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Abstract: Personalized treatment aims at tailoring treatments to individual charac-

teristics. An important step is to understand how a treatment effect varies across in-

dividual characteristics, known as the conditional average treatment effect (CATE).

In this study, we make robust inferences of the CATE from observational data,

which becomes challenging with a multivariate confounder. To reduce the curse

of dimensionality, while keeping the nonparametric advantages, we propose dou-

ble dimension reductions that achieve different goal. First, we identify the central

mean subspace of the CATE directly using dimension reduction in order to detect

the most accurate and parsimonious structure of the CATE. Second, we use a non-

parametric regression with a prior dimension reduction to impute counterfactual

outcomes, which helps to improve the stability of the imputation. We establish the

asymptotic properties of the proposed estimator, taking into account the two-step

double dimension reduction, and propose an effective bootstrapping procedure with-

out bootstrapping the estimated central mean subspace to make valid inferences. A

simulation and applications show that the proposed estimator outperforms existing

competitors.

Key words and phrases: Augmented inverse probability weighting, kernel smooth-

ing, matching, U-statistic, weighted bootstrap.

1. Introduction

Because of patient heterogeneity in response to various aspects of treat-

ment, the paradigm of biomedical and health policy research is shifting from

a “one-size-fits-all” treatment approach to one of precision medicine (Hamburg

and Collins (2010)). Toward that end, an important step is to understand how

a treatment effect varies across patient characteristics, known as the conditional

average treatment effect (CATE) (Rothwell (2005)). A large body of literature

focuses on modeling the treatment-specific prognostic score (e.g., Chakraborty,

Murphy and Strecher (2010); Zhao et al. (2011); Song et al. (2017)), because

the CATE is simply the difference between the treated and the control prog-

nostic scores. However, modeling prognostic scores may lead to an overfitting
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problem for the CATE. Thus, direct modeling of the CATE may provide a more

accurate characterization of treatment effects, avoiding redundancy of non-useful

features; see Section 2.2. Another body of literature focuses on modeling and

approximating the CATE parametrically (Murphy (2003); Robins (2004)), semi-

parametrically (Liang and Yu (2020)) and using machine learning methods (Zhao

et al. (2012); Zhang et al. (2012); Rzepakowski and Jaroszewicz (2012); Athey

and Imbens (2016); Athey, Tibshirani and Wager (2019); Künzel et al. (2019)).

However, parametric and semiparametric methods are susceptible to model mis-

specification, and machine learning produces results that are too complicated to

be interpretable. Most importantly, it is a daunting task to draw valid inferences

based on machine learning methods.

In this article, we propose a nonparametric framework for making robust

inferences of the CATE with a multivariate confounder. To mitigate the possible

curse of dimensionality, we consider the central mean subspace of the CATE,

which is the smallest linear subspace spanned by a set of linear indices that suf-

ficiently characterize the estimand of interest (Cook and Li (2002)). Under this

framework, we specify the CATE nonparametrically, and use a model selection

procedure to determine a sufficient structural dimension. Directly targeting this

central mean subspace enables us to detect the most accurate and parsimonious

structure of the CATE. However, existing dimension reduction methods are not

applicable, owing to the fundamental problem in causal inference that not all

potential outcomes are observable. To estimate the central mean subspace, we

propose imputing counterfactual outcomes using a kernel regression with a prior

dimension reduction. The prior dimension reduction helps to improve the stabil-

ity of the imputation and the subsequent estimation of the CATE. In our sim-

ulation studies, the proposed imputation method outperforms existing methods,

such as the nearest neighbor imputation, inverse probability weighted adjusted

outcomes (Abrevaya, Hsu and Lieli (2015)), and augmented inverse probability

weighting (Zhao et al. (2012)).

We derive the theoretical consistency and asymptotic normality of the pro-

posed estimator of the CATE. The main challenge is that the imputed counter-

factual outcomes are not independent. To overcome this challenge, we calculate

the difference between the imputed and the conditional counterfactual outcomes,

which can be expressed as a weighted empirical average of the influence functions

of the kernel regression estimator. Thus, we show that the influence function of

the proposed estimator can be approximated by a U-statistic. Invoking the prop-

erties of degenerate U-processes discussed in Nolan and Pollard (1987), we derive

the asymptotic distribution of the estimated CATE and show that the imputation
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step plays a non-negligible role. To make a valid inference, we propose an under-

smooth strategy, such that the asymptotic bias is dominated by the asymptotic

variance. We estimate the asymptotic variances by applying weighted bootstrap

techniques and construct Wald-type confidence intervals. Interestingly, the fact

that the central mean subspace is estimated does not affect the asymptotic distri-

bution of the proposed estimator of the CATE. Thus, in our bootstrap procedure,

we can safely skip the step of bootstrapping the estimated central mean subspace,

which saves a lot of computation time in practice.

The remainder of this paper is organized as follows. Section 2 establishes the

proposed robust inference framework and the asymptotic properties. In Section

3, we conduct simulation studies to assess the finite-sample performance of the

proposed inference procedure in comparison with existing competitors. In Section

4, we apply the proposed method to estimate the CATE of maternal smoking on

birth weight based on two data sets. We conclude the paper in Section 5.

