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In this supplementary document, we provide technical proofs for the theorems in the main text with

additional remarks, and give further numerical results, including one on sensitivity of the complexity

parameter ψ and one on the impact of the candidate models.

1. Proof of Theorem 1

Part I: F -measure

Proof. Denote by∇ the symmetric difference between two sets. Estimated F -measure can be rewritten as

F̂ (A0) =
∑
k

wkF (A0;Ak), F (A0;Ak) = |A
0|+ |Ak| − |A0∇Ak|
|A0|+ |Ak| .

We have

|F̂ (A0)− F (A0)| =

∣∣∣∣∣∑
k

wkF (A0;Ak)− F (A0)

∣∣∣∣∣ =
∣∣∣∣∣∑
k

wk(F (A0;Ak)− F (A0))

∣∣∣∣∣
≤
∑
k

wk|F (A0;Ak)− F (A0)| =
∑
k

wk

∣∣∣∣1− |A0∇Ak|
|A0|+ |Ak| − 1 +

|A0∇A∗|
|A0|+ |A∗|

∣∣∣∣
=
∑
k

wk

∣∣∣∣ |A0| · (|A0∇A∗| − |A0∇Ak|) + |Ak| · |A0∇A∗| − |A∗| · |A0∇Ak|
(|A0|+ |Ak|)(|A0|+ |A∗|)

∣∣∣∣
≤
∑
k

wk
|A0| · ||A0∇A∗| − |A0∇Ak||
(|A0|+ |Ak|)(|A0|+ |A∗|)︸ ︷︷ ︸

A

+
∑
k

wk
|Ak| · ||A0∇A∗| − |A0∇Ak||
(|A0|+ |Ak|)(|A0|+ |A∗|)︸ ︷︷ ︸

B

+
∑
k

wk
||Ak| − |A∗|| · |A0∇Ak|

(|A0|+ |Ak|)(|A0|+ |A∗|)︸ ︷︷ ︸
C

.
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For ease of notation, we divide the right-most hand side of the above inequality into three parts and denote

them by A, B, and C respectively. Note that since
∣∣|A0∇A∗| − |A0∇Ak|

∣∣ ≤ |A∗∇Ak|, we have

A ≤
∑
k

wk
|A0| · |A∗∇Ak|

(|A0|+ |Ak|)(|A0|+ |A∗|) ≤
∑
k

wk
|A∗∇Ak|
|A∗| .

Similarly, it can be shown that

B ≤
∑
k

wk
|A∗∇Ak|
|A∗| .

Let us now prove a similar bound also holds for C. Specifically, we have

C =
∑
k

wk
||Ak| − |A∗|| · |A0∇Ak|

(|A0|+ |Ak|)(|A0|+ |A∗|) ≤
∑
k

wk

∣∣|Ak| − |A∗|∣∣
|A0|+ |A∗|

=
∑
k

wk

∣∣(|Ak\A∗|+ |Ak ∩ A∗|)− (|A∗\Ak|+ |Ak ∩ A∗|)
∣∣

|A0|+ |A∗|

=
∑
k

wk

∣∣|Ak\A∗| − |A∗\Ak|∣∣
|A0|+ |A∗| ≤

∑
k

wk
|Ak\A∗|+ |A∗\Ak|
|A0|+ |A∗|

=
∑
k

wk
|Ak∇A∗|
|A0|+ |A∗| ≤

∑
k

wk
|Ak∇A∗|
|A∗| .

It follows that for any A0 in C

|F̂ (A0)− F (A0)| ≤ A+B + C ≤ 3
∑
k

wk
|A∗∇Ak|
|A∗| .

Therefore,

sup
A0∈C

|F̂ (A0)− F (A0)| ≤ 3
∑
k

wk
|A∗∇Ak|
|A∗| .

Now under the assumption that the model weighting w is weakly consistent,

∑
k

wk
|A∗∇Ak|
|A∗|

p→ 0.

We have proved supA0∈C |F̂ (A0)− F (A0)| p→ 0.
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Part II: G-measure

Proof. For a given A0 in C, the estimated G-measure can be rewritten as

Ĝ(A0) =
∑
k

wkG(A0;Ak), G(A0;Ak) = |A
0|+ |Ak| − |A0∇Ak|

2
√
|A0| · |Ak|

.

