Next we calculate ∂2d(A)/∂vecR(A)∂vecR(A)T|A=B̂.Let S̃ = S̃1S̃2

where S̃1 = Z(I− H̃)Ĥ and S̃2 = Ṽ(ṼTṼ)−1. Then it holds that

∂2d(A)

∂vecR(A)∂vecR(A)T
= −2K̂−1

{
∂S̃1

∂A
(Ip ⊗ S̃2) +

∂S̃2

∂A
(S̃T

1 ⊗ IK̂)

}
.(S2.7)

As Ĥ is idempotent, we have S̃1|A=B̂ = Z(I− Ĥ)Ĥ = 0. Therefore,

∂2d(A)

∂vecR(A)∂vecR(A)T

∣∣∣∣
A=B̂

= −2K̂−1 ∂S̃1

∂A

∣∣∣∣∣
A=B̂

(Ip ⊗ S̃2|A=B̂). (S2.8)
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Combining (S2.4), (S2.8) and the equation

∂S̃1

∂A
= −∂H̃

∂A
(ZT ⊗ Ĥ)

gives

∂2d(A)

∂vecR(A)∂vecR(A)T

∣∣∣∣
A=B̂

= 2K̂−1{Z(I− Ĥ)ZT} ⊗ (V̂TV̂)−1. (S2.9)

Then the equality in Lemma 1 can be easily shown from (S2.9).

The proof of Lemma 1 has been finished.

S3 Proof of Theorem 1

The proof of Theorem 1 is straightforward and omitted.

S4 Proof of Theorem 2

Let Z∗ be a p×n matrix with the ith column z∗i = x∗i − x̄∗ where x̄∗ denotes

the sample mean of x∗. According to the definition of space displacement,

D∗(ω) = 1− 1

K̂∗
tr{PZ∗TB̂∗PZ∗TB̂∗(ω)}, (S4.1)

where B̂∗ = M(B̂∗), B̂∗(ω) = M{B̂∗(ω)}, B̂∗ = (b̂∗1, . . . , b̂
∗
K̂∗

) and

B̂∗(ω) = (b̂∗1(ω), . . . , b̂∗
K̂∗

(ω)) in which b̂∗1, . . . , b̂
∗
K̂∗

and b̂∗1(ω), . . . , b̂∗
K̂∗

(ω)

denote, respectively, the estimates and perturbed estimates of dimension

reduction directions for x∗ obtained by sliced inverse regression. By the
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similar reasoning as in Li (2000), we show that B̂∗(ω) = (AT)−1B̂(ω)

as follows. Under the multiplicative scheme, the samples of x is per-

turbed to xi(ω) = ωixi(i = 1, . . . , n), and the samples of x∗, the trans-

formed variate vector, are perturbed to x∗i (ω) = ωiAxi (i = 1, . . . , n).

Let X(ω) = (x1(ω), . . . ,xn(ω)), X∗(ω) = (x∗1(ω), . . . ,x∗n(ω)) and Σ̂
∗
x(ω)

denote the perturbed estimate of the covariance matrix of x∗. Note that

X∗(ω) = AX(ω). Then

Σ̂
∗
x(ω) = n−1X∗(ω)(I− n−11a1

T
a )X∗(ω)T = AΣ̂x(ω)AT. (S4.2)

Let x̄l(ω) =
∑
i∈Il

xi(ω)/nl, x̄(ω) =
n∑
i=1

xi(ω)/n, x̄∗l (ω) =
∑
i∈Il

x∗i (ω)/nl and

x̄∗(ω) =
n∑
i=1

x∗i (ω)/n. Then x̄∗(ω) = Ax̄(ω) and x̄∗l (ω) = Ax̄l(ω). Hence

Σ̂
∗
η(ω) = n−1

τ∑
l=1

nl{x̄∗l (ω)− x̄∗(ω)}{x̄∗l (ω)− x̄∗(ω)}T

= AΣ̂η(ω)AT. (S4.3)

Hence, Σ̂
∗
η(ω)b = λΣ̂

∗
x(ω)b is equivalent to Σ̂η(ω)(ATb) = λΣ̂x(ω)(ATb).

Moreover, the equalities bTΣ̂
∗
x(ω)b = 1 and aTΣ̂

∗
x(ω)b = 0 are, respec-

tively, equivalent to the equalities

(ATb)TΣ̂x(ω)(ATb) = 1, (ATa)TΣ̂x(ω)(ATb) = 0.

That means K̂∗ = K̂ and (AT)−1b̂1(ω), . . . , (AT)−1b̂K̂(ω) are the per-

turbed estimates of dimension reduction directions for x∗ in sliced inverse
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regression. Then we have shown that B̂∗(ω) = (AT)−1B̂(ω), which also

indicates B̂∗ = (AT)−1B̂. In addition, Z∗ = AZ. Therefore, it holds that

Z∗TB̂∗ = ZTB̂ and Z∗TB̂∗(ω) = ZTB̂(ω) which indicate D∗(ω) = D(ω).

The proof of Theorem 2 is finished.

S5 Proof of Lemma 2

1. We prove that λ̂(t) and b̂(t) are differentiable at t = 0 and continuous

in a real neighborhood of t = 0.

Note that λ̂(t) and b̂(t) satisfy

Σ̂η(ω(0)+th)b̂(t) = λ̂(t)Σ̂x(ω(0)+th)b̂(t) and b̂(t)>Σ̂x(ω(0)+th)b̂(t) = 1.

Let Σ̃(t) = Σ̂x(ω(0)+th)−1/2Σ̂η(ω(0)+th)Σ̂x(ω(0)+th)−1/2, where Σ̂x(ω(0)+

th)−1/2 is well defined since Σ̂x(ω(0) + th) will be proved to be positively

definite in a real neighborhood of t = 0. We have

Σ̃(t)b̃(t) = λ̂(t)b̃(t),

where b̃(t) = Σ̂x(ω(0) + th)1/2b̂(t) and b̃(t)>b̃(t) = 1. That is,

b̂(t) = Σ̂x(ω(0) + th)−1/2b̃(t)

and λ̂(t) and b̃(t) are, respectively, the eigenvalue and corresponding stan-

dardized eigenvector of Σ̃(t).
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Firstly, we prove that Σ̂x(ω(0) + th) is positively definite and Σ̂x(ω(0) +

th)−1/2 is differentiable in a real neighborhood of t = 0. Some related

concepts and theorems can be found in the section 1 of the chapter II in

Kato (2013). Note that Σ̂x(ω(0) + th) is well defined and holomorphic in a

complex neighborhood of t = 0, say C0. Then the number of eigenvalues of

Σ̂x(ω(0) + th) is a constant s independent of t, with the exception of some

special values of t, and there are only a finite number of such exceptional

points t in each compact subset of C0. Since Σ̂x(ω(0) + th) is diagonalizable

when t is a real number, a real number in the neighborhood will not be an

exceptional point. Hence, there exists a complex simple subdomain of C0

containing a real neighborhood of t = 0 but no exceptional point. Let C

denote this subdomain. Let λx,1(t) > · · · > λx,m(t) and Px,1(t), . . . ,Px,m(t)

be all the eigenvalues of Σ̂x(ω(0) + th) and eigenprojection matrices for

these eigenvalues. Then λx,1(t), · · · , λx,m(t) and Px,1(t), . . . ,Px,m(t) are all

holomorphic in C. On the other hand, for t in the above real neighborhood

of t = 0 contained in C, which is denoted by C1, Σ̂x(ω(0) + th) is symmetric

and hence diagonalizable. Note that Σ̂x = Σ̂x(ω(0) + th)|t=0 is assumed

to be positively definite indicating that λx,1(0), · · · , λx,m(0) are all positive.

Then there exists a real neighborhood of t = 0, which is contained by

C1 and denoted by C2, such that for t in C2, λx,1(t), · · · , λx,m(t) are all
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positive, which means Σ̂x(ω(0) + th) is positively definite for t in C2. Since

C2 is contained by C, we have λx,1(t), · · · , λx,m(t) and Px,1(t), . . . ,Px,m(t)

are all differentiable in C2. Furthermore, for t in C2, Σ̂x(ω(0) + th)−1/2 is

diagonalizable and

Σ̂x(ω(0) + th)−1/2 =
m∑
j=1

λx,1(t)−1/2Px,j(t).

Then Σ̂x(ω(0) + th)−1/2 is differentiable in C2, which is a real neighborhood

of t = 0. That also means, for t in C2, Σ̂x(ω(0) + th)−1/2 can be written as

Σ̂x(ω(0) + th)−1/2 = Σ̂
−1/2

x + tΣ̂x,2 + o(t), (S5.1)

for some matrix Σ̂x,2.

As both Σ̂x(ω(0) + th)−1/2 and Σ̂η(ω(0) + th) are differentiable in a real

neighborhood of t = 0, we have Σ̃(t) is differentiable in this real neigh-

borhood. Note that λ̂ is a simple eigenvalue. According to the section 5.1

of the chapter II in Kato (2013), the dimension of the total eigenspace for

the λ̂-group equals the dimension of eigen-subspace of λ̂, which is one, and

λ̂(t) and its eigenprojection matrix are continuous in a real neighborhood

of t = 0, which also means that b̃(t) can be chosen to be continuous from

the two standardized eigenvectors in the one-dimensional eigenspace of λ̂(t)

in this neighborhood. Then b̂(t) is continuous in the real neighborhood of

t = 0 where both Σ̂x(ω(0) + th)−1/2 and b̃(t) are continuous. Moreover,
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according to the theorem 5.4 in the section 5.4 of the chapter II in Kato

(2013), λ̂(t) and Pλ(t) are both differentiable at t = 0, where Pλ(t) is the

eigen-projection matrix for λ̂(t), and furthermore, since the dimension of

the total eigenspace for the λ̂-group equals one as discussed above, the stan-

dardized eigenvector b̃(t) for λ̂(t) is differentiable at t = 0, which means

b̃(t) can be chosen in such a way:

b̃(t) = b̃ + tv + o(t). (S5.2)

Note that b̃(t) can also be chosen as −b̃ − tv + o(t), but this does not

change qch (see Theorem 1). Combining (S5.1) and (S5.2) gives that b̂(t)

is differentiable at t = 0 in the real space.

