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Abstract: Suppose one is interested in estimating causal effects, in the presence of

potentially unmeasured confounding using a valid instrumental variable. This study

investigates the problem of making inferences about the average treatment effect

when data are fused from two separate sources. Here, one data source contains

information on the treatment and the other contains information on the outcome,

while values for the instrument and a vector of baseline covariates are recorded in

both. We provide a general set of sufficient conditions under which the average

treatment effect is nonparametrically identified from the observed data law induced

by data fusion, even when the data are from two heterogeneous populations, and

derive the efficiency bound for estimating this causal parameter. For inference, we

develop both parametric and semiparametric methods, including a multiply robust

and locally efficient estimator that is consistent, even under partial misspecification

of the observed data model. We illustrate the methods using simulations and an

application on public housing projects.

Key words and phrases: Multiple robustness, two-sample inference, unmeasured

confounding.

1. Introduction

The instrumental variable method is widely used in the health and social

sciences for the identification and estimation of causal effects in the presence

of potentially unmeasured confounding (Bowden and Turkington (1990); Robins

(1994); Angrist, Imbens and Rubin (1996); Greenland (2000); Wooldridge (2010);

Hernán and Robins (2006); Didelez, Meng and Sheehan (2010)). A valid instru-

mental variable Z is a pre-exposure variable that (a) is associated with treatment

D, (b) is independent of any unmeasured confounder U of the exposure-outcome

association, and (c) has no direct causal effect on the outcome Y , conditional

on a set of measured baseline covariates X. The instrumental variable approach

has a longstanding tradition in econometrics, going back to the original works
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of Wright (1928) and Goldberger (1972) in the context of linear structural mod-

eling; see Wooldridge (2010), Clarke and Windmeijer (2012), Baiocchi, Cheng

and Small (2014), and Swanson et al. (2018) for more recent reviews. Under a

correct specification of the linear structural equation models, and assuming an

absence of baseline covariates, the conventional instrumental variable estimand of

the average treatment effect is the population moment ratio cov(Z, Y )/cov(Z,D).

However, in many empirical scenarios, only information on (Y, Z,X) is avail-

able from the primary population of interest. Angrist and Krueger (1992) and

Arellano and Meghir (1992) showed that the two sets of moments can be esti-

mated from two separate sources by leveraging information on (D,Z,X) from

an auxiliary population, a method known as two-sample instrumental variable

estimation. Furthermore, Klevmarken (1982) and Angrist and Krueger (1995)

introduced a two-sample two-stage least squares estimation with a first-stage re-

gression for the treatment model based on the auxiliary sample; see Ridder and

Moffitt (2007) and Angrist and Pischke (2008) for reviews. This methodology

has since been widely applied in econometrics and social sciences (Inoue and

Solon (2010)), and more recently in two-sample Mendelian randomization stud-

ies to estimate causal relationships using genetic factors as instruments (Pierce

and Burgess (2013); Gamazon et al. (2015); Lawlor (2016); Zhao et al. (2018,

2019)). As noted by Zhao et al. (2019), the aforementioned methods typically

assume that the auxiliary data are also sampled from the primary population.

In addition, linear structural models impose strong homogeneity assumptions on

the treatment effect. Thus, a robust analytic framework for the instrumental

identification and estimation of causal effects under data fusion remains of keen

interest in observational studies. Graham, Pinto and Egel (2016) identified the

two-sample instrumental variable problem as a specific example of a general class

of data combination models, and extended the semiparametric efficiency theory

of Hahn (1998) and Chen, Hong and Tarozzi (2008) to this class of models. Re-

cent works have also made significant strides toward relaxing the assumptions for

identifying causal effects under data fusion (Pacini and Windmeijer (2016); Choi,

Gu and Shen (2018); Zhao et al. (2018); Buchinsky, Li and Liao (2018); Shu and

Tan (2019); Zhao et al. (2019); Pacini (2019)).

When full data on L = (Y,D,Z,X) are available from the primary popu-

lation of interest, Robins (1994), Imbens and Angrist (1994), Angrist, Imbens

and Rubin (1996), and Heckman (1997) formalized the instrumental variable ap-

proach under the potential outcome framework (Neyman (1923); Rubin (1974)),

which allows one to nonparametrically define the causal estimands of interest.

In this paper, we propose novel assumptions under which the average treatment



DATA COMBINATION WITH INSTRUMENTS 571

effect of D on Y in the primary population of interest can be uniquely and non-

parametrically identified from the observed data law induced by data fusion. To

estimate this identifying statistical functional, we develop a suite of parametric

and semiparametric estimators, including a multiply robust and locally efficient

one that remains consistent, even if the observed data model is partially misspec-

ified. We compare the proposed estimators both in theory and using simulations,

and investigate the efficiency and robustness of existing estimators.

