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This supplementary material presents a proof for Theorem 2 in Section S1 and our simulation

setting and results in Section S2.

S1 Proof for Theorem 2

This section presents a proof for Theorem 2. We first present three lemmas.

Recall that p(x) = 2− 2Φ(|x|) for all x ∈ R. Lemmas 1 and 2 help find the

lower bounds of F−1(1 − mini∈S pi) and F−1(1 − maxi∈S pi), respectively.

Lemma 3 presents a lower bound for an;α.

Lemma 1. Let g(x) = cα,βx
1/αex

2/(2α) where cα,β =
[

1+β√
2π

Γ(α) sin
(
πα
2

)]1/α

is a constant, 0 < α < 2 and −1 < β ≤ 1. For x→∞,

F−1[1− p(x)|α, β] > g(x).

Proof of Lemma 1. When x→∞, g(x)→∞. Therefore, we can apply the
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right tail approximation of a stable distribution in Theorem 1.2 form Nolan

(2020). When 0 < α < 2 and −1 < β ≤ 1, for large enough x,

1− F [g(x)|α, β] = Pr[W0;α,β > g(x)]

∼ 1 + β

π
Γ(α) sin

(πα
2

)
[g(x)]−α

=

√
2

π
x−1e−x

2/2.

From Mill’s ratio inequality that 1− Φ(x) ≤ φ(x)
x

for any x > 0, where

Φ(·) and φ(·) represent the distribution function and probability density

function of a standard normal random variable respectively, we have

p(x) = 2[1− Φ(x)] ≤ 2
φ(x)

x
=

√
2

π
x−1e−x

2/2.

Therefore, p(x) ≤ 1−F [g(x)|α, β] for large enough x. Since F−1 is increas-

ing, F−1[1− p(x)] > g(x) for large enough x.

Lemma 2. Define g̃(x) = −c̃α,βx−1/min(α,1)ex
2/(2α) with constant c̃α,β =[

1−β√
2π

Γ(α) sin
(
πα
2

)]1/α

where 0 < α < 2 and −1 ≤ β ≤ 1. When x→ 0+,

F−1[1− p(x)|α, β] > g̃(x).

Proof of Lemma 2. We first consider the case where −1 ≤ β < 1. Similarly

to the proof of Lemma 1, when x → 0+, g̃(x) → −∞. Applying the left

tail approximation from Theorem 1.2 of Nolan (2020) for 0 < α < 2 and
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−1 ≤ β < 1,

F [g̃(x)|α, β] = Pr[W0;α,β < g̃(x)]

∼ 1− β
π

Γ(α) sin
(πα

2

)
[−g̃(x)]−α

=

√
2

π
xmax(α,1)e−x

2/2.

In addition, the standard normal distribution function, Φ(x), can be rewrit-

ten using the integration by parts,

1− p(x) = 2Φ(x)− 1 =

√
2

π
xe−x

2/2 +Q(x),

where Q(x) =
√

2
π
e−x

2/2(x
3

3
+ x5

3∗5 + · · · ) > 0 for any x > 0. Noting that

xmax(α,1) ≤ x for x < 1 and α > 1, we conclude that 1− p(x) > F [g̃(x)|α, β]

for x→ 0+.

When β = 1, the distribution is totally skewed to the right, and the left

tail probability does not follow a power law. Instead, we know that the left

tail probability of W0;α,1 is smaller than that of W0;α,β with −1 ≤ β < 1.

That is,

F [g̃(x)|α, 1] = Pr[W0;α,1 < g̃(x)] < Pr[W0;α,β < g̃(x)].

Therefore, 1 − p(x) > F [g̃(x)|α, β] for all −1 ≤ β ≤ 1. Since F−1 is

increasing, we have F−1[1− p(x)] > g̃(x), which completes the proof.

Lemma 3. Let wi ∈ (0, 1) be nonnegative weights such that
∑n

i=1 wi = 1.