The above proof needs a comment that, the theories for the operators

given by Kato (2013), which are mentioned above, hold for the matrices

because the matrices can be regarded as operators.

2. We prove (6.2) and (6.3).

(i) Note that Σ̂η(ω(0) + th)b̂(t) = λ̂(t)Σ̂x(ω(0) + th)b̂(t). Substituting

λ̂(t) = λ̂+ tλ̂∗,1 + o(t), b̂(t) = b̂ + tf + o(t),

Σ̂η(ω(0) + th) = Σ̂η + tΣ̂η,1 + o(t), and Σ̂x(ω(0) + th) = Σ̂x + tΣ̂x,1 + o(t)

into this equality and equating coefficients of t in it gives

(Σ̂η − λ̂Σ̂x)f = λ̂∗,1Σ̂xb̂ + λ̂Σ̂x,1b̂− Σ̂η,1b̂. (S5.3)



S5. PROOF OF LEMMA 2 11

Note that Σ̂ηb̂ = λ̂Σ̂xb̂ and b̂TΣ̂xb̂ = 1. Then premultiplying (S5.3) by

b̂T gives (6.2).

(ii) Next we prove (6.3). Firstly, we rewrite (S5.3) as

(Σ̂
−1/2

x Σ̂ηΣ̂
−1/2

x − λ̂I)(Σ̂
1/2

x f) = λ̂∗,1Σ̂
1/2

x b̂ + λ̂Σ̂
−1/2

x Σ̂x,1b̂

−Σ̂
−1/2

x Σ̂η,1b̂. (S5.4)

We try to solve (S5.4) though Σ̂
−1/2

x Σ̂ηΣ̂
−1/2

x − λ̂I is not invertible. Substi-

tuting b̂(t) = b̂ + tf + o(t) and Σ̂x(ω(0) + th) = Σ̂x + tΣ̂x,1 + o(t) into

b̂(t)TΣ̂x(ω(0) + th)b̂(t) = 1

and equating coefficients of t gives the equality

2b̂TΣ̂xf + b̂TΣ̂x,1b̂ = 0,

which means

Σ̂
1/2

x b̂ ⊥ 2Σ̂
1/2

x f + Σ̂
−1/2

x Σ̂x,1b̂.

Moreover, zero is a simple eigenvalue of Σ̂
−1/2

x Σ̂ηΣ̂
−1/2

x −λ̂I with Σ̂
1/2

x b̂ asso-

ciated standardized eigenvector, which means the spaceM(Σ̂
−1/2

x Σ̂ηΣ̂
−1/2

x −

λ̂I) is the orthogonal complement of M(Σ̂
1/2

x b̂). Hence,

2Σ̂
1/2

x f + Σ̂
−1/2

x Σ̂x,1b̂ ∈M(Σ̂
−1/2

x Σ̂ηΣ̂
−1/2

x − λ̂I).

Let Pλ be the orthogonal projection matrix of the spaceM(Σ̂
−1/2

x Σ̂ηΣ̂
−1/2

x −
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λ̂I). Then

Pλ = (Σ̂
−1/2

x Σ̂ηΣ̂
−1/2

x − λ̂I)+(Σ̂
−1/2

x Σ̂ηΣ̂
−1/2

x − λ̂I)

and

Pλ(2Σ̂
1/2

x f + Σ̂
−1/2

x Σ̂x,1b̂) = 2Σ̂
1/2

x f + Σ̂
−1/2

x Σ̂x,1b̂. (S5.5)

On the other hand, zero is also a simple eigenvalue of (Σ̂
−1/2

x Σ̂ηΣ̂
−1/2

x −λ̂I)+

with Σ̂
1/2

x b̂ associated standardized eigenvector, which means

(Σ̂
−1/2

x Σ̂ηΣ̂
−1/2

x − λ̂I)+(Σ̂
1/2

x b̂) = 0. (S5.6)

From (S5.5) and (S5.6), premultiplying (S5.4) by (Σ̂
−1/2

x Σ̂ηΣ̂
−1/2

x − λ̂I)+

gives (6.3).

The proof of Lemma 2 has been finished.

S6 Simplifying the expression of f in Lemma 2

Now we simplify the expression of f in Lemma 2. Let λ̂2, . . . , λ̂p be the other

eigenvalues of Σ̂
−1/2

x Σ̂ηΣ̂
−1/2

x . Since Σ̂
−1/2

x Σ̂ηΣ̂
−1/2

x is symmetric, there ex-

ists an orthogonal matrix Pη,x such that

Σ̂
−1/2

x Σ̂ηΣ̂
−1/2

x = Pη,xdiag(λ̂, λ̂2, . . . , λ̂p)P
>
η,x.

Then it holds that

(Σ̂
−1/2

x Σ̂ηΣ̂
−1/2

x − λ̂I)+ = Pη,xdiag{0, (λ̂2 − λ̂)−1, . . . , (λ̂p − λ̂)−1}P>η,x,
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Σ̂
−1/2

x (Σ̂
−1/2

x Σ̂ηΣ̂
−1/2

x − λ̂I)+Σ̂
−1/2

x Σ̂ηΣ̂
−1

x Σ̂x,1b̂

= Σ̂
−1/2

x Pη,xdiag{0, λ̂2(λ̂2 − λ̂)−1, . . . , λ̂p(λ̂p − λ̂)−1}P>η,xΣ̂
−1/2

x Σ̂x,1b̂,

Σ̂
−1/2

x (Σ̂
−1/2

x Σ̂ηΣ̂
−1/2

x − λ̂I)+Σ̂
−1/2

x (λ̂Σ̂x,1b̂)

= Σ̂
−1/2

x Pη,xdiag{0, λ̂(λ̂2 − λ̂)−1, . . . , λ̂(λ̂p − λ̂)−1}P>η,xΣ̂
−1/2

x Σ̂x,1b̂,

Σ̂
−1/2

x (Σ̂
−1/2

x Σ̂ηΣ̂
−1/2

x − λ̂I)+Σ̂
−1/2

x (Σ̂ηΣ̂
−1

x Σ̂x,1b̂ + λ̂Σ̂x,1b̂)

−Σ̂
−1

x Σ̂x,1b̂

= Σ̂
−1/2

x Pη,xdiag{−1, 2λ̂(λ̂2 − λ̂)−1, . . . , 2λ̂(λ̂p − λ̂)−1}P>η,xΣ̂
−1/2

x Σ̂x,1b̂

= Σ̂
−1/2

x Pη,xdiag(−1, 0, . . . , 0)P>η,xΣ̂
−1/2

x Σ̂x,1b̂ +

Σ̂
−1/2

x Pη,xdiag{0, 2λ̂(λ̂2 − λ̂)−1, . . . , 2λ̂(λ̂p − λ̂)−1}P>η,xΣ̂
−1/2

x Σ̂x,1b̂

= −b̂b̂>Σ̂x,1b̂ + Σ̂
−1/2

x (Σ̂
−1/2

x Σ̂ηΣ̂
−1/2

x − λ̂I)+Σ̂
−1/2

x (2λ̂Σ̂x,1b̂).

Hence, we have

f = −Σ̂
−1/2

x (Σ̂
−1/2

x Σ̂ηΣ̂
−1/2

x − λ̂I)+Σ̂
−1/2

x (Σ̂η,1 − λ̂Σ̂x,1)b̂− 1

2
b̂b̂>Σ̂x,1b̂.

Moreover, it can be shown that

Σ̂
−1/2

x (Σ̂
−1/2

x Σ̂ηΣ̂
−1/2

x − λ̂I)+Σ̂
−1/2

x = PΣ,b(Σ̂η − λ̂Σ̂x)+P>Σ,b,

where PΣ,b = I − b̂b̂>Σ̂x is the projection matrix along M(b̂) to the

orthogonal complement of M(Σxb̂). Then we have

f = −PΣ,b(Σ̂η − λ̂Σ̂x)+P>Σ,b(Σ̂η,1 − λ̂Σ̂x,1)b̂− 1

2
(b̂>b̂)PbΣ̂x,1b̂,
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where Pb denotes the orthogonal projection matrix on M(b̂).

S7 Lemma 3 and its proof

Lemma 3. Under the sliced inverse regression and scheme (5.1) with ω =

ω(0) + th, the matrices Σ̂x,1 and Σ̂η,1 defined in lemma 2 satisfy

Σ̂x,1ζ =
1

n
Xdiag(ZTζ)h +

1

n
Zdiag(XTζ)h,

Σ̂η,1ζ =
1

n
Xdiag(ZT

η ζ)h +
1

n
Zηdiag(XTζ)h,

for any vector ζ, where Zη is a p×n matrix with the ith column z̄l = x̄l− x̄

for i ∈ Il.