2. Model

Suppose we are interested in estimating the average treatment effect of a

binary treatment D on outcome Y in a primary population of interest, which

is confounded by measured covariates X and unmeasured covariates U , using a

binary instrumental variable Z. However, we only observe {(Yi, Zi, Xi)
T , i =

1, . . . , np} from this population. As a remedy, suppose an additional sample

{(Di, Zi, Xi)
T , i = 1, . . . , na} is available from an auxiliary population, possibly

different from the primary population. Similarly to Graham, Pinto and Egel

(2016) and Shu and Tan (2019), we assume the following about the data source

mechanism.

Assumption 1 (Binomial sampling). The combined set of n = np + na units

are independent, and are drawn from either the primary population with a fixed

probability Q0 ∈ (0, 1) or the auxiliary population with probability 1−Q0.

Let Ri be an indicator variable, equal to one if the ith unit is drawn from the

primary population, and zero otherwise. By assumption 1, the combined set of

observed data {Oi = (Ri, RiYi, (1−Ri)Di, Zi, Xi)
T , i = 1, . . . , n} can be treated

as a random sample from a synthetic merged population. Let F (O) denote the

distribution of O, with density with respect to some dominating measure given

by

f(O) = q†R(1− q†)1−Rf(V |R = 1)Rf(V |R = 0)1−R×
f(Y |V,R = 1)Rf(D|V,R = 0)1−R,

(2.1)

where V = (Z,X) and q† = pr(R = 1). Let E(·) denote the expectation taken

with respect to this mixture distribution, and let π(z, x) = E(R|Z = z,X = x).

By Bayes’ rule,

f(z, x|R = 1) = f(z, x|R = 0)

{
1− q†

q†
π(z, x)

1− π(z, x)

}
.
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Let Yd, for d ∈ {0, 1}, denote the potential outcome that would be observed if D

were set to d, which is related to the observed data via the consistency assumption

Yd = Y if D = d. To achieve identification of ∆ ≡ E(Y1−Y0|R = 1) based on the

observed data law F (O) induced by data fusion, we make several assumptions

about the primary and auxiliary populations, discussed below.

2.1. Primary population

Suppose Z is a valid binary instrument that satisfies the following assump-

tions (Didelez and Sheehan (2007); Pearl (2009); Clarke and Windmeijer (2012)):

Assumption 2 (Instrument Relevance). Z 6⊥⊥ D|X,R = 1.

Assumption 3 (Instrument Independence). Z ⊥⊥ U |X,R = 1.

Assumption 4 (Exclusion Restriction). Y ⊥⊥ Z|D,X,U,R = 1.

Here, A ⊥⊥ B|C indicates conditional independence of A and B, given C

(Dawid (1979)). Instrument relevance ensures that Z is a correlate of the expo-

sure, even after conditioning on X, and instrument independence states that Z is

independent of all unmeasured confounders of the exposure-outcome association.

Exclusion restriction formalizes the assumption of no direct effect of Z on Y not

mediated by D. Furthermore, the assumption of no unmeasured confounding

given (X,U) can be stated as follows.

Assumption 5 (Latent Ignorability). Yd ⊥⊥ D|X,U,R = 1, for d ∈ {0, 1}
(Robins (1994)).

Assumptions 2–5 may be known to hold at the design stage when the in-

vestigator controls the treatment allocation, conditional on baseline covariates,

in double blind randomized trials. In observational studies, the potential in-

strumental variable may be viewed as being randomized through some natural

or quasi-experiment within levels of the observed covariates (Hernán and Robins

(2006)), although these assumptions are typically untestable without further con-

ditions. The exclusion restriction assumption 4 implies the following semipara-

metric structural models:

E(D | Z,X,U,R = 1) = g0(X,U) + g1(X,U)Z

E(Y | D,Z,X,U,R = 1) = h0(X,U) + h1(X,U)D,
(2.2)

where for k ∈ {0, 1}, gk(·) and hk(·) are arbitrary square-integrable functions of

(X,U) that are only restricted by natural features of the model, for example,

such that the exposure mean is bounded between zero and one. Note that for
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binary (Z,D), model (2.2) is saturated, because there are no restrictions on the

corresponding data laws f(D|Z,X,U,R = 1) and f(Y |D,Z,X,U,R = 1), except

for the implications of assumption 4. Under assumptions 4 and 5, h1 (x, u) =

E(Y1−Y0|X = x, U = u,R = 1) encodes the conditional average treatment effect

within levels of (X,U); hence, ∆ = E {h1 (X,U) |R = 1} . The linear structural

equation model (Wright (1928); Goldberger (1972))

E(D | Z,X,U,R = 1) = θ0 + θ1X + θ2U + θ3Z

E(Y | D,Z,X,U,R = 1) = β0 + β1X + β2U + ∆D
(2.3)

is a special case of (2.2), where the function h1(X,U) is reduced to the scalar pa-

rameter of interest ∆ encoding the homogeneous average treatment effect within

levels of (X,U).

Even when full data on L = (Y,D,Z,X) are available from the primary

population, it is well known that while a valid instrumental variable satisfying

assumptions 2–5 suffices to obtain a valid statistical test of the sharp null hypoth-

esis of no individual causal effect, the population average treatment effect ∆ is

itself not uniquely identified from the law F (L|R = 1) (Balke and Pearl (1997)).

