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This supplementary material presents a proof for Theorem [2]in Section [SI] and our simulation

setting and results in Section

S1 Proof for Theorem 2

This section presents a proof for Theorem 2] We first present three lemmas.
Recall that p(z) = 2 — 2®(|z|) for all z € R. Lemmas [1| and [2| help find the
lower bounds of F~!(1 — min;cg p;) and F~'(1 — max;eg p;), respectively.

Lemma [3| presents a lower bound for ay,,.

1/«
Lemma 1. Let g(x) = copz"/*/®) where ¢y 5 = [%F(OJ) sin (%)]

15 a constant, 0 < a <2 and -1 < < 1. For x — o0,

F1 = p(a)lo, B] > g(a).

Proof of Lemma[l,. When & — oo, g(x) — oco. Therefore, we can apply the
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right tail approximation of a stable distribution in Theorem 1.2 form Nolan

(2020). When 0 < a < 2 and —1 < g < 1, for large enough =z,

1= Flg(z)|a, 5] = Pr[Woa > g(z)]

1
~ 2 (a)sin (2 o)
_ zx—1e—x2/2
T

From Mill’s ratio inequality that 1 — ®(z) < @ for any x > 0, where

®(-) and ¢(-) represent the distribution function and probability density

function of a standard normal random variable respectively, we have

p(z) = 2[1 — ®(x)] < 2@ = %x_le_x2/2.

Therefore, p(x) < 1— Flg(z)|a, 8] for large enough . Since F~! is increas-

ing, F~[1 — p(z)] > g(x) for large enough z. O

—1/ min(a,1) emz/(Qa

Lemma 2. Define §(x) = —Copx ) with constant ¢, 5 =

1/a
[}/;Q—ﬁf(a) sin (%)} where 0 < a <2 and —1 < < 1. When z — 0T,

F1 = p(a)lo, B] > g(a).

Proof of Lemma[3. We first consider the case where —1 < < 1. Similarly
to the proof of Lemma (1, when = — 0%, g(z) — —oo. Applying the left

tail approximation from Theorem 1.2 of Nolan| (2020) for 0 < a < 2 and

2
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_1§5<17

Flg(x)]e, B] = Pr{Woa s < g(2)]
1-p
2

=1/—x
7r

T

D) sin (5 ) (=)~

~

max(a,l) 6—:1:2/2

In addition, the standard normal distribution function, ®(x), can be rewrit-

ten using the integration by parts,

1—p(z) =20(z) — 1= \/gerQ/Q +Q(z),

where Q(x) = \/ge_zg/2(§ + 3%55 +--+) > 0 for any z > 0. Noting that
gmax(el) < g for 2 < 1 and a > 1, we conclude that 1 —p(x) > F[j(z)|a, B]
for z — 0.

When g = 1, the distribution is totally skewed to the right, and the left
tail probability does not follow a power law. Instead, we know that the left
tail probability of Wy., 1 is smaller than that of Wy, s with —1 < 8 < 1.

That is,
Flg(z)]o, 1] = PrWoan < g(x)] < PriWoas < ().

Therefore, 1 — p(z) > F[g§(z)|a,f] for all =1 < 8 < 1. Since F! is

increasing, we have F~'[1 — p(z)] > g(z), which completes the proof. [

Lemma 3. Let w; € (0,1) be nonnegative weights such that > w; = 1.
The normalizing constant an.q = (>, w) "V > min(n!~Ve, 1),
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Proof of Lemmal3 The lower bound of a,., is considered in three separate
cases. First, when o =1, a,,, = 1. The second case is when 0 < v < 1. By
Holder’s inequality,
n n @
3 < S| e
i=1 i=1
which is equivalent to a,., > n'!~1/*. The last case is when 1 < a < 2. Since
the [, norm is a decreasing function in « for any o > 1,
n 1o n
(Z |wi|a> < Z wi =1,
i=1 i=1
and therefore, a,., > 1. Combining the above three cases, we have a,,, =

(X, we) ™" > min(n!=1/2, 1), O

Now we are ready to prove Theorem

Proof of Theorem[3. Recall that the test statistic is defined as 7)., 5(p) =
-1/
Toia5(X) = apso Yoy wiF 1= p(Xi)|a, B], where a,,q = <Z;‘l:1 w?) :

Under Assumption |4} the test statistic T,.,,3(X) can be decomposed into

two parts:
Tn;a,ﬁ _a'n el Z wz )|a 5]
€S
+anazwz 1_ 1)|Oé,ﬁ]
eS¢
=A, + B,.
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In order to show 7, 3(X) — 0o as n — oo, we will show that A, — oo
with probability 1 and that B, cannot be arbitrary large negative.

Part A,, can be further decomposed as follows:

An Zan;acon_l maSX F_l[l - p(Xz)‘aa 6]
1€

t o (Y wy — con” ) min FH1 = p(X;)av, ]

jes

=An1 + Ao
In the following arguments, we will prove that A, — oo with probability
1 by showing that A, ; can be arbitrarily large whereas A, 2 > o0,(1) as

n — oo.