Suppose |Ĝ(A0)−G(A0)| does not converge to 0 in probability uniformly over C, then there exist some

subsequence n1, n2, · · · , ε1 > 0, δ > 0, A0
nj
∈ C, and sets Snj , s.t. P (Snj ) ≥ δ and |Ĝ(A0

nj
) −

G(A0
nj
)| > ε1 on Snj . For ease of notation, we denote A0

nj
as A0 in the following proof.

With the above, we first prove that we must have |A
0|

|A∗|
p→0 on Snj as nj →∞. If not, then there exist

ε2 > 0, a subsequence njl and setsNnjl
such that onNnjl

we have |A
0|

|A∗| > ε2 > 0. Then we can actually

prove |Ĝ(A0)−G(A0)| p−→ 0 onNnjl
as follows.

By definition of Ĝ and G, and |A
0|

|A∗| > ε2 > 0 onNnjl
, we have

|Ĝ(A0)−G(A0)| = |
∑
k

wkG(A0;Ak)−G(A0)| ≤
∑
k

wk|G(A0;Ak)−G(A0)|

=
∑
k

wk

∣∣∣∣∣ |A0|+ |Ak| − |A0∇Ak|
2
√
|A0| · |Ak|

− |A
0|+ |A∗| − |A0∇A∗|

2
√
|A0| · |A∗|

∣∣∣∣∣
≤
∑
k

wk
|
√
|A∗| −

√
|Ak|| · ||A0|+ |Ak| − |A0∇Ak||
2
√
|A∗| · |A0| · |Ak|

+
∑
k

wk

√
|Ak| · ||Ak| − |A∗|+ |A0∇A∗| − |A0∇Ak||

2
√
|A∗| · |A0| · |Ak|

≤
∑
k

wk
|
√
|A∗| −

√
|Ak|| · ||A0|+ |Ak| − |A0∇Ak||
2
√
|A∗| · |A0| · |Ak|︸ ︷︷ ︸
A

+
∑
k

wk
||Ak| − |A∗||
2
√
|A∗| · |A0|︸ ︷︷ ︸
B

+
∑
k

wk
||A0∇A∗| − |A0∇Ak||

2
√
|A∗| · |A0|︸ ︷︷ ︸
C

.

For notational convenience, we divide the right-most-hand side of the above inequality into three parts and

denote them by A, B, and C respectively. For part A, because |A0| + |Ak| − |A0∇Ak| = 2|A0 ∩ Ak|

and
∣∣|A∗| − |Ak|∣∣ ≤ |A∗∇Ak|, together with |A0 ∩ Ak| ≤

√
|A0| · |Ak|, we have

A =
∑
k

wk

∣∣|A∗| − |Ak|∣∣ · |A0 ∩ Ak|(√
|A∗|+

√
|Ak|

)√
|A∗| · |A0| · |Ak|

≤
∑
k

wk
|A∗∇Ak|
|A∗| .
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For part B, since ||Ak| − |A∗|| ≤ |Ak∇A∗| and |A
0|

|A∗| > ε2 > 0 onNnjl
, we have

B =
∑
k

wk

∣∣|Ak| − |A∗|∣∣
2
√
|A∗| · |A0|

≤ 1

2
√
ε2

∑
k

wk
|Ak∇A∗|
|A∗| .

For part C, it follows from the facts that ||A0∇A∗| − |A0∇Ak|| ≤ |A∗∇Ak| and that |A
0|

|A∗| > ε2 > 0 on

Nnjl
, we have

C =
∑
k

wk
||A0∇A∗| − |A0∇Ak||

2
√
|A∗| · |A0|

≤ 1

2
√
ε2

∑
k wk|A

∗∇Ak|
|A∗| .

Consequently, we have that onNnjl
,

|Ĝ(A0)−G(A0)| ≤ A+B + C ≤ (1 +
1√
ε2

)
∑
k

wk
|A∗∇Ak|
|A∗| .