2. Methodology

2.1. Preliminaries

Let X ∈ X ⊆ Rp be a vector of pre-treatment covariates, A ∈ A = {0, 1} be

the binary treatment, and Y ∈ R be the outcome of interest. Under the potential

outcomes framework (Rubin (1974)), let Y (a) denote the potential outcome had

the individual received treatment a ∈ A. Based on the potential outcomes, the

individual causal effect is D = Y (1)− Y (0), and the CATE is τ(x) = E{Y (1)−
Y (0) | X = x} = E(D | X = x). To link the potential outcomes with the

observed outcome, we make the usual causal consistency assumption that Y =

Y (A) = AY (1) + (1 − A)Y (0). The main goal of this study is to estimate τ(x)

based on the observational data {(Ai, Yi, Xi) : i = 1, . . . , n}, which independently

and identically follow f(A, Y,X).

To identify the treatment effects based on observational data, we make the

following assumptions, which are standard in causal inference with observational

studies (Rosenbaum and Rubin (1983)):

Assumption 1. {Y (0), Y (1)} A | X.

Assumption 2. There exist constants c1 and c2 such that 0 < c1 ≤ π(X) ≤ c2 <
1 almost surely, where π(x) = P(A = 1 | X = x) is the propensity score.

Assumption 1 rules out latent confounding between the treatment assignment

and the outcome. This can be made plausible by collecting detailed information

on characteristics of the units related to the treatment assignment and outcome.
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Assumption 2 implies a sufficient overlap of the covariate distribution between

the treatment groups. If this assumption is violated, a common approach is to

trim the sample; see Yang and Ding (2018).

Let µa(x) = E{Y (a) | X = x} (a = 0, 1). Under Assumptions 1–2, µa(x) =

E(Y | A = a,X = x) and τ(x) = µ1(x)− µ0(x) are identifiable from f(A, Y,X).

This identification formula motivates a common strategy of estimating τ(x) by

approximating µa(X) separately for a = 0, 1. However, this may lead to an

overfitting model for τ(x), as we will discuss in the next subsection. As an alter-

native, we propose a robust inference of τ(x) directly using dimension reduction,

which requires no parametric model assumptions and can detect accurate and

parsimonious structures of τ(x).

2.2. Dimension reduction on CATE

The main idea is to search for the fewest linear indices BT

τ x such that

τ(x) = g(BT

τ x), (2.1)

where Bτ is a p× dτ matrix consisting of index coefficients, and g is an unknown

dτ -variate function. Because τ(x) = E(D | X = x), the column space of Bτ is

called the central mean subspace of D given X, and is denoted by SE(D|X) (Cook

and Li (2002)).

The central mean subspace SE(D|X) is nonparametric. In other words, for

any multivariate function τ(x), without particular parametric or semiparametric

modeling, there always exists a central mean subspace. To illustrate, consider the

single-index model g(xTβ) that leads to a one-dimensional central mean subspace

spanned by β. Unlike the single-index model that prefixes the dimension of the

central mean subspace, we leave both dτ and Bτ unspecified, and the primary

goal of the dimension reduction is to estimate dτ and Bτ . In addition, the curse

of dimensionality can be avoided if dτ is much smaller than p.

Remark 1. Recall that τ(x) = µ1(x) − µ0(x). An alternative way to employ

dimension reduction is to search for two sets of linear indices BT

0x and BT

1x such

that

µ0(x) = g0(B
T

0x), µ1(x) = g1(B
T

1x), (2.2)

where g0 and g1 are unknown functions. That is, we can also estimate SE{Y (0)|X} =

span(B0) and SE{Y (1)|X} = span(B1), and then recover τ(x) by g1(B
T

1x)−g0(BT

0x).

In fact, we can show that SE(D|X) ⊆ SE{Y (0)|X} + SE{Y (1)|X}, where the sum of

two linear subspaces is U + V = {u + v : u ∈ U, v ∈ V }. In some cases SE(D|X)

may be different from SE{Y (0)|X} and SE{Y (1)|X} or have a strictly smaller dimen-
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sion than SE{Y (0)|X} and SE{Y (1)|X}, as demonstrated by the following examples.

Thus, using model (2.1) may detect more parsimonious structures of τ(x) than

when using model (2.2).

Example 1. Let Y (0) = αTX and Y (1) = βTX, where α, β ∈ Rp, and α and β

are linearly independent. Then, τ(x) = (β − α)TX. Thus, a SE(D|X) = span(β −
α), which is different from SE{Y (0)|X} = span(α) and SE{Y (1)|X} = span(β). Thus,

nonparametric dimension reduction for µ0(x) and µ1(x) can detect two directions

α and β separately, but cannot detect the central mean subspace of the CATE

function.

Example 2. Let Y (0) = αTX+(βTX)2 and Y (1) = αTX+(βTX)3, where α, β ∈
Rp, and α and β are linearly independent. Then, τ(x) = (βTX)3−(βTX)2. Thus,

dim(SE{Y (0)|X}) = dim(SE{Y (1)|X}) = dim{span(α, β)} = 2, and dim(SE(D|X)) =

dim{span(β)} = 1. In this example, detecting the smaller dimension of SE(D|X)

can help estimate τ(x) with an only one-dimensional nonparametric smoothing

estimator. If we recover τ(x) by estimating µ1(x)− µ0(x), two-dimensional non-

parametric smoothing estimators for µ1(x) and µ0(x) are required, and hence are

more unstable in finite samples.