Adding a further monotonicity assumption about the effect of Z on D, Angrist,

Imbens and Rubin (1996) showed that the local average treatment effect (LATE)

among compliers can be identified nonparametrically. This framework has been

further generalized in recent years by Abadie, Angrist and Imbens (2002), Abadie

(2003), Carneiro, Heckman and Vytlacil (2003), Tan (2010a), Ogburn, Rotnitzky

and Robins (2015), and Kennedy, Lorch and Small (2019). Zhao et al. (2019)

discussed the identification of LATE in two-sample instrumental variable anal-

yses. However, because the population of compliers is itself nonidentifiable in

general, ∆ is arguably still a causal parameter of interest in many observational

studies (Robins and Greenland (1996); Imbens (2010)). Wang and Tchetgen Tch-

etgen (2018) proved the identifiability of ∆ from the law F (L|R = 1) under the

additional assumption

g1(X,U) = g1(X) or h1(X,U) = h1(X), almost surely; (2.4)

that is, at least one of these effects is not allowed to vary with U . We show that

∆ can be identified from F (O), provided that X is sufficiently rich that the effect

of exposure on the outcome is uncorrelated with the effect of the instrument on

the exposure conditional on X (Cui and Tchetgen Tchetgen (2019)). This can

be achieved, even if X does not include all confounders of the effect of D on Y .
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Assumption 6 (Orthogonality). cov{g1(X,U), h1(X,U)|X,R = 1} = 0, almost

surely.

Assumption 6 may hold under certain data-generating mechanisms, even if

(2.4) does not, and is guaranteed to hold under the sharp causal null effect. In

addition, we require that every unit within levels of the observed covariates have

some chance of receiving each level z ∈ {0, 1} of the instrument.

Assumption 7 (Positivity). 0 < pr(Z = 1|X,R = 1) < 1, almost surely.

2.2. Auxiliary population

We make the following assumptions about the auxiliary population.

Assumption 8 (Support overlap). 0 < π(Z,X) < 1, almost surely.

Assumption 9 (Propensity score equality). pr(D = 1|Z,X,R = 0) = pr(D =

1|Z,X,R = 1), almost surely.

Assumption 8 ensures that the support of the common variables (Z,X) in

the primary population is contained within that in the auxiliary population and,

together with assumption 9, allows us to identify the treatment propensity score

τ(z, x) = pr(D = 1|Z = z,X = x,R = 1) based on F (O). Assumption 9

requires only predictive invariance for the treatment between the two heteroge-

neous populations, and we do not require the stronger condition of “structural

invariance” (e.g., assumptions 3–6 also hold in the auxiliary population), which

is related to the notions of “invariant prediction” (Peters, Bühlmann and Mein-

shausen (2016)), “autonomy” (Haavelmo (1944)), and “stability” (Pearl (2009))

as discussed in Zhao et al. (2019).

2.3. Nonparametric identification

We show that under assumptions 1–9, ∆ is a functional on the nonparametric

observed data statistical modelMnp = {F (O) : F (O) unrestricted} of all regular

laws F (O) that satisfy the positivity and support overlap assumptions. In the

following, let λ(z|x) = pr(Z = z|X = x,R = 1) denote the probability density or

mass function of Z given X in the primary population.

Theorem 1. Under assumptions 1–9,

∆ = E

{
R

q†
(−1)1−Z

λ(Z|X)

Y

[τ(1, X)− τ(0, X)]

}
. (2.5)

Remark 1. When Y is continuous and D and Z are discrete of finite domain,

the canonical instrumental variable assumptions 3 and 4 impose no constraints on
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the law F (L|R = 1) (Bonet (2001)). In addition, assumption 9 is akin to coars-

ening at random, which leaves the observed data law F (O) unrestricted (Robins

(1997); van der Laan and Robins (2003)). When Y is also discrete, assumptions

3 and 4 impose inequality constraints that do not restrict the parameter space of

F (L|R = 1) locally if the true observed data law lies in the interior of the space

defined by these constraints (Wang, Robins and Richardson (2017); Wang and

Tchetgen Tchetgen (2018)).

Remark 2. Although nuisance parameters such as {λ(·), τ(·)} can, in principle,

be estimated nonparametrically using methods such as sieve estimation (Hahn

(1998); Hirano, Imbens and Ridder (2003); Chen, Hong and Tarozzi (2008)), we

focus on parametric working models, owing to the curse of dimensionality when X

is of moderate or high dimension (Robins and Ritov (1997)). Because one cannot

be confident that any of these models is correctly specified, we also propose an

estimator of ∆ that is robust to misspecifications of these models.

Remark 3. The form of the identification formula (2.5) in Theorem 1 suggests

that ∆ may be identified as long as one has access to consistent estimators of

the propensity score τ(z, x) in the primary population. The utility of the sample

from the auxiliary population lies in the estimation of τ(z, x) under Assumption

9, which is not testable because D is not observed in the sample from the pri-

mary population. On the other hand, ∆ may be identified without the need for

an auxiliary sample if the propensity score is known by design in the primary

population.