Proof: (i) We first prove the expression of Σ̂x,1ζ. Let xij denote the jth

sample of Xi, that is, the ith element of xj. Under (5.1), xij is perturbed

to xij(ω) = ωjxij (j = 1, . . . , n, i = 1, . . . , p). Then Σ̂x(ω) = (σ̂x,ij(ω))p×p,

where

σ̂x,ij(ω) = n−1

n∑
k=1

{xik(ω)− x̄i·(ω)}{xjk(ω)− x̄j·(ω)}

= n−1

n∑
k=1

(xikωk − n−1

n∑
u=1

xiuωu)(xjkωk − n−1

n∑
v=1

xjvωv)

with x̄i·(ω) = n−1
n∑
k=1

xik(ω). As ω = ω(0) + th with ω(0) = (1, . . . , 1)T, we
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have ∂ωk/∂t = hk and

∂σ̂x,ij(ω)

∂t

∣∣∣∣
t=0

= n−1

n∑
k=1

{(xikhk − n−1

n∑
u=1

xiuhu)(xjk − x̄j·)

+(xik − x̄i·)(xjkhk − n−1

n∑
v=1

xjvhv)},

where x̄j· is the sample mean of Xj, that is, the jth element of x̄, and hk

is the kth element of the vector h. Let (Σ̂x,1ζ)i denote the ith element of

Σ̂x,1ζ. As Σ̂x,1 = (∂σ̂x,ij(ω)/∂t|t=0)p×p, it is obvious that

(Σ̂x,1ζ)i = n−1

n∑
k=1

{(xikhk − n−1

n∑
u=1

xiuhu)

p∑
j=1

ζj(xjk − x̄j·)}

+n−1

n∑
k=1

{(xik − x̄i·)
p∑
j=1

ζj(xjkhk − n−1

n∑
v=1

xjvhv)},

where ζj denotes the jth element of ζ. Note that

n∑
k=1

[(
n∑
u=1

xiuhu)

p∑
j=1

{ζj(xjk − x̄j·)}] = (
n∑
u=1

xiuhu)

p∑
j=1

{ζj
n∑
k=1

(xjk − x̄j·)} = 0

and
n∑
k=1

[(xik − x̄i·)
p∑
j=1

{ζj
n∑
v=1

(xjvhv)}] = 0.

Hence, it holds that

(Σ̂x,1ζ)i = n−1

n∑
k=1

{(xikhk)
p∑
j=1

ζj(xjk − x̄j·)}

+n−1

n∑
k=1

{(xik − x̄i·)
p∑
j=1

ζj(xjkhk)}

= n−1[(ζTZ){diag(x(i))h}+ z(i)Tdiag(XTζ)h]

= n−1{x(i)Tdiag(ZTζ)h + z(i)Tdiag(XTζ)h},
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where x(i) and z(i) are, respectively, the original and centralized sample

vectors of Xi. As x(i) and z(i) are the transposes of the ith rows of X and

Z, respectively, the expression of Σ̂x,1ζ given by Lemma 3 has been proved.

(ii) Next we prove the expression of Σ̂η,1ζ. It is obvious that Σ̂η(ω) =

(σ̂η,ij(ω))p×p, where

σ̂η,ij(ω) = n−1

τ∑
l=1

nl{n−1
l

∑
k∈Il

xikωk − x̄i·(ω)}{n−1
l

∑
k∈Il

xjkωk − x̄j·(ω)}.

Moreover, it can be shown that

∂σ̂η,ij(ω)

∂t

∣∣∣∣
t=0

= n−1

τ∑
l=1

nl{(n−1
l

∑
k∈Il

xikhk − n−1

n∑
u=1

xiuhu)(x̄lj − x̄j·)

+(x̄li − x̄i·)(n−1
l

∑
k∈Il

xjkhk − n−1

n∑
v=1

xjvhv)},

where x̄lj denotes the jth element of the vector x̄l, the lth slice mean of x.

Let (Σ̂η,1ζ)i denote the ith element of Σ̂η,1ζ. As Σ̂η,1 = (∂σ̂η,ij(ω)/∂t|t=0)p×p,

it is obvious that

(Σ̂η,1ζ)i = n−1

τ∑
l=1

[nl(n
−1
l

∑
k∈Il

xikhk − n−1

n∑
u=1

xiuhu)

p∑
j=1

{ζj(x̄lj − x̄j·)}]

+n−1

τ∑
l=1

[nl(x̄li − x̄i·)
p∑
j=1

{ζj(n−1
l

∑
k∈Il

xjkhk − n−1

n∑
v=1

xjvhv)}].

As
τ∑
l=1

{nl(x̄lj − x̄j·)} =
τ∑
l=1

∑
k∈Il

xjk −
n∑
k=1

xjk = 0, it holds that

τ∑
l=1

[nl(n
−1

n∑
u=1

xiuhu)

p∑
j=1

{ζj(x̄lj − x̄j·)}] = 0
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and
τ∑
l=1

[nl(x̄li − x̄i·)
p∑
j=1

{ζj(n−1

n∑
v=1

xjvhv)}] = 0.

Hence,

(Σ̂η,1ζ)i = n−1

τ∑
l=1

[(
∑
k∈Il

xikhk)

p∑
j=1

{ζj(x̄lj − x̄j·)}]

+n−1

τ∑
l=1

[(x̄li − x̄i·)
p∑
j=1

{ζj(
∑
k∈Il

xjkhk)}].

Let Ξ1 and Ξ2 denote, respectively, the first and second terms in the

above equation. Then we have Ξ1 = n−1
τ∑
l=1

∑
k∈Il

(xikhkz̄
T
l ζ) and Ξ2 =

n−1
τ∑
l=1

∑
k∈Il

(z̄lihkx
T
k ζ), where z̄l = x̄l − x̄ and z̄li denotes the ith element

of z̄l. The kth elements of the vectors diag(ZT
η ζ)h and z

(i)
η are, respec-

tively, hkz̄
T
l ζ and z̄li for k ∈ Il, where z

(i)
η denotes the ith column of ZT

η ,

and the kth element of the vector diag(XTζ)h is hkx
T
k ζ. Then we have

Ξ1 = n−1x(i)Tdiag(ZT
η ζ)h and Ξ2 = n−1z

(i)T
η diag(XTζ)h indicating the ex-

pression of Σ̂η,1ζ given by Lemma 3.

The proof of Lemma 3 is finished.

S8 Proof of Theorem 3

Note that Σ̂x(ω) = (σ̂x,ij(ω))p×p, where

σ̂x,ij(ω) = n−1

n∑
k=1

(xikωk − n−1

n∑
u=1

xiuωu)(xjkωk − n−1

n∑
v=1

xjvωv)
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and Σ̂η(ω) = (σ̂η,ij(ω))p×p, where

σ̂η,ij(ω) = n−1

τ∑
l=1

nl{n−1
l

∑
k∈Il

xikωk − x̄i·(ω)}{n−1
l

∑
k∈Il

xjkωk − x̄j·(ω)}

with x̄i·(ω) = n−1
n∑
k=1

xik(ω) and xij(ω) = ωjxij. As ω = ω(0) + th, we

have ωi = 1 + thi, where hi is the ith element of h. Hence, both σ̂x,ij(ω)

and σ̂η,ij(ω) are quadratic functions of t. It is well known that all the poly-

nomial functions are holomorphic in the complex plane. Moreover, Σ̂x(ω)

and Σ̂η(ω) are both obviously symmetric, and Σ̂η and Σ̂x are, respectively,

symmetric and positively definite matrices. In addition, it is assume that

rk(Z) = p and the eigenvalues λ̂1, . . . , λ̂K̂ of Σ̂η with respect to Σ̂x are all

simple. In summary, all the conditions demanded by Lemma 2 are satisfied.

Then according to Lemma 2, Assumption 2 holds, and combining Lemmas

2 and 3 gives that vec(FB,h) = (∆T
B,1, . . . ,∆

T
B,K̂

)Th. From Lemma 1, sub-

stituting this equality into the expression of qch gives qch = hTD̈ω(0)
h.

The proof of Theorem 3 is completed.

S9 About the condition of simple eigenvalues

In Theorem 3, there is a condition that the eigenvalues λ̂1, . . . , λ̂K̂ of Σ̂η

with respect to Σ̂x are all simple. Here, we make a comment about it,

using the case of sliced inverse regression as an example. That λ̂ is a simple
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eigenvalue of Σ̂η with respect to Σ̂x is equivalent to that λ̂ is a simple

eigenvalue of Σ̂
−1/2

x Σ̂ηΣ̂
−1/2

x . We show that, in sliced inverse regression,

it is not a usual case that a nonzero eigenvalue of Σ−1/2
x ΣηΣ

−1/2
x is not

simple. In the sliced inverse regression, Ση = cov(E(x | Y )), and without

loss of generality, we assume Σx = I. Now suppose a nonzero eigenvalue,

say λ, of Ση is not simple. Then the dimension of eigen-subspace for this

eigenvalue, denoted by Bλ, will be at least two. On the other hand, for any

standardized vector β in Bλ, it always holds that

var{E(β>x | Y )} = β>Σηβ = λ,

E{var(β>x | Y )} = var(β>x)− var{E(β>x | Y )} = 1− λ.

That means for any standardized vector β in Bλ, var{E(β>x | Y )} and

E{var(β>x | Y )} are both constant independent of β. This is not a usual

case. To illustrate this, we further give an simple example as follows.

Consider a model Y = g(β>1 x,β>2 x), where x ∼ N(0, I), β = (1, 0, . . . , 0)>,

β2 = (0, 1, 0, . . . , 0)>, and g(·, ·) is given as follows:

g(x1, x2) = 1, for x1 ∈ (−∞, a1) and x2 ∈ (−∞, a2);

g(x1, x2) = 2, for x1 ∈ (−∞, a1) and x2 ∈ [a2,+∞);

g(x1, x2) = 3, for x1 ∈ [a1,+∞) and x2 ∈ (−∞, a2);

g(x1, x2) = 4, for x1 ∈ [a1,+∞) and x2 ∈ [a2,+∞).

Then it can be shown that cov(E(x | Y )) is a diagonal matrix with the first
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two diagonal elements, respectively,

p(a1)2/{Φ(a1)Φ(−a1)} and p(a2)2/{Φ(a2)Φ(−a2)},

and the other diagonal elements all zero, where p(x) and Φ(x) denote the

density function and distributional function of N(0, 1). Hence, in this ex-

ample, unless a1 = a2 or a1 = −a2, the nonzero eigenvalues are always

simple.

Moreover, for Σ−1/2
x ΣηΣ

−1/2
x , when Ση and Σx are substituted by their

estimates, the chance of nonzero eigenvalues which are not simple may be

even smaller, due to the errors of estimates.