Under the assumption that the model weighting w is weakly consistent,

∑
k

wk
|A∗∇Ak|
|A∗|

p→ 0,

we must have |Ĝ(A0)−G(A0)| p→ 0 onNnjl
. This contradicts with the statement that |Ĝ(A0)−G(A0)| >

ε1 > 0 on Snj . Therefore, we have proved that |A
0|

|A∗|
p−→ 0 on Snj under the beginning supposition.

Next, we prove actually we must have |Ĝ(A0)−G(A0)| p→ 0 on Snj as nj →∞. Because |A
0|

|A∗|
p→ 0

on Snj , we can set δn =
√
|A0|
|A∗| , then δn

p→ 0 and |A0|
|A∗|·δn = δn

p→ 0. Then

|G(A0)| = ||A
0|+ |A∗| − |A0∇A∗||

2
√
|A∗| · |A0|

=
|A0 ∩ A∗|√
|A0| · |A∗|

≤

√
|A0|
|A∗|

p→ 0,

that is, G(A0)
p→ 0. Now we prove that we also have Ĝ(A0)

p→ 0 as follows. Observe on Snj

Ĝ(A0) =
∑
k

I(|Ak| ≤ |A∗| · δn) · wk
|A0 ∩ Ak|√
|A0| · |Ak|

+
∑
k

I(|Ak| > |A∗| · δn) · wk
|A0 ∩ Ak|√
|A0| · |Ak|

≤
∑
k

I(|Ak| ≤ |A∗| · δn) · wk +
∑
k

I(|Ak| > |A∗| · δn) · wk
|A0 ∩ Ak|√
|A0| · |Ak|

.

Then because
∑
k wk

|Ak∇A∗|
|A∗|

p→ 0 and

∑
k

wk
|Ak∇A∗|
|A∗| ≥

∑
k

wk
||A∗| − |Ak||
|A∗|
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≥
∑
k

wk
||A∗| − |Ak||
|A∗| · I(|Ak| ≤ |A∗| · δn)

≥ 1

2

∑
k

wk · I(|Ak| ≤ |A∗| · δn),

we know
∑
k I(|A

k| ≤ |A∗| · δn) · wk
p→ 0. On Snj , we also have

∑
k

I(|Ak| > |A∗| · δn) · wk
|A0 ∩ Ak|√
|A0| · |Ak|

≤
∑
k

I(|Ak| > |A∗| · δn) · wk

√
|A0|
|Ak|

≤
∑
k

I(|Ak| > |A∗| · δn) · wk

√
|A0|
|A∗| · δn

p→ 0,

since |A0|
|A∗|·δn

p→ 0 on Snj . Therefore, we have shown Ĝ(A0)
p→ 0 on Snj .

Now since we have proved that on Snj , G(A0)
p→ 0 and Ĝ(A0)

p→ 0, so |Ĝ(A0)−G(A0)| p→ 0 on

Snj , which contradicts with the beginning supposition that |Ĝ(A0)−G(A0)| > ε1 > 0 on Snj . Therefore

the supposition does not hold, and we have proved the |Ĝ(A0)−G(A0)| does converge to 0 in probability

uniformly over C.

2. Proof of Theorem 2

Part I: standard deviation of F -measure

Proof. For any A0 in C, by definition of the standard deviation of F -measure, we have

sd
(
F̂ (A0)

)
≡
√∑

k

wk
(
F (A0;Ak)− F̂ (A0)

)2
≤
√∑

k

wk|F (A0;Ak)− F̂ (A0)|

≤
√∑

k

wk|F (A0;Ak)− F (A0)|+ |F (A0)− F̂ (A0)|.

Using the facts proved in the proof for Theorem 1,

|F̂ (A0)− F (A0)| ≤
∑
k

wk|F (A0;Ak)− F (A0)| ≤ 3
∑
k

wk
|A∗∇Ak|
|A∗| ,
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we know

sd(F̂ (A0)) ≤
√

6
∑
k

wk
|A∗∇Ak|
|A∗| ,

and

sup
A0∈C

sd(F̂ (A0)) ≤
√

6
∑
k

wk
|A∗∇Ak|
|A∗|

p→ 0

under the assumption that the model weighting w is weakly consistent.