3. Estimation

3.1. Maximum likelihood estimation

Let Ê(·) denote the empirical mean operator Ê{h(O)} = n−1
∑n

i=1 h(Oi),

and let (α̂, ψ̂, ξ̂, θ̂) denote the maximum likelihood estimators of (α,ψ, ξ, θ) that

index the parametric models π(z, x;α), λ(z|x;ψ), τ(z, x; ξ), and f(y|z, x,R =

1; θ) = f(Y = y|Z = z,X = x,R = 1; θ) for the outcome conditional density

specified by the analyst. Note that under assumption 9, τ(z, x) = pr(D = 1|Z =

z,X = x,R = 0) so that inferences on ξ can be based on the auxiliary sample.

By taking an iterated expectation of (2.5) with respect to (Z,X), the plug-in

estimator of ∆ is

∆̂mle = Ê

{
1

q̂

(−1)1−Z

λ(Z|X; ψ̂)

π(Z,X; α̂)E(Y |Z,X,R = 1; θ̂)

τ(1, X; ξ̂)− τ(0, X; ξ̂)

}
, (3.1)
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where the distribution of (Z,X) is estimated using its empirical distribution and

q̂ = Ê(R). It is clear that the consistency of ∆̂mle relies on correct specifications

of the models π(z, x;α), λ(z|x;ψ), τ(z, x; ξ), and f(y|z, x,R = 1; θ). In the

following, we propose several semiparametric estimators of ∆ that do not require

these models to be fully specified. We proceed by first noting the following

decomposition of the outcome conditional mean model.

Lemma 1. Under assumptions 2–6,

E(Y |Z = z,X = x,R = 1) = H(x)τ(z, x) + ω(x), (3.2)

where ω(x) ≡ cov[g1 (X,U) , h1 (X,U) |X = x,R = 1]+E[h0(X,U)|X = x,R = 1]

and H(x) ≡ E[h1(U,X)|X = x,R = 1] is the treatment effect curve conditional

on the observed covariates. Therefore, ∆ = E{H(X)|R = 1}.

3.2. Semiparametric estimation

Consider the following submodels ofMnp, in which smooth parametric mod-

els (indexed by finite-dimensional parameters) for certain components of the ob-

served data law F (O) are correctly specified:

Definition 1.

M1: The models λ(z|x;ψ) and τ(z, x; ξ) are correctly specified, such that λ(z|x;

ψ†) = λ(z|x) and τ(z, x; ξ†) = τ(z, x), for some unknown values (ψ†, ξ†);

M2: The models H(x; γ), ω(x; η) and τ(z, x; ξ) are correctly specified, such that

H(x; γ†) = H(x), ω(x; η†) = ω(x) and τ(z, x; ξ†) = τ(z, x), for some un-

known values (γ†, η†, ξ†);

M3: The models H(x; γ), ω(x; η) and π(z, x;α) are correctly specified, such

that H(x; γ†) = H(x), ω(x; η†) = ω(x) and π(z, x;α†) = π(z, x), for some

unknown values (γ†, η†, α†).

We propose semiparametric estimators for ∆ that are consistent and asymp-

totically normal in each of the above submodels. Our first estimator ∆̂1 of ∆ is

motivated by identification formula (2.5), which does not require a specification

of an outcome model for f(y|z, x,R = 1), and solves

0 = Ê
{
µ1(O; ∆, ψ̂, ξ̂, q̂)

}
≡ Ê

{
R

q̂

(−1)1−Z

λ(Z|X; ψ̂)

Y

[τ(1, X; ξ̂)− τ(0, X; ξ̂)]
−∆

}
.

(3.3)
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Remark 4. The models for {λ(·), τ(·)} can be specified and estimated without

access to the outcome data. Estimating ∆ using ∆̂1 could therefore be considered

part of a more objective analysis design in the sense that it mitigates the potential

for “data-dredging” exercises when the outcome model is fully specified (Rubin

(2007)).

We propose two additional estimators of ∆, which do not require a model

for λ(·), but instead posit models H(X; γ) and ω(X; η) for the components of

the outcome conditional mean (3.2). Consider the semiparametric estimators ∆̂2

and ∆̂3 that solve

0 = Ê {µj(O; ∆, γ̂j , q̂)} ≡ Ê
{
R

q̂
[H(X; γ̂j)−∆]

}
, (3.4)

for j = 1, 2, respectively, where the estimators γ̂2 and γ̂3 are constructed in

such a way such that they are consistent in the submodels M2 and M3, re-

spectively, as follows. Let v(X) and w(X) be analyst-specified vector functions

of the same dimensions as γ and η, respectively, for example {v(X), w(X)} =

{∂H(X; γ)/∂γ, ∂ω(X; η)/∂η}, and let Gv,w(X,Z) = {vT (X)Z,wT (X)}T , where

AT denotes the transpose of A. Then, let (γ̂2, η̂2) be the joint solution to the

estimating equation

0 = Ê
{
Gv,w(X,Z)

{
R[Y −H(X; γ)τ(Z,X; ξ̂)− ω(X; η)]

−(1−R)H(X; γ)[D − τ(Z,X; ξ̂)]
}}
,

and let (γ̂3, η̂3) jointly solve

0 = Ê

{
Gv,w(X,Z)

{
R[Y − ω(X; η)]− (1−R)π(Z,X; α̂)

1− π(Z,X; α̂)
H(X; γ)D

}}
.