S10 About re-weighting-case perturbation scheme

As commented in Remark 1 in the main content, we can also consider the

re-weighting-case perturbation scheme. Let F and Fn denote the cumula-

tive distribution function and empirical distribution function of (xT, Y )T,

respectively, and let T be the functional that satisfies T (F ) = B and

T (Fn) = B̂. We perturb Fn to Fn,ω =
∑n

i=1 ωiδ(xT
i ,yi)

T with
∑n

i=1 ωi = 1,

and then B̂(ω) = T (Fn,ω), where δa denotes the distribution with proba-

bility massed at a.

We now give some properties in this section. The columns of B̂(ω),
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b̂1(ω), . . . , b̂K̂(ω), are the standardized orthogonal eigenvectors of Σ̂η(ω)

with respect to Σ̂x(ω) associated with the largest eigenvalues λ1(ω) ≥ . . . ≥

λK̂(ω), where

Σ̂η(ω) =
τ∑
l=1

(
∑
i∈Il

ωi)x̄l(ω)x̄l(ω)T − x̄(ω)x̄(ω)T,

Σ̂x(ω) =
n∑
i=1

ωixix
T
i − x̄(ω)x̄(ω)T, (S10.1)

in which x̄(ω) =
∑n

i=1 ωixi, x̄l(ω) =
∑

i∈Il{(ωi/
∑

j∈Il ωj)xi}, and
∑n

i=1 ωi

= 1. Under this scheme, ω(0) = (1/n, . . . , 1/n)T. We have the following

invariance property.

Theorem S1. Let x∗1, . . . ,x
∗
n denote the sample of x∗ under the invert-

ible affine transformation x∗ = Ax and D∗(ω) denote the space displace-

ment function under the model where Y is regressed on x∗. Then under

the re-weighting-case perturbation scheme, it holds for sliced inverse regres-

sion that D∗(ω) = D(ω), which means the space displacement function,

the quasi-curvature and the influential direction are all invariant under this

transformation.

Proof:

Let Σ̂
∗
x(ω) and Σ̂

∗
η(ω), respectively, denote the matrices Σ̂x(ω) and

Σ̂η(ω) defined by (S10.1) with x1, . . . ,xn replaced by x∗1, . . . ,x
∗
n. It can

be easily shown that Σ̂
∗
η(ω) = AΣ̂η(ω)AT and Σ̂

∗
x(ω) = AΣ̂x(ω)AT.
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Then by similar reasoning as that in the proof of Theorem 2, we can get

D∗(ω) = D(ω). The proof of Theorem S1 is completed.

To obtain the expression of the quasi-curvature under the re-weighting-

case perturbation scheme, we need the following lemma.

Lemma S1. Under (S10.1) with ω = ω(0) + th, the matrices Σ̂x,1 and

Σ̂η,1 defined in Lemma 2 satisfy

Σ̂x,1ζ = Xdiag(ZTζ)h + Zdiag(XTζ)h−Xdiag(XTζ)h, (S10.2)

Σ̂η,1ζ = Xdiag(ZT
η ζ)h + Zηdiag(XTζ)h−Xηdiag(XT

η ζ)h,(S10.3)

for any vector ζ, where Xη is a p × n matrix with the ith column x̄l for

i ∈ Il.

Proof:

(i) We first prove the expression of Σ̂x,1ζ. We still let σ̂x,ij(ω) be the

(i, j)th element of Σ̂x(ω). Then

∂σ̂x,ij(ω(0) + th)

∂t

∣∣∣∣
t=0

=
n∑
k=1

hkxikxjk − x̄j·
n∑
k=1

hkxik − x̄i·
n∑
k=1

hkxjk.

Let (Σ̂x,1ζ)i denote the ith element of Σ̂x,1ζ. As Σ̂x,1 = (∂σ̂x,ij(ω)/∂t|t=0)p×p,
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it holds that

(Σ̂x,1ζ)i =

p∑
j=1

(
n∑
k=1

hkxikxjk − x̄j·
n∑
k=1

hkxik − x̄i·
n∑
k=1

hkxjk)ζj

=
n∑
k=1

hkxik

p∑
j=1

(xjk − x̄j·)ζj +
n∑
k=1

hk(xik − x̄i·)
p∑
j=1

xjkζj

−
n∑
k=1

hkxik

p∑
j=1

xjkζj

= x(i)Tdiag(ZTζ)h + z(i)Tdiag(XTζ)h− x(i)Tdiag(XTζ)h.

Then (S10.2) has been proved.

(ii) Next we prove (S10.3). We still let σ̂η,ij(ω) be the (i, j)th element

of Σ̂η(ω). Then

∂σ̂η,ij(ω(0) + th)

∂t

∣∣∣∣
t=0

=
τ∑
l=1

{−(
∑
k∈Il

hk)x̄lix̄lj + (
∑
k∈Il

hkxik)x̄lj

+x̄li(
∑
k∈Il

hkxjk)} − (
n∑
k=1

hkxik)x̄j·

−x̄i·(
n∑
k=1

hkxjk).

Let (Σ̂η,1ζ)i denote the ith element of Σ̂η,1ζ. As Σ̂η,1 = (∂σ̂η,ij(ω)/∂t|t=0)p×p,
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it holds that

(Σ̂η,1ζ)i =

p∑
j=1

ζj[
τ∑
l=1

{−(
∑
k∈Il

hk)x̄li · x̄lj + (
∑
k∈Il

hkxik)x̄lj + x̄li(
∑
k∈Il

hkxjk)}

−(
n∑
k=1

hkxik)x̄j· − x̄i·(
n∑
k=1

hkxjk)]

=
τ∑
l=1

∑
k∈Il

p∑
j=1

(−hkx̄lix̄ljζj + hkxikx̄ljζj + hkxjkx̄liζj)

−
n∑
k=1

p∑
j=1

(hkxikx̄j·ζj + hkxjkx̄i·ζj)

=
τ∑
l=1

∑
k∈Il

{−hkx̄li
p∑
j=1

x̄ljζj + hkxik

p∑
j=1

(x̄lj − x̄j·)ζj

+hk(x̄li − x̄i·)
p∑
j=1

xjkζj}

Let x
(i)
η denote the ith column of XT

η . From the above equality, we have

(Σ̂η,1ζ)i = −x(i)T
η diag(XT

η ζ)h + x(i)Tdiag(ZT
η ζ)h + z(i)T

η diag(XTζ)h.

Then the equality (S10.3) has been proved. The proof of Lemma S1 is

concluded.

If the eigenvalues λ̂1, . . . , λ̂K̂ of Σ̂η with respect to Σ̂x are all simple,

Lemma 2 and Lemma S1 indicate that, under the re-weighting-case scheme,

vec(FB,h) = (∆
(R)T
B,1 , . . . ,∆

(R)T

B,K̂
)Th, where

∆
(R)
B,i =

1

2
(Ση,x,iΣ̂ηΣ̂

−1

x + λ̂iΣη,x,i − Σ̂
−1

x ){Xdiag(ZTb̂i) + Zdiag(XTb̂i)

−Xdiag(XTb̂i)} −Ση,x,i{Xdiag(ZT
η b̂i) + Zηdiag(XTb̂i)

−Xηdiag(XT
η b̂i)} (i = 1, . . . , K̂).
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Combining Lemma 1, Lemma 2 and Lemma S1 gives the following

theorem.

Theorem S2. Under the re-weighting-case perturbation scheme, the

quasi-curvature of lifted line along h at ω(0) can be expressed as qch =

hTD̈
(R)
ω(0)

h, where D̈
(R)
ω(0)

denotes

D̈
(R)
ω(0)

=
2

nK̂

K̂∑
k=1

∆
(R)T
B,k {Z(I−PZTB̂)ZT}∆(R)

B,k.

We now study the influential direction under the re-weighting-case per-

turbation scheme. Since there is a constraint
∑n

i=1 ωi = 1 under the re-

weighting-case scheme, we slightly modify the definition of influential di-

rection and aggregate contribution vector under this scheme. As we set

ω = ω(0) + th, the constraint
∑n

i=1 ωi = 1 is equivalent with 1Th = 0,

where 1 = (1, . . . , 1)T. Inspired by Shi and Huang (2011), the influential

direction under the re-weighting-case scheme is naturally defined as

hmax = arg max
‖h‖=1,1Th=0

qch.

Moreover, the aggregate contribution vector under this scheme is defined

as

M0 =
v∑
i=1

λ
(R)
i ϑ

(s)
i ,

where ϑ
(s)
i = (ϑ2

i1, . . . , ϑ
2
in)T, ϑij is the jth entry of ϑi, and (λ

(R)
1 ,ϑ1) and
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(λ
(R)
k ,ϑk) denote the solutions of

max
‖h‖=1,1Th=0

hTD̈
(R)
ω(0)

h (S10.4)

and

max
‖h‖=1,1Th=0,hTϑj ,j=1,...,k−1

hTD̈
(R)
ω(0)

h, (S10.5)

respectively, and v is the number of non-zero λ
(R)
k s.