Since F~1 — p(z)|a, 8] is increasing in z, A,1 = apacon 'F7H1 —
p(max;es | Xi|)|e, 5]. Recall that the set of positive signals, S, is assumed
to have the cardinality no less than |S|/2. From Lemma 6 of Cai et al.

(2014) and using the same argument as in the proof of Theorem 3 of [Liu

and Xie| (2020), max;es | X;| > po +1/21og|Sy| 4+ 0,(1). Given the assump-

tions that po = v/2rlogn and /2log|S;| > 1/2(ylogn — log2), we have

max;es | X;| = oo with probability 1. Lemma |l|implies that

Pr {F‘l [1 —p (max |X,|) > g <maX|X¢|>} — 1,
= i€S n—00

which is equivalent to

l/a X2
Pr {An,l > an;aconilcaﬂ <m%x |Xz|> exp [(maxzeS| Z|> ] } — 1.
1€

2a n— 00

a,
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Noting that max;cg | X;| > v/2rlogn++/2log|Sy|+0,(1), Pr{max;cs X; >

1} — 1, and /log |S;| > \/2(ylogn — log 2) &~ v/2ylogn, we have

1/a
Pr {An,1 > ApaCon 'Cap {n(\ﬁﬁﬁﬁ] } — 1.

n—oo

—1/a
From Lemma , Upo = (Z?Zl w}") > min(n(®~1/® 1), and therefore

Pr{ A1 > ey p [l otemmayon])

n—s00
According to Part |3 of Assumption 4| \/r + /7 > max(y/a, 1), we have
nWTHVD?/a=1/a=1 4 o6 a5 p — co. Therefore, we obtain that A, ; — oo
with probability tending to 1 as n — oc.

Next consider the part A,o = ap.q <Z]ES wj — con_1> minges F11 —
p(X;)]. Let ¢, = n with (y — 1/a)min(a, 1) < 79 < —7. Parts 2 and 3
of Assumption [4] imply that min;cg | X;| is greater than €, with probability

tending to 1 as n — 00, because

X , ) .
Pr (E%%”XZ’ < en) < ZPr(\Xz] <€) =n"Pr(|X;| <e,)
ies (S1.1)

= 17 Rendlpio — €0)] = e O(eTE") = o(1),
where ¢(-) is the probability density function of a standard normal random
variable. Since F~!'[1 — p(-)|a, ] is increasing, equation is equiva-
lent to the statement that F~[1 — p(minses | X;|)|a, B] is greater than any
F~'1—p(en)|e, B] with probability 1 as n — oo. Since €, — 07 as n — oo,

we can apply Lemma to find a lower bound of F~[1 — p(e,)|c, 8], which
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leads to a lower bound of |4, 5| as follows:
Pr{|A,2| > an(n’™" — con™")|g(en)|} — 1.

Note that e/ — 1 asn — co. With the assumption that there is a
positive constant ¢y such that min?_, w; > co/n, we have a, < n'~%c?,
and hence,

an(n"t — con H|g(en)| < Eavﬁanrﬂ_le;l/min(a’l)eei/(%‘)

< &y peg M1/ min(a,) o6k /(20

= o(1).
Therefore, A,2 > 0,(1), which completes the proof of the statement that
A,, — oo with probability 1 as n — oc.
Next, we show B,, cannot be arbitrary large negative. Under Part [1] of

Assumption {4, Theorem [I] implies that as n — oo,

n o\ Ve n a\ Ve
S wl =1 Wj E
Lja B, = Z]_—lja Apia wiFil (1 - pi’O‘?B)
D hege We > rese Wi i€se

i> WO;a,ﬁ7
where W, 5 follows S(c, 3).
1-3 . > c w l/a .
Let 6., = [EF(OC) sin (%2) (Z’“%lw.fﬂ , where €, = n" with (v —

1/a) min(a, 1) < 9 < —7. We first consider the —1 < 5 < 1 case. Notice

n wc_x 1/05 1/a
that as n — oo, €, — 0 and 6, <£> = [17611(@) sin (%)}

> w Te —
kesc Wk n

o0. According to the tail approximation of Theorem 1.2 of |[Nolan/ (2020),
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when 0 < a<2and -1 <3< 1,
Pr (B, < —d,) ~ Pr | Woap < =0, (

1-p

. (TQN ; ;
~=——Lr()sin (7) 5 (—Zkesewz‘

= €n,

for large enough n. Equation implies that for any € > 0, there exists
a positive constant & > 4., such that Pr (B, < —0) < ¢ for large enough
n > et/

When 8 = 1, the distribution is totally skewed to the right, and conse-
quently, for all i € S¢, Pr(W; 41 < —x) < Pr(W,np < —z) for any g < 1
and for any large enough x. Therefore, a similar argument to the one for
—1 < B < 1holds for g = 1. That is, B,, cannot be arbitrary large negative

for all 0 < a < 2 and —1 < 8 < 1, which finishes the proof. O

S2 Simulation Results

In this section, we present the setting and results for our simulations. Sim-
ilarly to [Liu and Xie| (2020)), a collection of test scores, X, is drawn from
N, (s, %). All diagonal elements of the covariance matrix X are set as one.
There are four models for the covariance matrix 3 considered to represent

different dependence structures. Model 1 is the scheme where the individ-
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ual tests are independent. In Models 2, 3, and 4, the off-diagonal entries of

the covariance matrix 3 = (o;;) are functions of p.