The normalizing constant an;α = (
∑n

i=1 w
α
i )
−1/α ≥ min(n1−1/α, 1).
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Proof of Lemma 3. The lower bound of an;α is considered in three separate

cases. First, when α = 1, an;α = 1. The second case is when 0 < α < 1. By

Hölder’s inequality,

n∑
i=1

wαi ≤

[
n∑
i=1

(wαi )1/α

]α
n1−α = n1−α,

which is equivalent to an;α ≥ n1−1/α. The last case is when 1 < α < 2. Since

the lα norm is a decreasing function in α for any α ≥ 1,(
n∑
i=1

|wi|α
)1/α

≤
n∑
i=1

|wi| = 1,

and therefore, an;α ≥ 1. Combining the above three cases, we have an;α =

(
∑n

i=1w
α
i )
−1/α ≥ min(n1−1/α, 1).

Now we are ready to prove Theorem 2.

Proof of Theorem 2. Recall that the test statistic is defined as Tn;α,β(p) =

Tn;α,β(X) = an;α

∑n
i=1wiF

−1[1−p(Xi)|α, β], where an;α =
(∑n

j=1 w
α
j

)−1/α

.

Under Assumption 4, the test statistic Tn;α,β(X) can be decomposed into

two parts:

Tn;α,β(X) =an;α

∑
i∈S

wiF
−1[1− p(Xi)|α, β]

+ an;α

∑
i∈Sc

wiF
−1[1− p(Xi)|α, β]

:=An +Bn.
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In order to show Tn;α,β(X) → ∞ as n → ∞, we will show that An → ∞

with probability 1 and that Bn cannot be arbitrary large negative.

Part An can be further decomposed as follows:

An ≥an;αc0n
−1 max

i∈S
F−1[1− p(Xi)|α, β]

+ an;α(
∑
j∈S

wj − c0n
−1) min

i∈S
F−1[1− p(Xi)|α, β]

:=An,1 + An,2

In the following arguments, we will prove that An → ∞ with probability

1 by showing that An,1 can be arbitrarily large whereas An,2 > op(1) as

n→∞.

Since F−1[1 − p(x)|α, β] is increasing in x, An,1 = an;αc0n
−1F−1[1 −

p(maxi∈S |Xi|)|α, β]. Recall that the set of positive signals, S+, is assumed

to have the cardinality no less than |S|/2. From Lemma 6 of Cai et al.

(2014) and using the same argument as in the proof of Theorem 3 of Liu

and Xie (2020), maxi∈S |Xi| ≥ µ0 +
√

2 log |S+|+ op(1). Given the assump-

tions that µ0 =
√

2r log n and
√

2 log |S+| ≥
√

2(γ log n− log 2), we have

maxi∈S |Xi| → ∞ with probability 1. Lemma 1 implies that

Pr

{
F−1

[
1− p

(
max
i∈S
|Xi|

) ∣∣∣∣α, β] > g

(
max
i∈S
|Xi|

)}
−→
n→∞

1,

which is equivalent to

Pr

{
An,1 ≥ an;αc0n

−1cα,β

(
max
i∈S
|Xi|

)1/α

exp

[
(maxi∈S |Xi|)2

2α

]}
−→
n→∞

1.
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Noting that maxi∈S |Xi| ≥
√

2r log n+
√

2 log |S+|+op(1), Pr{maxi∈S Xi >

1} → 1, and
√

log |S+| ≥
√

2(γ log n− log 2) ≈
√

2γ log n, we have

Pr

{
An,1 ≥ an;αc0n

−1cα,β

[
n(
√
γ+
√
r)2
]1/α

}
−→
n→∞

1.

From Lemma 3, an;α =
(∑n

j=1w
α
j

)−1/α

≥ min(n(α−1)/α, 1), and therefore

Pr
{
An,1 ≥ c0cα,β

[
n(
√
γ+
√
r)2/α−1+min(1−1/α,0)

]}
−→
n→∞

1.

According to Part 3 of Assumption 4,
√
r +
√
γ > max(

√
α, 1), we have

n(
√
γ+
√
r)2/α−1/α−1 → ∞ as n → ∞. Therefore, we obtain that An,1 → ∞

with probability tending to 1 as n→∞.