Let P1⊥ = In − 11T/n. Then P1⊥ is the projection matrix onto the

orthogonal complement of M(1) and 1Th = 0 is equivalent with h ∈

M(P1⊥). Then (S10.4) and (S10.5) are equivalent with

max
‖h‖=1,h∈M(P

1⊥ )
hTP1⊥D̈

(R)
ω(0)

P1⊥h

and

max
‖h‖=1,h∈M(P

1⊥ ),hTϑj ,j=1,...,k−1

hTP1⊥D̈
(R)
ω(0)

P1⊥h,

respectively, because P1⊥h = h when h ∈ M(P1⊥). Note that all the

eigenvectors of P1⊥D̈
(R)
ω(0)

P1⊥ associated with non-zero eigenvalues fall into

M(P1⊥). Then λ
(R)
1 , . . . , λ

(R)
g are the non-zero eigenvalues of P1⊥D̈

(R)
ω(0)

P1⊥

and ϑ1, . . . ,ϑg are the orthonormal eigenvectors associated with these non-

zero eigenvalues, where g denotes rk(P1⊥D̈
(R)
ω(0)

P1⊥). Moreover, as D̈
(R)
ω(0)

is

non-negative and

max
‖h‖=1,h∈M(P

1⊥ ),hTϑj ,j=1,...,g

hTP1⊥D̈
(R)
ω(0)

P1⊥h
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≤ max
‖h‖=1,hTϑj ,j=1,...,g

hTP1⊥D̈
(R)
ω(0)

P1⊥h = 0,

it holds that

max
‖h‖=1,h∈M(P

1⊥ ),hTϑj ,j=1,...,g

hTP1⊥D̈
(R)
ω(0)

P1⊥h = 0,

which means v = g. That is v = rk(P1⊥D̈
(R)
ω(0)

P1⊥). Then we have

P1⊥D̈
(R)
ω(0)

P1⊥ =
∑v

i=1 λ
(R)
i ϑiϑ

T
i , which means M0 defined above is the

vector that consists of the diagonal elements of P1⊥D̈
(R)
ω(0)

P1⊥ . To sum up,

we give the following proposition.

Proposition S1. Under the re-weighting-case perturbation scheme,

the influential direction is the eigenvector of P1⊥D̈
(R)
ω(0)

P1⊥ associated with

its largest eigenvalue and the aggregate contribution vector M0 is the vector

that consists of the diagonal elements of P1⊥D̈
(R)
ω(0)

P1⊥.

Because
∑n

i=1 ωi = 1, the influential direction is the eigenvector of

P1⊥D̈
(R)
ω(0)

P1⊥ associated with its largest eigenvalue (Shi and Huang, 2011),

and the aggregate contribution vector M0 is the vector that consists of

the diagonal elements of P1⊥D̈
(R)
ω(0)

P1⊥ , where P1⊥ = In − 11T/n and

1 = (1, . . . , 1)T. Let ui be a vector with the ith entry 1 and the other

entries 0. It holds that

D

(
ω(0) − t

P1⊥ui
‖P1⊥ui‖

)
=

n

n− 1
M0,it

2 + o(t2), (S10.6)

where M0,i is the ith element of M0. On the other hand, for t = 1/{n(n−
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1)}1/2,

D

(
ω(0) − t

P1⊥ui
‖P1⊥ui‖

)
=

n

n− 1
sifc(i)t2, (S10.7)

where sifc(i) is the influence measure of the ith observation given by the

case-deletion method proposed by Prendergast and Smith (2010). In this

sense, the quasi-curvature method under the re-weighting-case scheme is

similar to the case-deletion method.

Now we prove the equalities (S10.6) and (S10.7). These two equalities

indicate that the quasi-curvature method under re-weighting-case scheme

is similar to the case-deletion method proposed by Prendergast and Smith

(2010) in a sense. First, from the definition of the quasi-curvature, it holds

under the re-weighting-case scheme that,

D(ω(0) + th) = t2hT D̈
(R)
ω(0)

h + o(t2). (S10.8)

Since M0 is the vector that consists of the diagonal elements of P1⊥D̈
(R)
ω(0)

P1⊥

and obviously ‖P1⊥ui‖2 = (n− 1)/n, the equality (S10.6) is proved by tak-

ing h = −P1⊥ui/‖P1⊥ui‖ in (S10.8), where ui is a vector with the ith

entry 1 and the other entries 0. The following is the proof of (S10.7).

Let t0 = 1/{n(n − 1)}1/2, it holds that ω(0) − t0P1⊥ui/‖P1⊥ui‖ is a vec-

tor with the ith entry 0 and the other entries 1/(n − 1). Let ω(i) denote
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ω(0) − t0P1⊥ui/‖P1⊥ui‖. Then it holds that

Fn,ω(i)
=

1

n− 1

∑
j=1,...,n,j 6=i

δ(xT
j ,yj)T .

Let B̂(i) denote the estimate of B using sliced inverse regression with the

ith observation deleted. Then

B̂(ω(i)) = T (Fn,ω(i)
) = B̂(i). (S10.9)

Because SIFC(i) = (n − 1)2{1 − tr(PZTB̂PZTB̂(i)
)/K̂} according to Pren-

dergast and Smith (2010) and t20 = 1/{n(n− 1)}, combining the definition

of D(ω) and the equality (S10.9) completes the proof of (S10.7). The proof

is completed.

S11 Local influence of dMAVE

S11.1 A brief review of MAVE based on conditional density

function

MAVE based on conditional density function (dMAVE) was proposed by

Xia (2007). Its idea is based on the fact that the column space of the gra-

dient ∂mb(x, Y )/∂x is the subset of the central subspace, where mb(x, y) =

E{Hb(Y − y)|x = x}, H(v) is a symmetric density function, and Hb(v) =

b−1H(v/b) with b > 0 a bandwidth. Suppose the structural dimension K is
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known. By minimizing G(a,d,B), which is defined as

n−3

n∑
k=1

n∑
j=1

ρ̂jk

n∑
i=1

{Hb,i(yk)− ajk − djkB
>xij}2Kh(B

>xij) (S11.1)

with a and d being vectors containing, respectively, ajks and djks for

j, k = 1, . . . , n, with respect to ajk,djk, j = 1, . . . , n and B : B>B = IK ,

dMAVE method obtains the central subspace estimate B̂ = M(B̂), where

B̂, âjk, d̂jk, j = 1, . . . , n is the minimizer, Kh(u) = h−dK(u/h) with d

the dimension of u, K(v) = K0(v>v), K0(v2) is a univariate symmet-

ric density function, h > 0 is a bandwidth, Hb,i(y) = Hb(yi − y), xij =

xi − xj, ρ̂jk = ρ(f̂B,h(xj))ρ(f̂Y,b(yk)), f̂Y,b(y) = n−1
∑n

i=1Hb,i(y), f̂B,h(x) =

n−1
∑n

i=1Kh(B
>(xi− x)), ρ(·) is a bounded function with bounded second

order derivatives such that ρ(v) > if v > v0; ρ(v) = 0 if v ≤ v0 for some

small v0 > 0.

Xia (2007) proposed the following algorithm to implement the estima-

tion.

Step 0. Let B(1) be an initial estimator of the central subspace direc-

tions. Set s = 1.

Step 1. Let B = B(s), calculate the solutions of (ajk,djk),j, k = 1, . . . , n,
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to the minimization problem in (S11.1):

(a
(s)
jk ,d

(s)>
jk )> =

{
n∑
i=1

Khs(B
>
(s)xij)(1,x

>
ijB(s))

>(1,x>ijB(s))

}−1

×
n∑
i=1

Khs(B
>
(s)xij)(1,x

>
ijB(s))

>Hbs,i(yk), (S11.2)

where hs and bs are two bandwidths.

Step 2. Let ρ
(s)
jk = ρ(f̂B(s),hs(xj))ρ(f̂Y,bs(yk)). Fixing ajk = a

(s)
jk and

djk = d
(s)
jk , calculate the solution of B or vec(B) to (S11.1):

b(s+1) =

{
n∑

k,j,i=1

ρ
(s)
jkKhs(B

>
(s)xij)x

(s)
ijk(x

(s)
ijk)
>

}−1

×
n∑

k,j,i=1

ρ
(s)
jkKhs(B

>
(s)xij)x

(s)
ijk{Hbs,i(yk)− a

(s)
jk },

where x
(s)
ijk = d

(s)
jk ⊗ xij.

Step 3. Calculate Λ(s+1) = {V(b(s+1))}>{V(b(s+1))} and B(s+1) =

V(b(s+1)) × Λ
−1/2
(s+1), where V((v>1 , . . . ,v

>
q )>) = (v1, . . . ,vq). Set s := s + 1

and go to step 1.

Step 4. Repeat Steps 1-3 until convergence. The final value of B(s) can

be taken as B̂.

In the above algorithm, X = (x1, . . . ,xn) and y = (y1, . . . , yn)> are

assumed to be standardized. Now we let X and y denote the original data

and X̃ = (x̃1, . . . , x̃n) and ỹ = (ỹ1, . . . , ỹn)> be the standardized data. Then

the central subspace estimate associated with the original data should be
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B̂ =M(B̃), where B̃ = Σ̂
−1/2

x B̂ and B̂ is the final value of B(s) in the above

algorithm with X and y replaced by X̃ and ỹ, respectively.

S11.2 A local influence analysis of dMAVE

Now we try to assess local influence of the original observations (x>i , yi)
>, i =

1, . . . , n on B̂ under the above dMAVE algorithm. Inspired by Zhu and Lee

(2001), we assess the local influence of the original observations on B̂ =

M(Σ̂
−1/2

x B(s+1)) in the final iteration of the dMAVE algorithm. Firstly, we

set the following perturbation scheme.