Lemma 2. Under standard regularity conditions (Newey and McFadden (1994)),

the estimators ∆̂1, ∆̂2, and ∆̂3 are consistent and asymptotically normal in sub-

models M1, M2, and M3, respectively.

Remark 5. To ensure that the proposed estimators of ∆ lie between −1 and 1 in

the case of binary Y , following Wang and Tchetgen Tchetgen (2018), we specify

a model such as

H(X; γ) = tanh(γTX) =
exp(2γTX)− 1

exp(2γTX) + 1
,

which guarantees that H(X; γ) ∈ [−1, 1]. In addition, instead of the decom-

position (3.2) for continuous Y , Wang and Tchetgen Tchetgen (2018) provide a
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variation-independent decomposition of the components in the likelihood {pr(Y =

1|Z,X,R = 1),pr(D = 1|Z,X,R = 1)} for binary Y ; we adopt a similar estima-

tion strategy for these components.

3.3. Multiply robust estimation

To motivate the multiply robust estimator, we consider the efficient esti-

mation of ∆ in Mnp. Any regular and asymptotically linear estimator ∆̂ has an

associated influence function µ(O; ∆), such that ∆̂−∆ = Ê{µ(O; ∆)}+op(n−1/2)

(Bickel et al. (1993)). Therefore, it suffices to identify µ(O; ∆) with the lowest

variance, which is the efficient influence function.

Theorem 2. The efficient influence function for ∆ in Mnp is

µeff(O; ∆) =

(−1)1−Z

{
(R/q†)[Y −H (X) τ(Z,X)− ω(X)]

−((1−R)/q†)(π(Z,X)/(1− π(Z,X)))H (X) [D − τ(Z,X)]

}
λ(Z|X) [τ(1, X)− τ(0, X)]

+
R

q†
{H (X)−∆},

(3.5)

so that the semiparametric efficiency bound for estimating ∆ in Mnp is E{µ2
eff(

O; ∆)}.

We use µeff(·) as an estimating function and substitute in estimates of the

nuisance parameters to estimate the causal effect ∆. This method of constructing

estimating equations from influence functions is used widely; see, for example,

Bang and Robins (2005), Tan (2006b), Tchetgen Tchetgen, Robins and Rotnitzky

(2009), Sun et al. (2018), Sun and Tchetgen Tchetgen (2018), and Wang and

Tchetgen Tchetgen (2018). Consider (γ̃, η̃), which jointly solve

0 = Ê

{
Gv,w(X,Z)

{
R[Y −H(X; γ)τ(Z,X; ξ̂)− ω(X; η)]

− (1−R)π(Z,X; α̂)

1− π(Z,X; α̂)
H(X; γ)[D − τ(Z,X; ξ̂)]

}}
.

(3.6)

Note that the estimator γ̃ is doubly robust in the sense that it is consistent

for γ† in the model M2 ∪M3, which is necessary for the multiply robust result

stated below.

Lemma 3. Under standard regularity conditions (Newey and McFadden (1994)),
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the estimator ∆̂mul that solves

0 = Ê
{
µeff(O; ∆, η̃, γ̃, ψ̂, ξ̂, α̂, q̂)

}
(3.7)

is consistent and asymptotically normal in the union model Munion = ∪3
j=1Mj

(multiply robust). Moreover, ∆̂mul attains the semiparametric efficiency bound in

Mnp (and, following the general results of Robins and Rotnitzky (2001), also in

Munion) at the intersection submodel {∩3
j=1Mj}, where all working models are

correctly specified (locally efficient).

The asymptotic variance formula of each estimator described in this section

follows from standard M-estimation theory (Newey and McFadden (1994)). For

inferences based on the proposed semiparametric estimators of ∆ in both the

simulation study and the application (sections 5 and 6, respectively), the con-

sistent estimation of the asymptotic variance is described in the Supplementary

Material.

4. Comparison with Existing Estimators

Suppose that E(U |Z = z,X = x,R = 1) = E(U |X = x,R = 1) is linear in

x; then, the linear structural models (2.3) yield the observed data models

τlinear(Z,X; ξ) = ξT (1, Z,X)T ;

ωlinear(X; η) = ηT (1, X)T ;

E(Y | Z,X,R = 1) = ∆τlinear(Z,X; ξ) + ωlinear(X; η).

We also have that H (X) is indexed by the scalar parameter of interest ∆. Using

the notation in section 3, it can be shown that the two-sample instrumental

variable estimator (Inoue and Solon (2010)) (∆̂tsiv, η̂tsiv) solves

0 = Ê

{
Gv,w(X,Z)

{
R[Y − ωlinear(X; η)]− (1−R)q̂

1− q̂
∆D

}}
.