Next consider the part An,2 = an;α

(∑
j∈S wj − c0n

−1
)

mini∈S F
−1[1 −

p(Xi)]. Let εn = nγ0 with (γ − 1/α) min(α, 1) < γ0 < −γ. Parts 2 and 3

of Assumption 4 imply that mini∈S |Xi| is greater than εn with probability

tending to 1 as n→∞, because

Pr

(
min
i∈S
|Xi| < εn

)
≤
∑
i∈S

Pr (|Xi| < εn) = nγ Pr (|Xi| < εn)

= nγ [2εnφ(µ0 − εn)] = nγεnO(e−r logn) = o(1),

(S1.1)

where φ(·) is the probability density function of a standard normal random

variable. Since F−1 [1− p(·)|α, β] is increasing, equation (S1.1) is equiva-

lent to the statement that F−1[1− p(mini∈S |Xi|)|α, β] is greater than any

F−1[1−p(εn)|α, β] with probability 1 as n→∞. Since εn → 0+ as n→∞,

we can apply Lemma 2 to find a lower bound of F−1[1− p(εn)|α, β], which
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leads to a lower bound of |An,2| as follows:

Pr
{
|An,2| > an;α(nγ−1 − c0n

−1)|g̃(εn)|
}
→ 1.

Note that eε
2
n/(2α) → 1 as n → ∞. With the assumption that there is a

positive constant c0 such that minni=1 wi ≥ c0/n, we have an < n1−1/αc−1
0 ,

and hence,

an(nγ−1 − c0n
−1)|g̃(εn)| < c̃α,βann

γ−1ε−1/min(α,1)
n eε

2
n/(2α)

≤ c̃α,βc
−1
0 n−1/α+γ−γ0/min(α,1)eε

2
n/(2α)

= o(1).

Therefore, An,2 > op(1), which completes the proof of the statement that

An →∞ with probability 1 as n→∞.

Next, we show Bn cannot be arbitrary large negative. Under Part 1 of

Assumption 4, Theorem 1 implies that as n→∞,( ∑n
j=1w

α
j∑

k∈Sc w
α
k

)1/α

Bn =

( ∑n
j=1 w

α
j∑

k∈Sc w
α
k

)1/α

an;α

∑
i∈Sc

wiF
−1 (1− pi|α, β)

d−→ W0;α,β,

where W0;α,β follows S(α, β).

Let δεn =
[

1−β
πεn

Γ(α) sin
(
πα
2

) (∑
k∈Sc w

α
k∑n

j=1 w
α
j

)]1/α

, where εn = nγ0 with (γ −

1/α) min(α, 1) < γ0 < −γ. We first consider the −1 < β < 1 case. Notice

that as n → ∞, εn → 0 and δεn

( ∑n
j=1 w

α
j∑

k∈Sc w
α
k

)1/α

=
[

1−β
πεn

Γ(α) sin
(
πα
2

)]1/α

→

∞. According to the tail approximation of Theorem 1.2 of Nolan (2020),
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when 0 < α < 2 and −1 ≤ β < 1,

Pr (Bn < −δεn) ∼ Pr

W0;α,β < −δεn

( ∑n
j=1 w

α
j∑

k∈Sc w
α
k

)1/α


∼ 1− β
π

Γ(α) sin
(πα

2

)
δ−αεn

( ∑n
j=1 w

α
j∑

k∈Sc w
α
k

)−1

= εn,

(S1.2)

for large enough n. Equation (S1.2) implies that for any ε > 0, there exists

a positive constant δ > δεn such that Pr (Bn < −δ) < ε for large enough

n > ε1/γ0 .

When β = 1, the distribution is totally skewed to the right, and conse-

quently, for all i ∈ Sc, Pr (Wi;α,1 < −x) < Pr (Wi;α,β < −x) for any β < 1

and for any large enough x. Therefore, a similar argument to the one for

−1 ≤ β < 1 holds for β = 1. That is, Bn cannot be arbitrary large negative

for all 0 < α < 2 and −1 < β ≤ 1, which finishes the proof.

S2 Simulation Results

In this section, we present the setting and results for our simulations. Sim-

ilarly to Liu and Xie (2020), a collection of test scores, X, is drawn from

Nn(µ,Σ). All diagonal elements of the covariance matrix Σ are set as one.

There are four models for the covariance matrix Σ considered to represent

different dependence structures. Model 1 is the scheme where the individ-
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ual tests are independent. In Models 2, 3, and 4, the off-diagonal entries of

the covariance matrix Σ = (σij) are functions of ρ.

1. Independent. The correlation between each pair of underlying test

scores is zero, i.e., Σ = In.

2. AR(1) correlation. The correlation between a pair of underlying test

scores decays exponentially fast as their distances increase; σij = ρ|i−j|.