Remark 2. As discussed in Ma and Zhu (2013), the parameter B is not iden-

tifiable without further restrictions. To see this, suppose that Q is an invertible

d×d matrix and consider g∗(u) = g{(QT)−1u}. Then, we can derive the following

equivalent representation of τ(x):

τ(x) = g(BTx) = g{(QT)−1QTBTx} = g∗{(BQ)Tx}.

Thus, the two sets of parameters (B, g) and (BQ, g∗) correspond to the same

CATE. As a result, the central subspace was introduced to make the column space

invariant to these invertible linear transformations. We use the parametrization of

the central mean subspace used in Ma and Zhu (2013). Without loss of generality,

we set the upper d × d block of B to be the identity matrix Id×d and write

X = (XT

u , X
T

l )T, where Xu ∈ Rd and Xl ∈ Rp−d. Hence, the free parameters are

the lower (p − d) × d entries of B, corresponding to the coefficients of Xl. For

the generic matrix B, we now denote vecl(B) as the vector formed by the lower

(p− d)× d entries of B.

2.3. Imputation and estimation

If D were known, existing methods could be applied directly to estimate

SE(D|X). However, the fundamental problem in causal inference is that the two
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potential outcomes can never be jointly observed for each unit; one is factual

Y (A), and the other is counterfactual Y (1−A). To overcome this challenge, we

propose an imputation step to impute the counterfactual outcomes. A natural

choice to impute Y (1 − A) is using its conditional mean given X, µ1−A(X).

As mentioned in Section 2.1, µa(x) can be estimated using matching or other

nonparametric smoothing techniques. To further reduce the possible curse of

dimensionality, we propose a prior dimension reduction procedure to estimate

µa(x).

The proposed imputation and estimation procedure proceeds as follows.

Step 1. Estimate the central mean subspace SE{Y (a)|X} (a = 0, 1). Let µa(u;B)

= E(Y | A = a,BTX = u), where B is a p × d parameter matrix. Given B, the

kernel smoothing estimator of µa(u;B) is

µ̂a(u;B) =

∑n
j=1 Yj1(Aj = a)Kq,h(BTXj − u)∑n
j=1 1(Aj = a)Kq,h(BTXj − u)

, (2.3)

where 1(·) is the indicator function, Kq,h(u) =
∏d
k=1Kq(uk/h)/h with u =

(u1, . . . , ud), Kq is a qth-ordered and twice continuously differentiable kernel func-

tion with bounded support, and h is a positive bandwidth. The basis matrix of

SE{Y (a)|X} can be estimated by B̂a, where (d̂a, B̂a, ĥa) is the minimizer of the

cross-validation criterion

cva(d,B, h) =

n∑
i=1

{Yi − µ̂−ia (BTXi;B)}21(Ai = a), (2.4)

where the superscript −i indicates the estimator (2.3) based on data without the

ith subject. The order of the kernel function q > max(d/2 + 1, 2) is specified for

each working dimension d. This criterion (2.4) is a mean regression version of

Huang and Chiang (2017), and more details and computation algorithms can be

found therein.

Step 2. Impute the individual treatment effect by

D̂i = Ai{Yi − µ̂0(B̂T

0Xi; B̂0)}+ (1−Ai){µ̂1(B̂T

1Xi; B̂1)− Yi} (i = 1, . . . , n),

with specified orders (q0, q1) of kernel functions and bandwidths (h0, h1) in µ̂0(B̂
T

0

Xi; B̂0)} and µ̂1(B̂
T

1Xi; B̂1). The choices of q0 and q1 are discussed in Sec-

tion 2.4. The bandwidths can be chosen as estimated optimal bandwidths us-

ing nonparametric smoothing methods, such that ha = OP{n−1/(2qa+da)}, where

da = dim(SE{Y (a)|X}) (a = 0, 1).
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Step 3. Estimate the central mean subspace SE(D|X) based on {(D̂i, Xi) : i =

1, . . . , n}. Let τ(u;B) = E{Y (1) − Y (0) | BTX = u}. Given B, the kernel

smoothing estimator of τ(u;B) is

τ̂(u;B) =

∑n
j=1 D̂jKq,h(BTXj − u)∑n
j=1Kq,h(BTXj − u)

. (2.5)

We then estimate (dτ , Bτ ) and a suitable bandwidth for τ̂(u;B) using the mini-

mizer (d̂, B̂, ĥ) of the following criterion:

cv(d,B, h) = n−1
n∑
i=1

{D̂i − τ̂−i(BTXi;B)}2,

where the superscript −i indicates the estimator (2.5) based on data without the

ith subject. Here, q > max(d/2+1, 2) is also specified for each working dimension

d.

Step 4. Estimate τ(x) by τ̂(B̂Tx; B̂) with some suitable choice of (qτ , hτ ), which

will be further discussed in Section 2.4.