X(ω) = Xdiag(ω) and y(ω) = diag(ω)y. (S11.3)

Under (S11.3), xi(ω) = xiωi and yi(ω) = yiωi. In the final iteration under

the perturbation (S11.3), b(s+1) is perturbed to

b(s+1)(ω)

=

{
n∑

k,j,i=1

ρ̃
(s)
jk (ω)Khs(B

>
(s)x̃ij(ω))x̃

(s)
ijk(ω)(x̃

(s)
ijk(ω))>

}−1

×
n∑

k,j,i=1

ρ̃
(s)
jk (ω)Khs(B

>
(s)x̃ij(ω))x̃

(s)
ijk(ω){Hbs(ỹi(ω)− ỹk(ω))− ã(s)

jk (ω)},

where

x̃ij(ω) = x̃i(ω)−x̃j(ω), x̃i(ω) = Σ̂x(ω)−1/2(xi(ω)−x̄(ω)),

x̄(ω) = n−1

n∑
i=1

xi(ω), Σ̂x(ω) = n−1

n∑
i=1

(xi(ω)−x̄(ω))(xi(ω)−x̄(ω))>,
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x̃
(s)
ijk(ω) = d̃

(s)
jk (ω)⊗x̃ij(ω), ρ̃

(s)
jk (ω) = ρ(f̂

(ω)
B(s),hs

(x̃j(ω)))ρ(f̂
(ω)
Y,bs

(ỹk(ω))),

f̂
(ω)
Y,bs

(y) = n−1

n∑
i=1

Hbs(ỹi(ω)−y), f̂
(ω)
Bs,hs

(x) = n−1

n∑
i=1

Khs(B
>
(s)(x̃i(ω)−x)),

ỹi(ω) = (yi(ω)−ȳ(ω))/
√
SY (ω), ȳ(ω) = n−1

n∑
i=1

yi(ω),

SY (ω) = n−1

n∑
i=1

(yi(ω)−ȳ(ω))2,

and

(ã
(s)
jk (ω), d̃

(s)
jk (ω)>)>

=

{
n∑
i=1

Khs(B
>
(s)x̃ij(ω))(1, x̃ij(ω)>B(s))

>(1, x̃ij(ω)>B(s))

}−1

×
n∑
i=1

Khs(B
>
(s)x̃ij(ω))(1, x̃ij(ω)>B(s))

>Hbs(ỹi(ω)− ỹk(ω)).

Then the central subspace estimate is perturbed to

B̂(ω) =M{Σ̂x(ω)−1/2B(s+1)(ω)},

where

B(s+1)(ω) = V(b(s+1)(ω))Λ(s+1)(ω)−1/2,

in which Λ(s+1)(ω) = {V(b(s+1)(ω))}>V(b(s+1)(ω)). Let

B̃(s+1)(ω) = Σ̂x(ω)−1/2V(b(s+1)(ω)) and B̃(s+1) = Σ̂
−1/2

x V(b(s+1)),

In the expression of D(ω), taking B̂ and B̂(ω) to be B̃(s+1) and B̃(s+1)(ω),

respectively, we can employ the proposed methodologies of quasi-curvature.
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Here we omit Λ(s+1)(ω)−1/2 and Λ
−1/2
(s+1) in the expression of B̃(s+1)(ω) and

B̃(s+1) because from theorem 1, this omission brings no change of D(ω).

Let

b̃(s+1)(ω) = (IK ⊗Σx(ω)−1/2)b(s+1)(ω).

Then we have

qch = vec(FB,h)>
∂2d(A)

∂vec(A)∂vec(A)T

∣∣∣∣
A=B̃(s+1)

vec(FB,h),

where

vec(FB,h) =

 ∂b̃(s+1)(ω)

∂ω

∣∣∣∣∣
ω(0)

> h.

Hence, to obtain hmax, we only need to calculate ∂b̃(s+1)(ω)/∂ω
∣∣∣
ω(0)

. Let

C1(ω) =
n∑

k,j,i=1

ρ̃
(s)
jk (ω)Khs(B

>
(s)x̃ij(ω))x̃

(s)
ijk(ω)(x̃

(s)
ijk(ω))>,

C2(ω) =
n∑

k,j,i=1

ρ̃
(s)
jk (ω)Khs(B

>
(s)x̃ij(ω))x̃

(s)
ijk(ω){Hbs(ỹi(ω)−ỹk(ω))−ã(s)

jk (ω)},

D1(ω) =
n∑
i=1

Khs(B
>
(s)x̃ij(ω))(1, x̃ij(ω)>B(s))

>(1, x̃ij(ω)>B(s)),

D2(ω) =
n∑
i=1

Khs(B
>
(s)x̃ij(ω))(1, x̃ij(ω)>B(s))

>Hbs(ỹi(ω)− ỹk(ω)),

x(i) be the ith row of X, w ·V or V · w be the scalar multiplication of the

scalar w and matrix V, and En,i be a n × 1 vector with the ith element

one and the others zeros. The calculation of ∂b̃(s+1)(ω)/∂ω
∣∣∣
ω(0)

is given
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by the following expressions:

∂b̃(s+1)(ω)

∂ω
=
∂b(s+1)(ω)

∂ω
(IK⊗Σ̂x(ω)−1/2)+

∂Σ̂x(ω)−1/2

∂ω
(V(b(s+1)(ω))⊗Ip);

∂Σ̂x(ω)−1/2

∂ω
= −∂Σ̂x(ω)1/2

∂ω
(Σ̂x(ω)−1/2 ⊗ Σ̂x(ω)−1/2);

∂Σ̂x(ω)1/2

∂ω
=
∂Σ̂x(ω)

∂ω
{Ip⊗ Σ̂x(ω)1/2 + Σ̂x(ω)1/2⊗ Ip}−1;

∂Σ̂x(ω)

∂ω
= n−1(diag(x(1)), . . . , diag(x(p))){Ip ⊗ (P1⊥X(ω)>)}

+n−1diag(x>1 , . . . ,x
>
n ){(P1⊥X(ω)>)⊗ Ip};

∂b(s+1)(ω)

∂ω
= −∂C1(ω)

∂ω
{C1(ω)−1⊗b(s+1)(ω)}+∂C2(ω)

∂ω
C1(ω)−1;

∂C1(ω)

∂ω
=

n∑
k,j,i=1

[
∂ρ̃

(s)
jk (ω)Khs(B

>
(s)x̃ij(ω))

∂ω
{x̃(s)

ijk(ω)> ⊗ x̃
(s)
ijk(ω)>}

+
∂x̃

(s)
ijk(ω)x̃

(s)
ijk(ω)>

∂ω
· {ρ̃(s)

jk (ω)Khs(B
>
(s)x̃ij(ω))}

]
;

∂x̃
(s)
ijk(ω)x̃

(s)
ijk(ω)>

∂ω
=
∂x̃

(s)
ijk(ω)

∂ω
{Ip·K⊗x̃

(s)
ijk(ω)>+x̃

(s)
ijk(ω)>⊗Ip·K};

∂x̃
(s)
ijk(ω)

∂ω
=
∂d̃

(s)
jk (ω)

∂ω
{IK⊗x̃ij(ω)>}+∂x̃ij(ω)

∂ω
{d̃(s)

jk (ω)>⊗IK};

∂ρ̃
(s)
jk (ω)Khs(B

>
(s)x̃ij(ω))

∂ω
=

∂ρ̃
(s)
jk (ω)

∂ω
Khs(B

>
(s)x̃ij(ω))

+
∂Khs(B

>
(s)x̃ij(ω))

∂ω
ρ̃

(s)
jk (ω);

∂C2(ω)

∂ω
=

n∑
k,j,i=1

(C
(1)
2,ijk + C

(2)
2,ijk + C

(3)
2,ijk + C

(4)
2,ijk),
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C
(1)
2,ijk =

∂x̃
(s)
ijk(ω)

∂ω
· [ρ̃(s)

jk (ω)Khs(B
>
(s)x̃ij(ω)){Hbs(ỹi(ω)− ỹk(ω))− ã(s)

jk (ω)}],

C
(2)
2,ijk =

∂ρ̃
(s)
jk (ω)

∂ω
Khs(B

>
(s)x̃ij(ω)){Hbs(ỹi(ω)− ỹk(ω))− ã(s)

jk (ω)}x̃(s)
ijk(ω)>,

C
(3)
2,ijk =

∂Khs(B
>
(s)x̃ij(ω))

∂ω
ρ̃

(s)
jk (ω){Hbs(ỹi(ω)− ỹk(ω))− ã(s)

jk (ω)}x̃(s)
ijk(ω)>,

C
(4)
2,ijk =

{
∂Hbs(ỹi(ω)− ỹk(ω))

∂ω
−
∂ã

(s)
jk (ω)

∂ω

}
×ρ̃(s)

jk (ω)Khs(B
>
(s)x̃ij(ω))x̃

(s)
ijk(ω)>;

∂(ã
(s)
jk (ω), d̃

(s)
jk (ω)>)>

∂ω
= −∂D1(ω)

∂ω
{D1(ω)−1 ⊗ (ã

(s)
jk (ω), d̃

(s)
jk (ω)>)>}

+
∂D2(ω)

∂ω
D1(ω)−1;

∂D1(ω)

∂ω
=

n∑
i=1

[
∂Khs(B

>
(s)x̃ij(ω))

∂ω
{(1, x̃ij(ω)>B(s))⊗ (1, x̃ij(ω)>B(s))}

+
∂(1, x̃ij(ω)>B(s))

>(1, x̃ij(ω)>B(s))

∂ω
·Khs(B

>
(s)x̃ij(ω))

]
;

∂(1, x̃ij(ω)>B(s))
>(1, x̃ij(ω)>B(s))

∂ω
=(

0,
∂x̃ij(ω)

∂ω
B(s)

)
{IK+1 ⊗ (1, x̃ij(ω)>B(s)) + (1, x̃ij(ω)>B(s))⊗ IK+1};

∂D2(ω)

∂ω
=

n∑
i=1

[(
0,
∂x̃ij(ω)

∂ω
B(s)

)
· {Khs(B

>
(s)x̃ij(ω))Hbs(ỹi(ω)− ỹk(ω))}

+
∂Khs(B

>
(s)x̃ij(ω))

∂ω
Hbs(ỹi(ω)− ỹk(ω))(1, x̃ij(ω)>B(s))

+
∂Hbs(ỹi(ω)− ỹk(ω))

∂ω
Khs(B

>
(s)x̃ij(ω))(1, x̃ij(ω)>B(s))

]
;
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∂ρ̃
(s)
jk (ω)

∂ω
=

{
n−1

n∑
i=1

∂Khs(B
>
(s)x̃ij(ω))

∂ω

}
∂ρ(v)

∂v

∣∣∣∣
v=f̂

(ω)
B(s),hs

(x̃j(ω))

×ρ(f̂
(ω)
Y,bs

(ỹk(ω))) +

{
n−1

n∑
i=1

∂Hbs(ỹi(ω)− ỹk(ω))