Inferences based on the two-sample instrumental variable estimator can be viewed

as special instances of inferences obtained under a particular specification of sub-

modelM3, with the above parametric models for {H(·), ω(·)} and π(z, x;α) = q,

where q ∈ R; for example, the marginal distribution of (Z,X) is the same in the

primary and auxiliary populations. Therefore, ∆̂tsiv will fail to be consistent for

∆ if any of the parametric models in M3 is incorrectly specified. Furthermore,

note that the two-sample two-stage least squares estimator (∆̂ts2sls, η̂ts2sls) solves



580 SUN AND MIAO

0 = Ê

{
Gv,w(X,Z)

{
R[Y −∆τlinear(Z,X; ξ̂)− ωlinear(X; η)]

−(1−R)q̂

1− q̂
∆[D − τlinear(Z,X; ξ̂)]

}}
,

which is a special case of the doubly robust estimating equation (3.6). It follows

that ∆̂ts2sls is consistent for ∆ in M2 ∪ M3. Even when the true marginal

distribution of (Z,X) differs between the primary and the auxiliary populations,

∆̂ts2sls is consistent, provided that the linear propensity score model τlinear(·) is

correctly specified. We can also show via semiparametric efficiency theory that

∆̂ts2sls is asymptotically more efficient than its nondoubly robust counterpart

∆̂tsiv at the intersection submodel M2 ∩M3 (Tan (2007); Tsiatis (2007)). The

above properties are noted by Inoue and Solon (2010).

Shu and Tan (2019) proposed a class of doubly robust estimators (∆̂dr, η̂dr)
T

that solve

0 = Ê

{
Gv,w(X,Z)

{
R[Y −∆τ(Z,X; ξ̂)− ωlinear(X; η)]

−(1−R)π(Z,X; α̂)

1− π(Z,X; α̂)
∆[D − τ(Z,X; ξ̂)]

}}
,

where users can freely specify models for {τ(·), π(·)}. Graham, Pinto and Egel

(2016) introduced a doubly robust auxiliary-to-study tilting estimator under re-

stricted nuisance model specifications for the efficient estimation of data combi-

nation models. Inferences based on ∆̂dr can be viewed as special instances of

inferences obtained under a particular specification of submodel M2 ∪M3, with

H (X) = ∆ and ωlinear(·). In constrast to ∆̂mul, ∆̂dr will generally fail to be

consistent for ∆ outside the union model M2 ∪ M3. Note that a generalized

version of ∆̂dr that accommodates arbitrary parametric model specifications in

M2 ∪M3 is given by

∆̂dr2 = Ê

{
RH(X; γ̃)

q̂

}
, (4.1)

where γ̃ solves (3.6).

5. Simulation Study

We investigate the finite-sample properties of the proposed semiparametric

estimators under a variety of settings. For the primary population, the base-

line covariates X = (X1, X2, X3)T are mutually independent and marginally dis-
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tributed as U(0, 1); (Y,A,Z, U) is distributed as follows:

U |X ∼ TN{ϑTX, 1, (ϑTX − 1, ϑTX + 1)};
Z|X ∼ Bernoulli {p = {1 + exp [−ψT (1, XT )T ]}−1};

D|Z,X,U ∼ Bernoulli {p = {1 + exp [−ξT (1, Z,XT )T ]}−1 + 0.2[U − ϑTX]};
Y |D,X,U ∼ N{γT (1, XT )TD + 1.25×~1TX + 6U, 1},

where TN{µ, σ2, (l, u)} denotes a truncated normal distribution with support

[l, u], ϑ = (0.5,−0.5, 0)T , ψ = (−1, 0.5, 0.5, 0.5)T , ξ = (−1.3, 1.2, 0.5,−0.25 −
0.25)T , γ = (2, 0.5, 0.5, 0.5)T , and ~1 = (1, 1, 1)T . For the auxiliary popula-

tion, X = (X1, X2, X3)T are mutually independent and marginally distributed

as TN{0.5, 1, (0, 1)}, Z|X ∼ Bernoulli {p = {1 + exp [−ψT (1, XT )T ]}−1}, and

D|Z,X ∼ Bernoulli {p = {1 + exp [−ξT (1, Z,XT )T ]}−1}; the remaining parts of

the data law are left unrestricted. For each simulation replicate of total sam-

ple size n, we generate np ∼ binomial(n, p = 0.7), followed by an independent

and identically distributed (i.i.d.) sample of size np from the primary popu-

lation with only realizations of (Y, Z,X) recorded, and another i.i.d. sample

of size na = n − np from the auxiliary population with only realizations of

(D,Z,X) recorded. The two samples are then merged, and an indicator vari-

able R is introduced, equal to one or zero if the unit is drawn from the primary

or auxiliary population, respectively. It can be verified that the above data-

generating mechanism satisfies assumptions 1–9, and that the corresponding true

observed data models are λ(1|x;ψ) = {1 + exp [−ψT (1, xT )T ]}−1, τ(z, x; ξ) =

{1 + exp [−ξT (1, z, xT )T ]}−1, H(x; γ) = γT (1, xT )T , ω(x; η) = ηT (1, xT )T , and

π(z, x;α) = {1 + exp [−αT (1, z, xT , x2T )T ]}−1, where x2 = (x2
1, x

2
2, x

2
3)T (by

Bayes’ rule). We are interested in estimating the average treatment effect ∆ =

E{γT (1, XT )T |R = 1} = 2.75. The four semiparametric estimators ∆̂1, ∆̂2, ∆̂3,

and ∆̂ mul are implemented using v(x) = w(x) = (1, xT )T as index functions.