Remark 3. Many existing dimension reduction methods in the literature can be

applied in Steps 1 and 3. Representative approaches include the inverse regression

(Li (1991); Li and Wang (2007); Zhu, Zhu and Feng (2010)), average derivative

methods (Xia et al. (2002); Zhu and Zeng (2006); Xia (2007); Wang and Xia

(2008); Yin and Li (2011)), and the semiparametric approach (Ma and Zhu (2012,

2013)). In contrast to these methods, the cross-validation criterion of Huang

and Chiang (2017) estimates the structural dimension, the basis matrix, and an

optimal bandwidth for the link function simultaneously. In particular, all of the

parameters are estimated in a data-driven way and no ad-hoc tuning is required.

In terms of the computational burden, leave-one-out cross-validation is applied

for the unknown link functions, but not for the index coefficients. Hence, we

do not remove each subject and repeatedly calculate the criterion. Instead, we

simply calculate the kernel weights Kq,h(BTXj − BTXi) (i, j = 1, . . . , n), and

then remove the diagonal weights Kq,h(BTXi −BTXi) (i = 1, . . . , n) to form the

link function estimates. Thus, for each fixed B, the computation of the proposed

criterion only involves a kernel weight matrix of size n× n, as commonly seen in

nonparametric smoothing methods, and is feasible in practice. Owing to these

properties, we adopt this method in our estimation procedure.

Remark 4. Liang and Yu (2020) considered the multiple index model with a

fixed dimension of the index and proposed the semiparametric efficient score of
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Bτ . In contrast, our proposed estimator B̂ may not reach the semiparametric

efficiency bound. However, as we show in Theorem 1, the asymptotic distribution

of B̂ does not affect the asymptotic distribution of the estimated CATE, as long as

B̂ is root-n consistent. Therefore, it is not necessary to pursue a semiparametric

efficiency estimation of the central mean subspace in our context.

Remark 5. An alternative method of imputing the counterfactual outcomes is

matching (Yang and Kim (2019, 2020)). We consider matching without replace-

ment and with the number of matches fixed at one. Then, the matching procedure

becomes a nearest neighbor imputation (Little and Rubin (2002)). Without loss

of generality, we use the Euclidean distance to determine the neighbors; however,

the discussion applies to other distances as well (Abadie and Imbens (2006)).

Let Ji be the index set for the matched subject of the ith subject. Define the

imputed missing outcome as Ỹi(Ai) = Yi and Ỹi(1 − Ai) =
∑

j∈Ji Yj . Then, the

individual causal effect can be estimated as D̂MAT,i = Ỹi(1) − Ỹi(0). Matching

uses the full vector of confounders to determine the distance and corresponding

neighbors. When the number of confounders increases, this distance may be too

conservative to determine proper neighbors, owing to the curse of dimensional-

ity. In our simulation studies, we find that the performance of the estimation of

SE(D|X) based on D̂MAT,i is worse than that of our proposed method.

Remark 6. Instead of imputing the counterfactual outcomes, weighting can

also be used to estimate Di directly. Several authors have considered an adjusted

outcome D̂IPW,i = {Ai − π(Xi)}Yi/[π(Xi){1 − π(Xi)}] using inverse propensity

score weighting. The adjusted outcome is unbiased of τ(Xi) because

E(D̂IPW,i | Xi) = E
{
AiYi
π(Xi)

− (1−Ai)Yi
1− π(Xi)

| Xi

}
= E{Yi(1)− Yi(0) | Xi} = τ(Xi).

This approach is attractive in clinical trials, where π(Xi) is known by the trial

design. In observational studies, π(Xi) is usually unknown and needs to be

estimated. Abrevaya, Hsu and Lieli (2015) considered using a kernel regression

to estimate π(Xi). To avoid the possible curse of dimensionality and keep the

nonparametric advantages, we perform a prior dimension reduction to find Bπ,

such that π(Xi) = P(Ai = 1 | BT

πXi). Then, an improved estimator of π(Xi) is

π̂(B̂T

πXi; B̂π) =

∑n
j=1AjKq,h(B̂T

πXj − B̂T

πXi)∑n
j=1Kq,h(B̂T

πXj − B̂T
πXi)

,

where B̂π can be obtained similarly to Step 1 in Section 2.3 by changing the out-
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come toA. However, the estimator D̂IPW,i = {Ai−π̂(B̂T

πXi; B̂π)}Yi/[π̂(B̂T

πXi; B̂π){1−
π̂(B̂T

πXi; B̂π)}] still suffers from instability owing to the inverse weighting, espe-

cially when π̂(B̂T

πXi; B̂π) is close to zero or one. It is well known that the aug-

mented inverse propensity weighted estimator reduces this instability by com-

bining inverse propensity weighting and outcome regressions. Specifically, the

corresponding estimator of Di is

D̂AIPW,i = {Ai − π̂(B̂T

πXi; B̂π)}

·Yi − {1− π̂(B̂T

πXi; B̂π)}µ̂1(B̂T

1Xi; B̂1)− π̂(B̂T

πXi; B̂π)µ̂0(B̂
T

0Xi; B̂0)

π̂(B̂T
πXi; B̂π){1− π̂(B̂T

πXi; B̂π)}
.

One can easily show that E(D̂AIPW,i | Xi) is asymptotically unbiased of τ(Xi).

The estimator D̂AIPW,i is a refined version of Lee, Okui and Whang (2017), in

which the propensity scores are estimated without a prior dimension reduction.