3. Exchangeable structure. The correlation between each pair of under-

lying test scores σij = ρ for all i 6= j.

4. Polynomial decay. The correlation between the ith and jth test scores,

σij, is set to be 1
0.7+|i−j|ρ . It should be noted that the correlation is a

decreasing function of ρ, unlike Models 2 and 3 above.

The simulation is conducted in R. qstable function in stabledist

package (Wuertz et al., 2016) is used to calculate quantiles of stable distri-

butions. We truncate too small and too large p-values at 10−6 and 1−10−6,

respectively. This is to avoid technical issues involved with too large quan-

tiles in absolute values in the qstable function. The number of Monte

Carlo replications is 1000. The number of individual tests in each Monte

Carlo replication is 40 (n = 40). The significance level is set to be 5%.

The parameter ρ that governs the strength of the dependencies is set to
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be 0.2, 0.4, 0.6, or 0.8. Note that larger ρ implies stronger dependencies in

Models 2 and 3, and weaker dependencies in Model 4. For the SCT, all

combinations of α = 0.1, 0.3, . . . , 1.9 and β = −0.8,−0.6, . . . , 1 are consid-

ered in addition to (α, β) = (1, 0), which is equivalent to the CCT. We also

consider Stouffer’s Z-score, which would correspond to the SCT with α = 2

and β = 0. Note that although Stouffer’s Z-score can be written in the

SCT form, Stouffer’s Z-score is not a part of the SCT family we consider in

our paper. The test statistics are calculated as equation (0.1) with equal

weights wi = 1/n.

When calculating the sizes, data are generated from a multivariate nor-

mal distribution with mean µ = 0. For powers, following one of the sparse

alternative setting in Liu and Xie (2020), randomly chosen 4 indices in

each replication are set to have mean 2.095662. This choice corresponds

to γ = log(4)/ log(40) ≈ 0.3758 and r = 2.095662/
√

2 log(40) ≈ 0.5953 so

that µi =
√

2r log n = 2.095662 and [nγ] = 4. Note that (
√
r +
√
γ)2 ≈

1.917 > max(α, 1) for all αs considered in our simulation, satisfying Part

3 of Assumption 4. However, Part 2 of Assumption 4 does not hold for

α > 1/(2γ) ≈ 1.33. For raw powers, the cutoff values are taken directly

from the corresponding stable distributions. For the size-adjusted pow-

ers, 1000 Monte Carol replications are first drawn under the global null
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Figure 1: Sizes, raw powers and size-adjusted powers of Model 1 where tests are independent. Lines

indicate the SCT with different αs and βs. Red and black dots represent the CCT (SCT with α = 1

and β = 0) and Stouffer’s Z-score, respectively.

hypothesis. Combined test statistics are calculated for each Monte Carlo

replication. The simulation-based cutoff for each method is determined as

the 95% quantile of the 1000 test statistics. After that, another set of 1000

Monte Carlo replications is drawn under the sparse alternative. The pro-

portion of test statistics that are greater than the simulation-based cutoffs

is the size-adjusted powers.

Figures 1-4 present the sizes, raw powers, and size-adjusted powers for

different αs and βs under the four models. Red dots indicate the CCT,

which corresponds to the SCT with α = 1 and β = 0. Black dots indicate

Stouffer’s Z-scores. The black solid lines in the size plots represent the

nominal significance level 0.05.
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Figure 2: Sizes, raw powers and size-adjusted powers of Model 2 where tests are correlated with AR(1)

correlation structures with different ρs. Lines indicate the SCT with different αs and βs. Red and black

dots represent the CCT (SCT with α = 1 and β = 0) and Stouffer’s Z-score, respectively.
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Figure 3: Sizes, raw powers and size-adjusted powers of Model 3 where tests are correlated with ex-

changeable correlation structures with different ρs. Lines indicate the SCT with different αs and βs.

Red and black dots represent the CCT (SCT with α = 1 and β = 0) and Stouffer’s Z-score, respectively.
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Figure 4: Sizes, raw powers and size-adjusted powers of Model 4 where tests are correlated as polynomial

decayed correlation structures with different ρs. Lines indicate the SCT with different αs and βs. Red

and black dots represent the CCT (SCT with α = 1 and β = 0) and Stouffer’s Z-score, respectively.
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