1. Independent. The correlation between each pair of underlying test

scores is zero, i.e., X = I,,.

2. AR(1) correlation. The correlation between a pair of underlying test

scores decays exponentially fast as their distances increase; 0;; = pli=il.

3. Exchangeable structure. The correlation between each pair of under-

lying test scores o;; = p for all 7 # j.

4. Polynomial decay. The correlation between the ith and jth test scores,

0ij, is set to be It should be noted that the correlation is a

1
0.7+ ]i—j]7 *
decreasing function of p, unlike Models 2 and 3 above.

The simulation is conducted in R. gstable function in stabledist
package (Wuertz et al 2016)) is used to calculate quantiles of stable distri-
butions. We truncate too small and too large p-values at 107% and 1 —1075,
respectively. This is to avoid technical issues involved with too large quan-
tiles in absolute values in the gstable function. The number of Monte
Carlo replications is 1000. The number of individual tests in each Monte
Carlo replication is 40 (n = 40). The significance level is set to be 5%.

The parameter p that governs the strength of the dependencies is set to
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be 0.2,0.4,0.6, or 0.8. Note that larger p implies stronger dependencies in
Models 2 and 3, and weaker dependencies in Model 4. For the SCT, all
combinations of &« = 0.1,0.3,...,1.9 and § = —0.8,—0.6,...,1 are consid-
ered in addition to («, 5) = (1,0), which is equivalent to the CCT. We also
consider Stouffer’s Z-score, which would correspond to the SCT with o« = 2
and § = 0. Note that although Stouffer’s Z-score can be written in the
SCT form, Stouffer’s Z-score is not a part of the SCT family we consider in
our paper. The test statistics are calculated as equation (0.1) with equal
weights w; = 1/n.

When calculating the sizes, data are generated from a multivariate nor-
mal distribution with mean g = 0. For powers, following one of the sparse
alternative setting in |Liu and Xie (2020]), randomly chosen 4 indices in
each replication are set to have mean 2.095662. This choice corresponds
to v = log(4)/log(40) ~ 0.3758 and r = 2.095662/+/210g(40) ~ 0.5953 so
that p; = +/2rlogn = 2.095662 and [n?] = 4. Note that (/7 + /7)? ~
1.917 > max(a, 1) for all as considered in our simulation, satisfying Part
of Assumption [l However, Part [2| of Assumption [4] does not hold for
a > 1/(2y) ~ 1.33. For raw powers, the cutoff values are taken directly
from the corresponding stable distributions. For the size-adjusted pow-

ers, 1000 Monte Carol replications are first drawn under the global null
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Figure 1: Sizes, raw powers and size-adjusted powers of Model 1 where tests are independent. Lines
indicate the SCT with different as and 8s. Red and black dots represent the CCT (SCT with o = 1

and 8 = 0) and Stouffer’s Z-score, respectively.

hypothesis. Combined test statistics are calculated for each Monte Carlo
replication. The simulation-based cutoff for each method is determined as
the 95% quantile of the 1000 test statistics. After that, another set of 1000
Monte Carlo replications is drawn under the sparse alternative. The pro-
portion of test statistics that are greater than the simulation-based cutoffs
is the size-adjusted powers.

Figures present the sizes, raw powers, and size-adjusted powers for
different as and s under the four models. Red dots indicate the CCT,
which corresponds to the SCT with a = 1 and 5 = 0. Black dots indicate
Stouffer’s Z-scores. The black solid lines in the size plots represent the

nominal significance level 0.05.
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Figure 2: Sizes, raw powers and size-adjusted powers of Model 2 where tests are correlated with AR(1)
correlation structures with different ps. Lines indicate the SCT with different as and 8s. Red and black

dots represent the CCT (SCT with a« =1 and 8 = 0) and Stouffer’s Z-score, respectively.
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ex-

changeable correlation structures with different ps. Lines indicate the SCT with different as and fs.

Red and black dots represent the CCT (SCT with @ = 1 and 8 = 0) and Stouffer’s Z-score, respectively.
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Figure 4: Sizes, raw powers and size-adjusted powers of Model 4 where tests are correlated as polynomial
decayed correlation structures with different ps. Lines indicate the SCT with different as and 8s. Red

and black dots represent the CCT (SCT with a = 1 and 8 = 0) and Stouffer’s Z-score, respectively.
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