Our simulation shows that the estimated central mean subspace and CATE based

on D̂i and D̂AIPW,i are comparable, and both outperform those based on D̂MAT,i

and D̂IPW,i. Because D̂AIPW,i requires an extra dimension reduction on π(x),

and hence a longer computation time, our proposed D̂i is more computationally

efficient in practice.

2.4. Inference

In this subsection, we derive the large-sample properties of B̂ and τ̂(B̂Tx; B̂),

and propose an inference procedure for τ(x) based on these properties. Using the

notation and regularity conditions in the online Supplementary Material, we first

establish the following theorem for the prior sufficient dimension reduction for

µa(x) (a = 0, 1).

Theorem 1. Suppose that Assumptions 1 and 2 and Conditions A1–A5 are sat-

isfied. Then, P(d̂a = da)→ 1, ĥa = OP{n−1/(2q+da)}, and

n1/2vecl(B̂a −Ba)1(d̂a = da) = n1/2
n∑
i=1

ξBa,i + oP(1)
d→ N(0,ΣBa)

as n → ∞, where ξBa = {Va(Ba)}−1Sa(Ba) and ΣBa = {Va(Ba)}−1E{S⊗2a (Ba)}
{Va(Ba)}−1, for a = 0, 1.

Exact forms of Va(Ba) and Sa(Ba) are presented in the Supplementary Mate-

rial. Theorem 1 and Conditions A1–A5 are modifications of the results in Huang

and Chiang (2017), and hence we omit the proof. Generally speaking, we require

the prognostic scores and the joint density functions of BTX to be smooth enough
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so that the nonparametric smoothing estimators for these parameter functions

are consistent. The constraints on the rates of the bandwidths ensure the n1/2-

consistency of the estimated central mean subspaces, which can be automatically

satisfied by the proposed estimated bandwidths. Coupled with the identifiability

of vecl(Ba), the cross-validation type criterion can successfully estimate the true

parameters. Theorem 1 serves as a stepping stone to deriving the asymptotic

distributions of the estimated central mean space and the proposed estimator for

τ(x), taking into account the fact that Di is imputed.

Theorem 2. Suppose that Assumptions 1 and 2 and Conditions A1–A8 are sat-

isfied. Then, P(d̂ = dτ )→ 1, ĥ = OP{n−1/(2q+dτ )}, and

n1/2vecl(B̂ −Bτ )1(d̂ = dτ ) = n1/2
n∑
i=1

ξBτ ,i + oP(1)
d→ N(0,ΣBτ )

as n → ∞, where ξBτ = {V (Bτ )}−1S(Bτ ) and ΣBτ = {V (Bτ )}−1E{S⊗2(Bτ )}
{V (Bτ )}−1.

Theorem 3. Suppose that Assumptions 1 and 2 and Conditions A1–A10 are

satisfied. Then,

(nhdττ )1/2{τ̂(B̂Tx; B̂)− τ(x)− hqττ γ(x)} d→ N{0, σ2τ (x)}

as n→∞, where

γ(x) = κ
∂qτu {E(Z | BT

τX = u)fBT
τ X(u)} − E(Z | BT

τX = u)∂qτu fBT
τ X(u)

fBT
τ X(u)

∣∣∣∣
u=BT

τ x

,

σ2τ (x) =

{∫
K2
qτ (s)ds

}dτ V[Z + {1− π(X)}ε1 − π(X)ε0 | BT

τX = BT

τ x]

fBT
τ X(BT

τ x)
,

κ =
∫
sqτKqτ (s)ds/qτ !, Z = (2A − 1){Y − µ1−A(BT

1−AX;B1−A)}, and εa =

{Y − µa(X)}1(A = a) for a = 0, 1.

The exact forms of V (Bτ ) and S(Bτ ) and the proofs of Theorems 2–3 are

given in the Supplementary Materials. Similarly to Conditions A1–A5, we require

the smoothness of τ(x) and the identifiability of vecl(Bτ ) to guarantee the results

of Theorems 2–3. The constraints on the bandwidth hτ are satisfied by our sug-

gested bandwidths, which are discussed later. The proof of Theorem 2 is similar

to that of Theorem 1. The main difference is that the outcome contributing to

the asymptotic distribution is now Z instead of the counterfactual D. The proof

of Theorem 3 focuses on approximating the influence function, coupled with the
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difference between the imputed and the non-imputed counterfactual outcomes.

Remark 7. Note that the asymptotic bias of µ̂a(u;B) is not involved in the

asymptotic distribution of τ̂(B̂Tx; B̂). This is an important result of Condition

A6, which ensures that the convergence rate of µ̂a(u;B) − µa(u;B) is always

faster than that of τ̂(u;B)− E(Z | BTX = u).

Remark 8. The most important feature of Theorem 3 is that the asymptotic

variance of B̂ is not involved in the asymptotic variance of τ̂(B̂Tx; B̂). More

precisely, τ̂(B̂Tx; B̂) has the same asymptotic variance as that of τ̂(BT

τ x;Bτ ). The

reason is that ‖B̂−Bτ‖ = OP(n−1/2), which is much faster than the convergence

rate OP[hqττ + {log n/(nhdττ )}1/2] of τ̂(BT

τ x;Bτ )− τ(x).