Part II: standard deviation of G-measure

Proof. For any A0 in C, by definition of the standard deviation of G-measure, we have

sd
(
Ĝ(A0)

)
≡
√∑

k

wk
(
G(A0;Ak)− Ĝ(A0)

)2
≤
√∑

k

wk|G(A0;Ak)− Ĝ(A0)|

≤
√∑

k

wk|G(A0;Ak)−G(A0)|+ |G(A0)− Ĝ(A0)|.

Using the facts in Theorem 1, we have

|Ĝ(A0)−G(A0)| p→ 0.

So it suffices to show
∑
k wk|G(A0;Ak)−G(A0)| p→ 0. The arguments are similar to those in the proof

of Theorem 1. For completeness, the full proof is given below.

Suppose
∑
k wk|G(A0;Ak)−G(A0)| does not converge to 0 in probability uniformly over C, then

there exist some subsequence n1, n2, · · · , ε1 > 0, δ > 0, A0
nj
∈ C, and sets Snj , s.t. P (Snj ) ≥ δ and∑

k wk|G(A0
nj
;Ak)−G(A0

nj
)| > ε1 on Snj . For ease of notation, we denote A0

nj
as A0. We first prove

that we must have |A
0|

|A∗|
p→0 on Snj as nj → ∞. If not, then there exist ε2 > 0, a subsequence njl and

sets Nnjl
such that on Nnjl

we have |A
0|

|A∗| > ε2 > 0. Then we can actually prove
∑
k wk|G(A0;Ak)−

G(A0)| p−→ 0 onNnjl
as follows. OnNnjl

, since |A
0|

|A∗| > ε2 > 0 , we have that
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∑
k

wk|G(A0;Ak)−G(A0)|

≤
∑
k

wk
|
√
|A∗| −

√
|Ak|| · ||A0|+ |Ak| − |A0∇Ak||
2
√
|A∗| · |A0| · |Ak|︸ ︷︷ ︸
A

+
∑
k

wk
||Ak| − |A∗||
2
√
|A∗| · |A0|︸ ︷︷ ︸
B

+
∑
k

wk
||A0∇A∗| − |A0∇Ak||

2
√
|A∗| · |A0|︸ ︷︷ ︸
C

≤ (1 +
1√
ε2

)
∑
k

wk
|A∗∇Ak|
|A∗| .

Under the assumption that the model weighting w is weakly consistent,

∑
k

wk
|A∗∇Ak|
|A∗|

p→ 0,

we must have
∑
k wk|G(A0;Ak) − G(A0)| p→ 0 on Nnjl

. This contradicts with the statement that∑
k wk|G(A0;Ak)−G(A0)| > ε1 > 0 on Snj . Therefore, we have proved that |A

0|
|A∗|

p−→ 0 on Snj under

the beginning supposition.

Next, we prove actually we must have
∑
k wk|G(A0;Ak) − G(A0)| p→ 0 on Snj as nj → ∞.

Similar to the proof in Theorem 1, we can prove that G(A0)
p→ 0 and Ĝ(A0)

p→ 0 on Snj . We then have

∑
k

wk|G(A0;Ak)−G(A0)| ≤
∑
k

wkG(A0;Ak) +G(A0) = Ĝ(A0) +G(A0)
p→ 0

on Snj , which contradicts with the beginning supposition that
∑
k wk|G(A0

nj
;Ak)−G(A0

nj
)| > ε1 > 0

on Snj . Therefore the supposition does not hold, and we have proved the
∑
k wk|G(A0

nj
;Ak)−G(A0

nj
)|

does converge to 0 in probability uniformly over C. Since we have

sd
(
Ĝ(A0)

)
≤
√∑

k

wk|G(A0;Ak)−G(A0)|+ |G(A0)− Ĝ(A0)| p→ 0

for any A0 ∈ C, we have proved

sup
A0∈C

|sd
(
Ĝ(A0)

)
| p−→ 0 as n→∞.
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3. Proof of Theorem 3

Proof. When a model screening is used to obtain the reduced candidate model list S, the weights of the

models in S are renormalized as w̃k = wk/wS, where wS =
∑
k∈S wk. We next show that this renormalized

weighting, though random, is still weakly consistent (in spite of possibly missing the true model in S).