Similarly to Kang and Schafer (2007), we evaluate the performance of the

proposed estimators in situations where some models may be misspecified by

considering the transformed variables V ∗ = (Z∗, X∗1 , X
∗
2 , X

∗
3 )T , where Z∗ ∼

Bernoulli{p = Φ(−2 + 3Z)}, X∗1 = exp(−0.5X1) + ε1, X∗2 = X2/[1 + exp(Z)] + ε2,

and X∗3 = (X1X3)3 + ε3; Φ(·) is the cumulative distribution function of the stan-

dard normal distribution, and the error terms are generated as (ε1, ε2, ε3)T ∼
N(0, I3). Then, a particular component model is misspecified when the analyst

uses V ∗ instead of V in the working model. Specifically, we report the results

from the following five scenarios:
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Table 1. Monte Carlo results of the proposed semiparametric estimators under different
scenarios.

Model
Estimator

∆̂1 ∆̂2 ∆̂3 ∆̂mul

|Bias| (SE)
M′

0 0.01 (0.29) 0.01 (0.29) 0.08 (0.33) 0.04 (0.31)
M′

1 0.01 (0.29) 0.65 (0.34) 0.74 (0.37) 0.05 (0.30)
M′

2 0.67 (0.36) 0.01 (0.32) 0.11 (0.41) 0.05 (0.33)
M′

3 1.10 (0.46) 1.20 (0.48) 0.09 (0.34) 0.06 (0.33)
M′

4 1.30 (0.47) 2.20 (0.57) 0.77 (0.44) 0.72 (0.39)
RMSE

M′
0 0.09 0.09 0.11 0.10

M′
1 0.08 0.54 0.68 0.09

M′
2 0.58 0.10 0.18 0.11

M′
3 1.50 1.70 0.12 0.11

M′
4 1.80 5.00 0.78 0.67

M′0: All models are correct;

M′1: Only models λ(z|x;ψ) and τ(z, x; ξ) are correct;

M′2: Only models τ(z, x; ξ), H(x; γ) and ω(x; η) are correct;

M′3: Only models π(z, x;α), H(x; γ) and ω(x; η) are correct;

M′4: All models are incorrect.

All simulation results are based on 1,000 Monte Carlo runs of n = 10,000 units

each. Table 1 summarizes the simulation results. In agreement with theory, ∆̂1

has small bias inM′0 andM′1, ∆̂2 has small bias inM′0 andM′2, ∆̂3 has small bias

in M′0 and M′3, and ∆̂mul has small bias in M′l, for l = 0, 1, 2, 3. In M′0, where

all models are correct, ∆̂1 and ∆̂2 have smaller Monte Carlo standard errors than

that of ∆̂3, which involves weighting through the data source propensity score

π(z, x).

6. Application

Currie and Yelowitz (2000) studied the effect of public housing participation

on housing quality and educational attainment, showing that project participa-

tion is associated with poorer outcomes, based on data from the Survey of Income

and Program Participation (SIPP). However, many unobserved factors, such as

social ties, are likely to affect both project participation and the outcomes. As

such, the authors suspect that failing to control for this source of endogeneity
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would bias the estimated causal effects of living in projects downwards, because

families in projects may be more likely to live in substandard housing in any case,

and their children may be more likely to experience negative outcomes. Lever-

aging on the sex composition of children as an instrumental variable for project

participation, Currie and Yelowitz (2000) use two-sample instrumental variable

methods to combine information from the 1990 Census and the 1990—1995 waves

of the March Current Population Survey (CPS). Their findings show that project

households are less likely to suffer from overcrowding or live in high-density com-

plexes, and project children are less likely to have been held back. Their study is

important, because the results overturn the stereotype that project participation

is harmful in terms of living conditions and children’s educational attainment.