Based on Theorem 3, we can make an inference of τ(x) by estimating the

asymptotic bias and variance. However, in practice, direct estimates of γ(x)

and σ2τ (x) are usually unstable, especially when the imputed counterfactual out-

comes are involved. For a prespecified qτ that satisfies Condition A10, we pro-

pose an under-smooth strategy in which the asymptotic bias is dominated by

the asymptotic variance. We propose choosing an optimal bandwidth hτ,opt =

O{n−1/(2qτ+dτ )} using standard cross-validation for τ̂(B̂Tx; B̂), and using hτ =

hτ,optn
−δτ for some small positive value δτ in the inference procedure. We

then use a bootstrapping method to estimate the asymptotic distribution of

τ̂(B̂Tx; B̂)− τ(x).

Let ξi (i = 1, . . . , n) be independent and identically distributed (i.i.d.) from

a certain distribution with mean µξ and variance σ2ξ . Then, wi = ξi/
∑n

j=1 ξj
(i = 1, . . . , n) are exchangeable random weights. The bootstrapped estimator

τ̂∗(x) is calculated as

τ̂∗(x) =

∑n
j=1wjD̂

∗
jKqτ ,hτ (B̂TXj − B̂Tx)∑n

j=1wjKqτ ,hτ (B̂TXj − B̂Tx)
,

where

D̂∗i = Ai{Yi − µ̂∗0(B̂T

0Xi; B̂0)}+ (1−Ai){µ̂∗1(B̂T

1Xi; B̂1)− Yi},

µ̂∗a(u;B) =

∑n
j=1wjYj1(Aj = a)Kqa,ha(B̂T

aXj − u)∑n
j=1wj1(Aj = a)Kqa,ha(B̂T

aXj − u)
(a = 0, 1).

According to Remark 8, B̂, B̂0, and B̂1 require no bootstrapping in the inference,

which greatly reduces the computational burden in practice.

The asymptotic variance of τ̂(B̂Tx; B̂) is estimated by [se{τ̂∗(x)}µξ/σξ]2,
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where se(·) denotes the standard error of N bootstrapped estimators. The con-

fidence region of τ(x) with a 1− α confidence level can then be constructed as

τ̂(B̂Tx; B̂)±Z1−α/2se{τ̂∗(x)}
µξ
σξ
,

where Zp is the pth quantile of the standard normal distribution.

3. Simulation Study

3.1. Data-generating processes

In this section, we present a Monte Carlo exercise aimed at evaluating the

finite-sample accuracy of the asymptotic approximations given in the previous

section. The covariatesX = (X1, . . . , X10) are generated from an i.i.d. Unif(−31/2,

31/2). The propensity score is logit{π(X)} = 0.5(1 +X1 +X2 +X3). The treated

percentage is about 60%. The potential outcomes are designed as the following

two settings:

M1. Y (0) = X1 −X2 + ε(0) and Y (1) = 2X1 + X3 + ε(1), where ε(0) and ε(1)

independently follow N(0, 0.022). Hence, the CATE is τ(x) = x1 + x2 + x3,

and the central mean subspace is span{(1, 1, 1, 0, . . . , 0)T}.

M2. Y (0) = (X1+X3)(X2−1)+ε(0) and Y (1) = 2X2(X1+X3)+ε(1), where ε(0)

and ε(1) independently follow N(0, 0.022). Hence, the CATE is τ(x) = (x1+

x3)
2(x2+1)2, and the central mean subspace is span{(1, 0, 1, 0, . . . , 0)T, (0, 1,

0, . . . , 0)T}.

The sample sizes are n = 250 and n = 500. All results are based on 1,000

replications.

3.2. Competing estimators and simulation results

First, we compare the finite-sample performance of the estimated central

mean subspaces using different imputed or adjusted outcomes. In addition to our

proposed D̂i, the nearest neighbor imputation D̂MAT,i, and the inverse weighted

outcome D̂IPW,i and D̂AIPW,i, we also consider D̂X,i = (2Ai−1){Yi−µ̂1−Ai(Xi; Ip)},
which is the imputed outcome without any dimension reduction. To compare the

information loss for the counterfactual outcomes and prior dimension reduction,

we further perform the dimension reduction based on the true individual effect

Di and the imputed outcome D̂OR,i = (2Ai−1){Yi−µ̂1−Ai(Xi;B1−Ai)}, based on

the true oracle central mean subspaces of the prognostic scores. The proportions

of the estimated structural dimension, mean squared errors ‖B̂(B̂TB̂)−1B̂T −
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Table 1. The proportions of d̂, mean squared errors (MSE) of B̂, and computing time in
seconds under different model settings, sample sizes (n), and imputation of Di.