Indeed, ∑
k∈S

w̃k
|A∗∇Ak|
|A∗| =

(∑
k∈S

wk
|A∗∇Ak|
|A∗|

)
/wS ≤

(∑
k∈C

wk
|A∗∇Ak|
|A∗|

)
/wS,

which clearly converges to zero in probability under the weak consistency of w and the weak inclusion

property of S. Then the arguments for the convergence of F̂ and Ĝ in the proofs of Theorems 1 and 2

continue to work. Thus we know that the conclusions of Theorems 1 and 2 still hold.

4. Remarks on Theorem 3

Theorem 3 relies on a good quality of the set of candidate models obtained from a model screening step. The

weak inclusion property demands S to contain some (good) models with non-vanishing cumulated weight,

but does not require A∗ to be in S with high-probability. If the true model is really strong, it is not very

likely to be missed by S. In contrast, if there are very weak true coefficients, the true model may not be

included in S. Fortunately, in this case, as long as the number of small effects is asymptotically negligible

compared to the true model size, some models close to A∗ are most likely to be included in S, and the weak

inclusion property may hold. For example, suppose the true model size is of order logn and there are no

more than (logn)1/2 small coefficients. Then the models without some of the small-effect variables are

likely to receive comparable or even higher weights than the true model. Then, even if the true model is

missed in S, the weak inclusion property holds.

In particular, if S is obtained as the solution path of a penalized method and has the weak inclusion

property, the method is said to be weakly path-inclusive or weakly path-consistent. Note that for a consistent

weighting, our definition here on S is weaker than the path-consistency that requires the true model to be

included on the solution path with probability going to 1.

In the high-dimensional case, we can set S as a large collection of the models obtained from the

solution paths of multiple penalized methods, such as (adaptive) Lasso, SCAD and MCP. Specifically, we

can obtain the models SLasso, SSCAD, SMCP for (adaptive) Lasso, SCAD and MCP respectively on the

solution paths {β̂
λ1
, . . . , β̂

λL} for decreasing sequences of tuning parameters {λ1, . . . , λL}. These models
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are then combined together as a union of candidate models S = {SLasso, SSCAD, SMCP}. These penalized

methods are good choices, since according to existing theories (Tibshirani, 1996; Zou, 2006; Fan and Li,

2001; Zhang, 2010), S produced by the solution paths of these methods ensure path-consistency under

certain regularity conditions. In fact, in order to get Theorem 3, only one of SLasso, SSCAD and SMCP needs

to be weakly path-consistent. Of course, users are not limited to these options, they can add models obtained

from any other weakly path-consistent variable selection methods into S to further enhance the chance of

capturing the true/best model. More details about candidate models are discussed in Section 4.1 of the main

paper.

5. Additional Simulation Results

Table A1: Classification case (Example 2).

F G dF dG

Lasso
True 0.631 (0.008) 0.680 (0.006)
ARM 0.697 (0.007) 0.734 (0.006) 0.066 (0.002) 0.054 (0.002)
BIC-p 0.639 (0.008) 0.686 (0.006) 0.008 (0.001) 0.006 (0.001)

AdLasso
True 0.989 (0.004) 0.989 (0.004)
ARM 0.929 (0.002) 0.935 (0.002) 0.067 (0.002) 0.062 (0.002)
BIC-p 0.987 (0.003) 0.988 (0.002) 0.009 (0.001) 0.008 (0.001)

MCP
True 0.964 (0.008) 0.967 (0.008)
ARM 0.922 (0.004) 0.929 (0.004) 0.065 (0.002) 0.059 (0.002)
BIC-p 0.965 (0.008) 0.968 (0.007) 0.009 (0.001) 0.008 (0.001)

SCAD
True 0.955 (0.010) 0.960 (0.009)
ARM 0.919 (0.005) 0.926 (0.004) 0.065 (0.002) 0.059 (0.002)
BIC-p 0.956 (0.009) 0.961 (0.008) 0.009 (0.001) 0.008 (0.001)

Table A2: Classification case (Example 3).