∂ω

}

× ∂ρ(v)

∂v

∣∣∣∣
v=f̂

(ω)
Y,bs

(ỹk(ω))

ρ(f̂
(ω)
B(s),hs

(x̃j(ω)));

∂Khs(B
>
(s)x̃ij(ω))

∂ω
=
∂x̃ij(ω)

∂ω
B(s)

∂Khs(u)

∂u

∣∣∣∣
u=B>

(s)
x̃ij(ω)

;

∂Hbs(ỹi(ω)− ỹk(ω))

∂ω
=

{
ỹi(ω)

∂ω
− ỹk(ω)

∂ω

}
∂Hbs(u)

∂u

∣∣∣∣
u=ỹi(ω)−ỹk(ω)

;

∂x̃ij(ω)

ω
=
∂x̃i(ω)

ω
−∂x̃j(ω)

ω
;

∂x̃i(ω)

∂ω
=
∂Σ̂x(ω)−1/2

∂ω
{Ip⊗(xiωi−x̄(ω))}+(En,ix

>
i −n−1X>)Σ̂x(ω)−1/2;

∂ỹi(ω)

∂ω
=
∂SY (ω)−1/2

∂ω
{yiωi−ȳ(ω)}+(En,iyi−n−1y)SY (ω)−1/2;

∂SY (ω)−1/2

∂ω
= −1

2

∂SY (ω)

∂ω
SY (ω)−3/2;

∂SY (ω)

∂ω
= 2n−1diag(y)P1⊥y(ω).

Remark S1 For dMAVE, we conduct the influence analysis directly for

the algorithm minimizing G(a,d,B), because the central subspace estimate

depends on the algorithm including some important respects such as the

selection of the bandwidths which are changed for each iteration. Theoret-

ically, we have another option of the influence analysis method for dMAVE
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which starts from the objective function. Here we just present the basic

idea. Since the central subspace estimate is obtained by minimizing

G̃(a,d,B,Λ) = G(a,d,B)− (1/2)tr{Λ(B>B− IK)}

where Λ is a Lagrange multiplier, we can perturb G̃(a,d,B,Λ) to G̃(a,d,B,Λ|ω)

in some scheme such as weighting scheme. Then the profile of G̃(a,d,B,Λ|ω)

for B can be obtained as

G∗(B,ω) = G̃(a(B|ω),d(B|ω),B,Λ(B|ω)|ω).

As B̂(ω), the minimizer of G̃(a,d,B,Λ|ω), is also the minimizer ofG∗(B,ω),

we have

∂G∗(B,ω)

∂B

∣∣∣∣
B=B̂(ω)

= 0.

Differentiating both sides of the above equation with respect to ω, we can

construct an equation by chain rule, and solving this equation will give

∂B̂(ω)/∂ω. The remaining steps are just similar to those of the given

method. This method does not depend on the specific algorithm of min-

imization except that we need the algorithm to obtain B̂, which is used

to substitute B in the expression of ∂B̂(ω)/∂ω, and we need to select the

bandwidths. In addition, the equation based on chain rule involves two

second-order differentiation matrices, and that, combined with the summa-

tions
n∑

j,k,i=1

(·), may bring very heavy computational burden.
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S12 Local influence of cumulative mean estimation

The cumulative mean estimation (CUME) was proposed by Zhu et al.

(2010). This method is based on the fact that M(M) is a subset of ΣxB,

where M is the CUME matrix defined as M = E{m(Ỹ )m(Ỹ )>W (Ỹ )}, in

which Ỹ denotes an independent copy of Y , m(ỹ) = E{x1(Y ≤ ỹ)} with

1(Y ≤ ỹ) being a indicator function, and W (·) is a nonnegative weight

function. Let mn(ỹ) = n−1
n∑
i=1

(xi − x̄)1(yi ≤ ỹ) and

Mn = n−1

n∑
i=1

{mn(yi)mn(yi)
>W (yi)}.

By assuming a known K, the K eigenvectors of Mn with respect to Σx

associated with the largest eigenvalues are used as an estimate of the basis

of B. We consider the scenarios where Y is continuously distributed. In

that case, y1, . . . , yn are different from each other in probability one and a

perturbation small enough to yi will not change the estimate of B. Hence,

we still use the perturbation scheme (5.1), that is,

X(ω) = Xdiag(ω).

Under this perturbation scheme, we try to obtain qch = hTD̈
(C)
ω(0)

h for

CUME, which is a quadratic form of h with D̈
(C)
ω(0)

to be calculated. It can
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be shown that, for any p× 1 vector ζ,

∂{Mn(ω(0) + th)}
∂{t}

∣∣∣∣
t=0

ζ

=

(
n−1

n∑
i=1

[n−1XD̃1(yi) · {mn(yi)
>ζW (yi)}

+n−1mn(yi)ζ
>XD̃1(yi) ·W (yi)] + n−1Mw(ζ)

)
h, (S12.1)

where ∂{A(t)}/∂{t} denotes the matrix with its (i, j)th element being the

derivative of the (i, j)th element of A(t) with respect to t,

D̃1(yi) = D1(yi)− {n−11>nD1(yi)1n} · I,

D1(yi) = diag{1(y1 ≤ yi), . . . ,1(yn ≤ yi)},

and Mw(ζ) denotes a matrix with the ith column being

mn(yi)mn(yi)
>ζ ·

{
yi

dW (u)

du

∣∣∣∣
u=yi

}
.

To save space, we omit the proof of (S12.1) since it is somewhat direct.

Combining lemma 1, lemma 2, the expression of Σ̂x,1ζ in lemma 3 and

(S12.1), the matrix D̈
(C)
ω(0)

is given for CUME.

S13 Simulation studies

In each of the following models, x1, . . . ,xn are independently generated from

N(0,Σx) with Σx = diag(σ2
x,1, . . . , σ

2
x,p). The errors ε1, . . . , εn are indepen-
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dently generated from N(0, σ2
ε ). We always first generate all the observa-

tions from the model under study, and then we change several observations

into artificial outliers by resetting some of their entries and keeping all the

other entries unchanged. We first consider

yi = (xi1 − 3xi2)3 + εi (i = 1, . . . , 100), (S13.1)

where xij is the jth element of xi. Under (S13.1), we let p = 20, σε = 1,

σx,1 = 2, σx,2 = 0.7, and σx,i = 1 for i = 3, . . . , p, and consider two settings

of artificial outliers. In setting (S-I), we reset x10,2 = 5σx,2, and in setting

(S-II), we reset x10,1 = 5σx,1. Moreover, we also consider

yi =
xi1

(xi2 + 1.5)2 + 0.5
+ εi (i = 1, . . . , 200), (S13.2)

where the function expression was proposed by Li (1991). Under (S13.2),

p = 10, σε = 0.2, and σx,i = 1 for i = 1, . . . , p. In this model, we

first consider two settings, called (S-III) and (S-IV). Under (S-III), let

x10,1=x10,2=x10,3=5. Under (S-IV), let x10,1= x10,2=x10,3=5, x11,1=x11,2=x11,3=4.9,

x12,1 = x12,2 = x12,3 = 4.8, y11=1.1y10, and y12=1.2y10. The three artificial

outliers are set to be close to each other under (S-IV). That is to check

whether the quasi-curvature method can overcome the difficulties brought

by masking effect, since the local influence methods are supposed to have

some advantage over the case-deletion methods in the scenarios where sev-
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eral outliers are close to each other. Moreover, we assign specific numbers

to the artificial outliers, instead of generating them randomly, to make them

outlying stably in all the replications.

Under each of these four settings, we assess the influence of observations

on B̂ given by sliced inverse regression. For the slicing strategy, we obtain

[n/vs] slices with each of the first [n/vs]−1 slices containing vs observations

and the last slice containing the remaining observations, where [ξ] denotes

the integer closest to ξ. For comparison, three methods are used, including

our quasi-curvature approach, which is denoted by qc, and two sample

influence functions, which were proposed by Prendergast (2006, 2007) and

Prendergast and Smith (2010) and denoted by sifb and sifc, respectively.

The latter two are both case-deletion methods, and we denote the influence

measures that they provide for the ith observation by sifb(i) and sifc(i).

For both of them, the slices are always kept unchanged after the deletion of

each observation. For the quasi-curvature method, the influential direction

hmax under the perturbation scheme (5.1) is used with |hmax,i| to be the

influence measure of the ith observation.

We conduct 200 replications. The estimate K̂ is obtained through se-

quential tests with the test level being αT/p in each step. For now, we

take αT = 0.05. Table S1 presents the numbers of replications in which
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Table S1: Numbers of replications with artificial outliers identified

setting (S-I) (S-II) (S-III) (S-IV) (S-IV)

vs 25 25 25 20 15

outlier 10th 10th 10th 10th 11th 12th all 10th 11th 12th all

sifb 137 164 198 112 115 117 84 126 119 123 91

sifc 199 200 200 183 181 162 152 162 156 146 123

qc 198 197 200 197 193 187 184 193 187 185 173

Note: The columns ‘all’ include the numbers of replications where all the 10th, 11th and 12th observa-

tions are identified as influential.

the artificial outliers are identified as influential among the 200 total repli-

cations. The results show that the quasi-curvature method under scheme

(5.1) has stable performance under all the settings. Prendergast’s method

using sifc(i) performs well under settings (I), (II) and (III), but its detec-

tion power sharply decreases under setting (IV), which may be due to the

masking effect. We have also obtained the index plots of influence measures

for observations given by the quasi-curvature method under scheme (5.1) in

a replication under settings (S-I)–(S-IV). They are presented in Figure S1

and Figure S2, respectively. In all these plots, the artificial outliers all stand

out, as expected.