proportions of d̂

model n 0 1 2 3 ≥4 MSE time

M1

250 D̂i 0.000 0.976 0.024 0.000 0.000 0.0293 134

D̂X,i 0.000 0.716 0.246 0.037 0.001 0.5840 94

D̂MAT,i 0.000 0.833 0.148 0.018 0.001 0.2927 119

D̂IPW,i 0.000 0.680 0.229 0.087 0.004 0.7143 130

D̂AIPW,i 0.000 0.955 0.045 0.000 0.000 0.0555 157

Di 0.000 0.999 0.001 0.000 0.000 0.0013 142

D̂OR,i 0.000 0.979 0.021 0.000 0.000 0.0267 64

500 D̂i 0.000 0.985 0.015 0.000 0.00 0.0171 634

D̂X,i 0.000 0.676 0.295 0.029 0.00 0.5392 327

D̂MAT,i 0.000 0.897 0.097 0.006 0.00 0.1588 288

D̂IPW,i 0.000 0.615 0.256 0.119 0.01 0.6744 1,517

D̂AIPW,i 0.000 0.980 0.020 0.000 0.00 0.0236 1,367

Di 0.000 0.999 0.001 0.000 0.00 0.0012 448

D̂OR,i 0.000 0.985 0.015 0.000 0.00 0.0171 497

M2

250 D̂i 0.000 0.000 0.995 0.005 0.000 0.0237 136

D̂X,i 0.000 0.062 0.883 0.053 0.002 0.3222 110

D̂MAT,i 0.000 0.050 0.894 0.052 0.004 0.3608 104

D̂IPW,i 0.000 0.269 0.610 0.110 0.011 0.9581 298

D̂AIPW,i 0.000 0.008 0.978 0.014 0.000 0.0616 362

Di 0.000 0.000 0.995 0.005 0.000 0.0119 94

D̂OR,i 0.000 0.003 0.992 0.004 0.001 0.0243 126

500 D̂i 0.000 0.000 0.997 0.003 0.000 0.0139 710

D̂X,i 0.000 0.008 0.955 0.035 0.002 0.1858 338

D̂MAT,i 0.000 0.013 0.963 0.021 0.003 0.2040 493

D̂IPW,i 0.000 0.165 0.714 0.109 0.012 0.7532 1,019

D̂AIPW,i 0.000 0.001 0.995 0.004 0.000 0.0224 1,334

Di 0.000 0.000 1.000 0.000 0.000 0.0090 573

D̂OR,i 0.000 0.000 1.000 0.000 0.000 0.0027 687

Bτ (BT

τBτ )−1BT

τ ‖2 of the estimated central mean subspaces, and computing time

in seconds are displayed in Table 1. In general, all proportions of selecting the

correct structural dimension tend to one and the mean squared errors tend to

zero as the sample size increases. Moreover, our proposed estimator outperforms

the others, and is comparable with respect to the simulated estimators based on

D̂OR,i.

Second, we compare the finite-sample performance of the estimated CATE
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Table 2. The mean squared errors of estimated CATEs under different model settings
and sample sizes (n).

model n τ̂(B̂Tx; B̂) τ̂X(x) τ̂MAT(x) τ̂IPW(x) τ̂AIPW(x) τ̂prog(x) τ̂0(x)

M1

250 mean 0.003 -0.025 0.094 0.008 0.002 0.003 -0.000

s.d. 0.0493 0.2203 0.2325 0.5903 0.0532 0.0545 0.0258

MSE 0.0024 0.0492 0.0629 0.3485 0.0028 0.0030 0.0007

500 mean -0.000 0.006 0.065 -0.005 -0.000 0.003 -0.001

s.d. 0.0300 0.1474 0.1417 0.3642 0.0311 0.0310 0.0159

MSE 0.0009 0.0218 0.0243 0.1327 0.0010 0.0010 0.0003

M2

250 mean -0.029 -0.091 -0.180 -0.035 -0.007 -0.048 0.001

s.d. 0.1006 0.2072 0.3103 0.3803 0.1074 0.1399 0.0639

MSE 0.0110 0.0512 0.1288 0.1459 0.0116 0.0219 0.0041

500 mean -0.015 -0.104 -0.157 -0.010 -0.002 -0.024 0.001

s.d. 0.0651 0.1418 0.2024 0.2463 0.0566 0.0926 0.0410

MSE 0.0045 0.0309 0.0655 0.0607 0.0032 0.0092 0.0017

Table 3. The standard deviations (s.d.), bootstrapped standard errors (s.e.), and 95%
quantile intervals (Q.I.) of estimated CATEs, and normal-type 95% confidence intervals
(N.C.I.) with corresponding coverage probabilities (N.C.P.) and quantile-type 95% con-
fidence intervals (Q.C.I.) with corresponding coverage probabilities (Q.C.P.) for the true
conditional treatment effect.

model n s.d. s.e. Q.I. N.C.I N.C.P. Q.C.I. Q.C.P.

M1
250 0.0493 0.0621 (-0.095,0.107) (-0.119,0.125) 0.966 (-0.119,0.124) 0.975

500 0.0300 0.0365 (-0.066,0.062) (-0.072,0.071) 0.965 (-0.074,0.067) 0.972

M2
250 0.1006 0.0998 (-0.226,0.159) (-0.225,0.166) 0.944 (-0.224,0.167) 0.921

500 0.0651 0.0645 (-0.132,0.109) (-0.142,0.111) 0.951 (-0.140,0.112) 0.937

for our proposed estimator τ̂(B̂Tx; B̂), the estimator τ̂X(x) based on the im-

puted outcome D̂X,i, the estimator τ̂MAT(x) based on the imputed outcome

D̂MAT,i, the estimator τ̂IPW(x) based on the adjusted outcome D̂IPW,i, and the

estimator τ̂AIPW(x) based on the adjusted outcome D̂AIPW,i. In addition, we

also estimate the CATE using the difference of two estimated prognostic scores

τ̂prog(x) = µ̂1(B̂
T

1x; B̂1)− µ̂0(B̂T

0x; B̂0). The smoothing estimator τ̂0(x) based on

Di is considered as a reference to demonstrate the information loss. The CATEs

are evaluated at x = (0, . . . , 0)T. The means, standard deviations, and mean

squared errors are displayed in Table 2. In general, our proposed estimator and

the τ̂AIPW have comparable performance, and both outperform the others.