F G dF dG

Lasso
True 0.154 (0.011) 0.278 (0.010)
ARM 0.129 (0.009) 0.251 (0.009) 0.025 (0.002) 0.028 (0.002)
BIC-p 0.159 (0.011) 0.283 (0.010) 0.010 (0.002) 0.010 (0.002)

AdLasso
True 0.712 (0.021) 0.751 (0.018)
ARM 0.627 (0.020) 0.682 (0.016) 0.091 (0.006) 0.076 (0.005)
BIC-p 0.716 (0.021) 0.754 (0.017) 0.030 (0.006) 0.026 (0.005)

MCP
True 0.498 (0.015) 0.576 (0.012)
ARM 0.433 (0.015) 0.523 (0.012) 0.067 (0.004) 0.056 (0.003)
BIC-p 0.511 (0.015) 0.586 (0.012) 0.026 (0.005) 0.020 (0.004)

SCAD
True 0.214 (0.006) 0.344 (0.005)
ARM 0.183 (0.006) 0.312 (0.006) 0.032 (0.002) 0.033 (0.002)
BIC-p 0.225 (0.007) 0.352 (0.006) 0.017 (0.004) 0.014 (0.003)
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Table A3: Classification case (Example 4).

F G dF dG

Lasso
True 0.720 (0.005) 0.734 (0.005)
ARM 0.493 (0.006) 0.572 (0.004) 0.227 (0.007) 0.163 (0.006)
BIC-p 0.616 (0.006) 0.667 (0.004) 0.109 (0.005) 0.077 (0.005)

AdLasso
True 0.794 (0.005) 0.800 (0.005)
ARM 0.722 (0.006) 0.755 (0.005) 0.081 (0.006) 0.059 (0.005)
BIC-p 0.876 (0.006) 0.883 (0.005) 0.096 (0.006) 0.094 (0.006)

MCP
True 0.751 (0.005) 0.770 (0.005)
ARM 0.793 (0.004) 0.813 (0.004) 0.063 (0.005) 0.056 (0.004)
BIC-p 0.932 (0.005) 0.934 (0.005) 0.182 (0.006) 0.164 (0.005)

SCAD
True 0.778 (0.006) 0.789 (0.006)
ARM 0.755 (0.005) 0.781 (0.004) 0.064 (0.006) 0.055 (0.005)
BIC-p 0.913 (0.006) 0.916 (0.005) 0.141 (0.007) 0.132 (0.006)

Table A4: Classification case (Example 5).

F G dF dG

Lasso
True 0.386 (0.006) 0.440 (0.005)
ARM 0.223 (0.004) 0.348 (0.004) 0.163 (0.006) 0.093 (0.005)
BIC-p 0.359 (0.006) 0.465 (0.005) 0.039 (0.004) 0.043 (0.003)

AdLasso
True 0.726 (0.005) 0.735 (0.005)
ARM 0.616 (0.008) 0.669 (0.006) 0.118 (0.007) 0.079 (0.005)
BIC-p 0.859 (0.008) 0.865 (0.008) 0.137 (0.007) 0.133 (0.006)

MCP
True 0.683 (0.008) 0.695 (0.008)
ARM 0.639 (0.009) 0.687 (0.007) 0.079 (0.006) 0.063 (0.005)
BIC-p 0.868 (0.008) 0.871 (0.008) 0.186 (0.006) 0.177 (0.006)

SCAD
True 0.634 (0.008) 0.637 (0.008)
ARM 0.506 (0.010) 0.580 (0.008) 0.131 (0.007) 0.072 (0.005)
BIC-p 0.743 (0.009) 0.766 (0.008) 0.110 (0.006) 0.130 (0.006)



11

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

LASSO

σ

F
m
ea
su
re

ARM
BIC-p
TRUE

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LASSO

σ

G
m
ea
su
re

ARM
BIC-p
TRUE

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Adaptive LASSO

σ

F
m
ea
su
re

ARM
BIC-p
TRUE

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Adaptive LASSO

σ

G
m
ea
su
re

ARM
BIC-p
TRUE

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MCP

σ

F
m
ea
su
re

ARM
BIC-p
TRUE

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MCP

σ

G
m
ea
su
re

ARM
BIC-p
TRUE

0 1 2 3 4 5

0
.0

0.
2

0.
4

0
.6

0
.8

1.
0

SCAD

σ

F
m
ea
su
re

ARM
BIC-p
TRUE

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0
.8

1.
0

SCAD

σ

G
m
ea
su
re

ARM
BIC-p
TRUE

Figure A1: Regression case (Example 2).
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Figure A2: Regression case (Example 3)
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Figure A3: Regression case (Example 4).
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Figure A4: Regression case (Example 5).
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6. Sensitivity Analysis of ψ