In this analysis, we apply the proposed methods to estimate the causal effect

of project participation (D) on reported monthly rental payments (Y ) in the SIPP

population; here reported rent is viewed as a proxy for housing quality (Currie

and Yelowitz (2000)). The binary instrumental variable Z takes the value one if

a family has a boy and a girl, and zero if both children are boys or girls. Families

with two children of opposite genders are eligible for three-bedroom apartments as

opposed to two-bedroom apartments, and therefore are more likely to participate

in the housing project, although there is little reason to expect that the children’s

sex composition will directly affect Y . In line with the Currie and Yelowitz (2000)

study, the vector of baseline covariates X includes the household head’s gender,

age, race, education, marital status, and the number of boys in the family. We

specify main effects models for {λ(·), τ(·), π(·)} with logistic links. In addition,

following Shu and Tan (2019), we add an additional interaction term involving

household head information to the linear predictor function of the model for

π(·) in order to improve the covariate balance, and specify ω(x; η) = ηT (1, xT )T ,

H(x; γ) = ∆. The analysis results based on n1 = 116,901 renters’ complete

records for (Y,Z,X) from the 1990 Census of SIPP (R = 1) and n0 = 10,382

renters’ complete records for (D,Z,X) from CPS (R = 0), for a total sample size

of n = 127,283, are summarized in Table 2.

The two-sample two-stage least squares estimate of 0.3717 agrees with the

point estimate presented in Table 4 of Currie and Yelowitz (2000), although the

analytic standard error of 0.1124 is larger than the value of 0.0589 reported by

the original study, because the former takes into account the variability associ-

ated with the first-stage estimation. While the point estimates of the proposed

estimators are all larger than 0.3717, the point estimate of ∆̂mul is closest to that

of ∆̂1, which suggests that the models for {λ(·), τ(·)} in this illustrative analysis

may be specified nearly correctly; Tchetgen Tchetgen and Robins (2010) describe
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Table 2. Estimates of the effect of public housing project participation on reported
monthly rental (divided by 1,000 US dollars).

point estimate standard error 95% Wald CI

∆̂ts2sls 0.3717 0.1124 (0.1513, 0.5920)

∆̂1 0.7650 0.3442 (0.0903, 1.4397)

∆̂2 0.3790 0.1162 (0.1513, 0.6068)

∆̂3 0.4999 0.2533 (0.0034, 0.9964)

∆̂mul 0.9155 0.4126 (0.1069, 1.7242)

a formal specification test to detect which of the baseline models is correct un-

der the union modelMunion. The point estimate of 0.9155 for ∆̂mul also suggests

that the causal effect of housing project participation on improving household liv-

ing conditions is probably larger than the value reported in Currie and Yelowitz

(2000), because ∆̂ts2sls is, in general, no longer consistent outside the union model

M2 ∪M3.

7. Discussion

Suppose we observe data on (D,Z,X) from the primary population of interest

and fuse it with data on (Y,Z,X) from an auxiliary source; here, Ri is equal to

either zero or one, depending on whether the ith unit is drawn from the primary

or the auxiliary population, respectively. In this case, it is clear that an inference

about the identifying functional

∆ = E

{
1−R
1− q†

(−1)1−Z

λ(Z|X)

Y

[τ(1, X)− τ(0, X)]

}
is not possible under submodelM1, because Y is not observed from the primary

population. Nonetheless, an inference for ∆ is still possible under M2 ∪M3 if

we replace assumption 9 with predictive invariance for the outcome.

Assumption 10. E(Y |Z,X,R = 0) = E(Y |Z,X,R = 1), almost surely.

Indeed, it can be shown that under assumptions 1–8 and 10, the estimator

∆̃dr3 = Ê

{
(1−R)H(X; γ̃)

1− q̂

}
, (7.1)

where γ̃ solving (3.6) is consistent and asymptotically normal in the union model

M2 ∪M3. Note that because ∆̂tsiv, ∆̂ts2sls, and ∆̂dr typically specify H (x; γ) =

∆, which does not depend on values for the baseline covariates, one can be ag-

nostic as to which of the two samples is drawn from the primary population, as
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long as assumptions 1–10 all hold.

There are several improvements and extensions for future work. Multiple

valid instrumental variables can be incorporated by adopting a standard general-

ized method of moments approach (Hansen (1982)), and the proposed estimators

can be improved in terms of efficiency (Tan (2006a, 2010b)) and bias (Vermeulen

and Vansteelandt (2015)). In this study, we focused on the canonical case of

binary Z and D. Thus, an extension of the proposed methodology to the case

of general Z or D is an interesting topic for future research. It will also be of

interest to investigate the use of negative controls under data fusion to mitigate

unmeasured confounding and identify causal effects, which has gained increasing

recognition and popularity in recent years (Miao and Tchetgen Tchetgen (2017);

Shi, Miao and Tchetgen Tchetgen (2018)).

A multiply robust estimation typically entails postulating various parametric

models for the nuisance parameters (Molina et al. (2017)). Chernozhukov et al.

(2018) showed that a n−1/2-consistent estimation of low-dimensional parameters

of interest, based on nonparametric efficient scores such as µeff(O; ∆), is possible

when all the nuisance parameters are estimated consistently with sufficiently fast

rates, even when the complexity of the nuisance model space is no longer limited

by classical settings. In future research, we plan to investigate estimation and

inference for the average treatment effect under data fusion when various flexible

and highly data-adaptive machine learning methods are used to estimate the

nuisance parameters.

Supplementary Material

The online Supplementary Material includes the proofs of the lemmas and

theorems, as well as details on asymptotic variance estimation for the proposed

estimators.
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