We also consider a scenario where the elements of x are correlated.
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Figure S1: Index plots of influence measures for observations given by quasi-curvature

method under scheme (5) with bench-marks M̄ +1.645sM (solid line) for one replication

in the simulation under the settings (S-I)–(S-III).
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Figure S2: Index plots of influence measures for observations given by quasi-curvature

method under scheme (5) with bench-marks M̄ +1.645sM (solid line) for one replication

in the simulation under the setting (S-IV).
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The model (S13.2) is still considered with cov(x) = Ip + ξξ> and the

other settings not changed, where ξ = (1,−1, 1,−1, 1,−1, 1,−1, 1,−1)>.

This covariance matrix means some predictors are positively correlated

and some are negatively correlated. Firstly, we set artificial outliers with

x10,1=x10,2=x10,3=5×
√

2, x11,1=x11,2=x11,3=4.9×
√

2, x12,1 = x12,2 = x12,3

= 4.8 ×
√

2, y11=1.1y10, and y12=1.2y10. Let π = (π0, π1, π2, πa), where

π0, π1 and π2 denote, respectively, the numbers of replications in which

the 10th, 11th and 12th observations are identified as influential among all

the 200 replications, and πa denotes the number of replications in which

the 10th, 11th and 12th observations are all identified as influential. It

turns out under scheme (5.1) π for qc, sifc, and sifb is, respectively,

(185, 180, 179, 165), (172, 163, 153, 134) and (119, 130, 128, 95). When we

keep the model unchanged, but set only one artificial outlier with x10,1

= x10,2 = x10,3 = 5 ×
√

2, π0 for qc, sifc, and sifb is, respectively,

200, 198, 199.

We now show that several outliers may result in a sharp decrease in

the accuracies of K̂ and B̂ and that data trimming is helpful in reduc-

ing this decrease. Our data trimming strategy is to conduct sliced in-

verse regression after deleting the influential observations detected by the

quasi-curvature method under (5.1). The benchmark is still taken to be
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M̄ + 1.645sM . Four types of settings (S-V)–(S-VIII) are considered un-

der model (S13.2) with vs = 20, where (S-V) means x10,1=x10,2=x10,3=5,

x11,1=x11,2=x11,3=4.8 and y11=1.2y10; (S-VI) means for i = 10, 12, xi,1=

xi,2=xi,3=5, xi+1,1=xi+1,2=xi+1,3=4.8 and yi+1=1.2yi; (S-VII) means for

i = 10, 12, 14, 16, 18, xi,1= xi,2=2.5, xi+1,1=xi+1,2=2.3 and yi+1=1.2yi; and

(S-VIII) means no artificial outliers. We still perform 200 replications. For

the estimate of K, the performances of the sequential tests and Bayesian

information criterion are both investigated, which depend on the test level

and Cn, respectively. For the former, we take the test level to be αT/p in

each step. The accuracy of K̂ is described by the percentage of K̂ = K in

200 replications. We present the scatter plots of the accuracies of K̂ versus

αT and Cn in Figure S3 and Figure S4, respectively, where the accuracies of

K̂ with and without data trimming can be compared. These figures show

that data trimming makes K̂ considerably more robust with respect to

the values of Cn and αT under (S-V)–(S-VII), and under (S-VIII), the loss

caused by data trimming, if any, is very slight. The performances of B̂ with

and without data trimming are compared in Table S2, which shows that

the data trimming provides a substantial improvement in the robustness of

B̂.

For the re-weighting-case scheme, equalities (S10.6) and (S10.7) can be
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Table S2: Accuracy of B̂ and K̂ by sliced inverse regression with and without data

trimming

% of the corr. % of K̂ = K

setting data corr. corr. < 0.6 < 0.7 < 0.8 < 0.85 by test by BIC

mean std

(S-V) original 0.870 0.060 0 2.5 9 30.5 82.5 86.5

(S-V) trimmed 0.9360 0.028 0 0 0 0.5 94.5 98.5

(S-VI) original 0.816 0.069 0.5 7.5 36 63.5 71.5 70.5

(S-VI) trimmed 0.924 0.048 0 1 2 6 89.5 96

(S-VII) original 0.864 0.070 0.5 3.5 15 32.5 58 62

(S-VII) trimmed 0.904 0.050 0 1 3.5 12 87 88.5

(S-VIII) original 0.937 0.026 0 0 0 0 95 98.5

(S-VIII) trimmed 0.937 0.026 0 0 0 0.5 97 99.5

Note: The corr.=tr[B̂(B̂TB̂)−1B̂TB(BTB)−1BT]/K since cov(X) = I in the simulation. The percent-

ages are calculated among the 200 replications. For the estimate of K, we take αT = 0.05 and Cn = 0.3.

‘Std’ means standard deviation.
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Figure S3: Plots of accuracy of K̂ versus αT in the sequential tests with (circles) and

without (stars) data trimming.
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Figure S4: Plots of accuracy of K̂ versus Cn using Bayesian information criterion with

(circles) and without (stars) data trimming.
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illustrated by the following simulation. In the replications under setting

(S-IV) with vs = 20, the mean and standard deviation of cosines of the

angles between the aggregate contribution vectors (M0s) based on quasi-

curvature under the re-weighting-case scheme and (sifc(1), . . . , sifc(n))Ts

are 0.9877 and 0.0085, respectively, whereas the quasi-curvature method

under scheme (5.1) using hmax performs quite differently. Moreover, under

the re-weighting-case scheme, the methods using M0s and hmax identify all

three artificial outliers in only 123 and 80 replications, respectively.

The invariance property can also be illustrated by numerical studies.

For example, under (S-IV), we make the transformation x∗i = Axi, i =

1, . . . , n and obtain the influential direction based on (y1,x
∗T
1 ), . . . , (yn,x

∗T
n )

under scheme (5.1) with its absolute value vector denoted by (|h∗max,1|, . . .,

|h∗max,n|)T, where A=̂(aij) is a 10 × 10 matrix with the diagonal elements

being 1,3,2,5,4,4,5,2,3,1, ai,i+1 = 1 for i = 1, . . . , 9 and all the other ele-

ments being zeros. The mean of
∑n

i=1 ||hmax,i| − |h∗max,i||/n among the 200

replications is 3.6727 × e−10, which appears to be extremely small and is

only caused by calculation errors.

Now we conduct a simulation study for the local influence analysis of

dMAVE. Inspired by Xia (2007), consider the model

Y = sign(2x>β1 + 0.1ε1) log(|2x>β2 + 4 + 0.1ε|),
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where sign(·) is the sign function. The predictor vector x ∼ N(0, Ip) with

p = 10 and the random errors ε1 ∼ N(0, 1) and ε2 ∼ N(0, 1) are indepen-

dent. For β1, the first four elements are all 0.5 and the others are zero. For

β2, the first four elements are 0.5,−0.5, 0.5,−0.5, respectively, and all the

others are zero. One hundred of replications are conducted. In each replica-

tion, one hundred of observations are produced from the above model with

three artificial outliers. For the artificial outliers, we set x2 = x1 + 1 ∗ 0.2,

x3 = x1−1∗0.2, and yi = sign(2x>i β1+0.1ε1) log(|2x>i β2+4+0.1ε|)+10σY ,

where σy is the standard deviation of Y . Here we artificially set the value of

x1,x2,x3 to make the outliers close to each other. We compare dMAVE and

SIR in this simulation. Figure S5 presents the plots of (i, h̄a,i), where h̄a,i

denotes the mean of the absolute values for the ith elements of hmaxs among

all the replications. For dMAVE, the plot (a) shows that the artificial out-

liers produce much stronger influence on the central subspace estimate in

the sense of average performance. However, in the plot (b), the artificial

outliers seems not very influential. It seems that, in this simulation, SIR is

more robust than dMAVE. Let ρ(B̂,B) = tr(PB̂PB)/K, where PA denotes

the projection matrix on the subspace A. Then ρ(B̂,B) can describe the

accuracy of B̂ as the estimate of B. For SIR, the mean and standard devi-

ation of ρ(B̂,B)s among the replications are, respectively, 0.908 and 0.055,
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and under the data set without artificial outliers, they are 0.927 and 0.043.

However, for dMAVE, the mean and standard deviation of ρ(B̂,B)s are,

respectively, 0.877 and 0.100, while under uncontaminated data set, they

are 0.954 and 0.027. The estimating accuracy of dMAVE decreases much

sharper than SIR when they suffer the same artificial outliers. That means,

in this simulation, the results of the influence analyses for dMAVE and SIR

coincide with their performance on the estimating accuracy. In a real data

analysis, where the estimating accuracy is generally unknown, the influence

analysis may give some useful information for the selection of the central

subspace estimate method. Normally, a method with no or less extremely

large value of influence measures for the observations may be preferred.

A simulation study is conducted for CUME. We consider the model

(S13.2) and the setting (S-III). Under this setting, we compare CUME and

SIR. Figure S6 presents the plots of (i, h̄a,i) for CUME (a) and SIR (b).

For both CUME and SIR, the plots show that the artificial outlier produces

much stronger influence on B̂ than the other observations in the sense of

average performance, and the difference between CUME and SIR is not

significant in this figure. Now we check the decrease of ρ(B̂,B) produced by

the artificial outlier for SIR and CUME, respectively. For SIR, the mean

and standard deviation of ρ(B̂,B)s among the replications are, respectively,
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Figure S5: Index plots of mean influence measures for observations given by quasi-

curvature method using dMAVE (a) and SIR (b).
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Figure S6: Index plots of mean influence measures for observations given by quasi-

curvature method using CUME (a) and SIR (b).
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0.902 and 0.039, and under the data set without the artificial outlier, they

are 0.933 and 0.028. Similarly, for CUME, the mean and standard deviation

of ρ(B̂,B)s are, respectively, 0.907 and 0.037, while under uncontaminated

data set, they are 0.936 and 0.028. The artificial outlier leads to similar

decreases of the estimating accuracy for CUME and SIR. That means, in

this simulation, the results of the influence analyses for CUME and SIR

coincide with their performance on the estimating accuracy.
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