In this simulation, we study how the choices of the prior weight parameter ψ impact the estimation

performance of PAVI. We only present results for the regression case, since we found that the classification

case gives similar results. We adopt the simulation setting of Example 3 defined in Section 5.1, except that

we let σ2 = 1, n = 100 and we vary p = {200, 2000}. We compare F̂ (A0) and Ĝ(A0) with the true

F (A0) and G(A0) under nine different values of ψ, that is, ψ ∈ {0, 0.5, 1, 2, 4, 6, 8, 10, 20}.

All simulation cases are repeated for 100 times and the corresponding values are computed and

averaged. The results are shown in Figure A5 for p = 200 case and A6 for p = 2000 case. We can see that

by using either the ARM or BIC-p weighting with ψ = 1 or 2, the estimated F̂ (A0) and Ĝ(A0) can better

reflect the true F (A0) and G(A0) for all four different variable selection methods under evaluation. We

observed similar results in other simulation settings. We conclude that overall, under ψ = 1 or 2 setting,

PAVI is stably reliable in our simulation, while either a too large or too small value of ψ leads to poor

estimation performance.
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Figure A5: Sensitivity analysis of ψ. Regression case, n = 100 and p = 200.
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Figure A6: Sensitivity analysis of ψ. Regression case, n = 100 and p = 2000.
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7. Impact of Candidate Models

In this simulation study, we investigate how the quality of the candidate models impacts the estimation

performance of PAVI:

• How heterogeneity of the candidate model S affects the estimation performance.

• How it affects estimation performance when S contains/not contain the true model.

We only present the results from the regression case. The data are generated using the setting described

in Example 3 of Section 5.1, under eight different noise levels σ ranging from 0.01 to 4. We set n = 50

and p = 100. The true model is represented by the vector A∗ = (1, 1, 1, 0, 0, 0, . . . , 0) with |A∗| = 3, i.e.

only the first three variables are nonzero, the remaining 97 are noise variables. Suppose that a given MCP

model A0 is evaluated by using the estimated F -measure F̂ (A0) obtained from the BIC-p (the modified

BIC) weighting with prior adjustment ψ = 1. The sets of candidate models used in estimation of F̂ (A0) are

generated under the following two settings:

Setting I (A∗ is not included in S.) We use a union of 100 models as the set of candidate models S =

{Ak}100k=1. Each Ak is a contaminated version of the true model A∗ with a pre-specified contamina-

tion level r ∈ (0, 1). Specifically, each Ak is generated in the following way: we take A∗, randomly

select 100r% of its elements and flip their values, i.e. switch to 1 if the original value is 0, and to 0

if the original value is 1. Thus r controls heterogeneity of S: the smaller r becomes, the closer the

candidate model gets to the true model.

Setting II (A∗ is included in S.) The set of candidate models S = {Ak}100k=1 is also generated using Setting

I, except that one of Ak’s is replaced by A∗.

We compare estimation performances of F̂ (A0) under Setting I and II with varying contamination

levels r = {0.01, 0.03, 0.05, 0.1, 0.2}. All simulation cases are repeated for 100 times and the correspond-

ing values are computed and averaged. The results are shown in Figure A7: (1) The left panel shows the

results under Setting I. We find that less heterogeneity in S leads to better estimation performance of F̂ (A0)

when A∗ /∈ S. This indicates that, if the true model is not included in the candidate models, it leads to

better performance when S has most of its models being close to the true model; (2) However, from the

results under Setting II shown in the right panel, we can see that if the true model is included in S, then

heterogeneity of S becomes not much influential on the estimation performance.
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Figure A7: Impact of candidate models on estimation performance of F -measures in the
regression case, n = 50 and p = 100, under Setting I: A∗ is not included in S (left
panel); Setting II: A∗ is included in S (right panel) with varying contamination levels
r = {0.01, 0.03, 0.05, 0.1, 0.2}.

8. Additional Real Data Examples

Table A5: Estimated F - and G-measures and standard deviations for Prostate. L10 has
numerically zero F̂ and Ĝ values (bolded in the Table).

ARM BIC-p

F sd.F G sd.G F sd.F G sd.G
Lasso 0.064 0.004 0.181 0.005 0.064 0.003 0.181 0.004
AdLasso 0.190 0.011 0.323 0.009 0.189 0.008 0.323 0.007
MCP 0.018 0.019 0.027 0.022 0.018 0.012 0.027 0.014
SCAD 0.097 0.006 0.225 0.007 0.096 0.005 0.225 0.005
ImpS 0.333 0.011 0.447 0.008 0.333 0.012 0.447 0.009
S12 0.395 0.037 0.494 0.047 0.400 0.003 0.500 0.007
L10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table A6: Labels of selected genes for Colon.

Labels of selected genes
Lasso {66, 249, 377, 493, 765, 1325, 1346, 1423, 1582, 1644, 1772, 1870}
AdLasso {249, 377, 765, 1582, 1772, 1870}
MCP {249, 377, 1644, 1772, 1870}
SCAD {377, 617, 765, 1024, 1325, 1346, 1482, 1504, 1582, 1644, 1772, 1870}
ImpS {249, 1772}
L11 {249, 286, 765, 1058, 1485, 1671, 1771, 1836}
Y10 {14, 161, 249, 377, 492, 493, 576, 792, 822, 1042, 1210,

1346, 1400, 1423, 1549, 1635, 1772, 1843, 1924}
C11 {249, 399, 513, 515, 780, 1042, 1325, 1582, 1771, 1772}
L10 {732, 994, 1473, 1763, 1794, 1843}
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Table A7: Labels of selected genes for Leukemia.

Labels of selected genes
Lasso {804, 1239, 1674, 1745, 1779, 1796, 1834, 1882, 1928, 1933,

1941, 2121, 2288, 3847, 4196, 4328, 4847, 4951, 4973, 5002,
5107, 5335, 5766, 6055, 6169, 6539, 6855}

AdLasso {1779, 1834, 4328, 4847, 4951}
MCP {804, 1941, 3837, 4714, 4847, 4951, 6539}
SCAD {804, 1674, 1745, 1779, 1834, 1882, 1928, 1941, 2288, 3847, 4196,

4328, 4847, 4951, 4973, 5002, 5766, 5772, 6169, 6225, 6281, 6539, 6855}
ImpS {1239, 4847, 4951}
J111 {1376, 1394, 1674, 1882, 2186, 2402, 6200, 6201, 6803}
J112 {1394, 1674, 1882, 2186, 5976, 6200, 6201, 6806}
Y10 {760, 804, 1745, 1829, 1834, 1882, 2354, 3320, 4052,

4211, 4377, 4535, 4847, 5039, 6041, 6218, 6376, 6540}
L10 {220, 1086, 1834, 2020}

Table A8: Labels of selected genes for Prostate.

Labels of selected genes
Lasso {1107, 3617, 4282, 4438, 4525, 4636, 5661, 5838, 5890, 6145, 6185,

6838, 7375, 7428, 7539, 7623, 7915, 8123, 8965, 9034, 9093, 9816,
9850, 10234, 10537, 10956, 11858, 11871, 12153, 12462}

AdLasso {5661, 5890, 6185, 7539, 7623, 8965, 9034, 9093, 10234, 11858}
MCP {7623, 7924, 8965, 9034, 9816, 10234, 11858}
SCAD {1107, 3540, 4636, 5661, 5838, 5890, 6185, 7623, 8603, 8965, 9034,

9093, 9816, 10234, 10956, 11858, 11871, 12153}
ImpS {8965, 9034, 10234, 11858}
S12 {4377, 6185, 6390, 6915}
L10 {4743, 6096, 8475, 9575, 9927, 12331}
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