Finally, we construct confidence intervals and inference for the CATEs using

bootstrapping. Here, naive bootstrapping is adopted. That is, (w1, . . . , wn) fol-

lows a multinomial distribution with number of trials n and event probabilities

(1/n, . . . , 1/n). Table 3 includes the standard deviations, bootstrapped stan-
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dard errors, and 95% quantile intervals of the estimated CATEs, as well as the

normal-type 95% confidence intervals with corresponding coverage probabilities

and quantile-type 95% confidence intervals with corresponding coverage prob-

abilities for the true CATE. As expected, the standard errors get close to the

standard deviations, and the coverage probabilities tend to the nominal level

when the sample size increases.

4. Empirical Examples

4.1. The effect of maternal smoking on birth weight

We apply our proposed method to two existing data sets to estimate the

effect of maternal smoking on birth weight, conditional on different levels of

confounders. In the literature, many studies have documented that a mother’s

health, education, and labor market status have important effects on child birth

weight (Currie and Almond (2011)). In particular, maternal smoking is con-

sidered the most important preventable negative cause (Kramer (1987)). Lee,

Okui and Whang (2017) studied the CATE of smoking, given a mother’s age. In

this work, our goal is to fully characterize the CATE of smoking on child birth

weight, given a vector of important confounding variables, while maintaining the

interpretability.

4.2. Pennsylvania data

The first data set consists of observations collected in 2002 from mothers

in Pennsylvania, available from the STATA website (http://www.stata-press.

com/data/r13/cattaneo2.dta). Following Lee, Okui and Whang (2017), we

focus on white and non-Hispanic mothers, yielding sample size of 3754. The

outcome Y of interest is infant birth weight, measured in grams. The treatment

variable A is equal to one if the mother is a smoker, and zero otherwise. The

set of covariates X includes the number of prenatal care visits (X1), mother’s

educational attainment (X2), age (X3), an indicator for the first baby (X4), an

indicator for alcohol consumption during pregnancy (X5), an indicator for the first

prenatal visit in the first trimester (X6), and an indicator for whether there was

a previous birth where the newborn died (X7). In Lee, Okui and Whang (2017),

parametric models for the prognostic and propensity scores are considered to

recover counterfactual outcomes. Here, we relax these stringent assumptions and

use the proposed nonparametric estimation procedure to provide more detailed

structures for the CATE function.

The estimated central mean subspace has dimension one. The coefficients of

http://www.stata-press.com/data/r13/cattaneo2.dta
http://www.stata-press.com/data/r13/cattaneo2.dta
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Table 4. The estimated coefficients of the linear indices and corresponding standard
errors (s.e.) for the Pennsylvania and North Carolina data: ∗ indicates the estimated
coefficient is statistically significant at the 0.05 level.

Pennsylvania data North Carolina data
covariate coefficient s.e. coefficient s.e.

X1 prenatal visit number −0.668∗ 0.0645 0.043 0.0719
X2 education −0.059 0.2101 −0.271∗ 0.0477
X3 age −0.210 0.3076 0.243∗ 0.0485
X4 first baby 1
X5 alcohol 0.142 0.6103 −0.101 0.2122
X6 first prenatal visit 0.275 0.3224 −0.104 0.1556
X7 previous newborn death 0.169 0.1257
X8 diabetes −0.129 0.1268
X9 hypertension −0.333∗ 0.1084
X10 amniocentesis 1
X11 ultrasound −0.006 0.1612

the estimated linear index and the corresponding standard errors are displayed

in Table 4. Figure 1 shows the estimated CATE at different levels of linear index

values, along with corresponding normal-type confidence intervals. In general,

smoking has a significant negative effect on low birth weight, as detected in

existing studies. In the estimated linear index, our method selects X4 as the

baseline covariate and, compared to this baseline covariate, gives a significantly

negative coefficient −0.668 with a standard error of 0.065 for the number of

prenatal care visits. Coupled with the fact that the estimated CATE decreases

when the linear index value increases, smoking has significantly greater negative

effects for mothers who had a non-first baby and more frequent prenatal care

visits. This result shows that more frequent prenatal care visits and whether it

is a first pregnancy mitigate the effect of smoking on low birth weight.

4.3. North Carolina data

The second data set is based on records between 1988 and 2002 by the North

Carolina Center Health Services. The data set was analyzed by Abrevaya, Hsu

and Lieli (2015), and can be downloaded from Prof. Leili’s website. To make a

comparison with the Pennsylvania data, we focus on white and first-time mothers,

and form a random sub-sample with sample size n = 3,754 among the subjects

collected in 2002. The outcome Y and the treatment variable A remain the same

as for the Pennsylvania data. The set of covariates includes those used in the

analysis of the Pennsylvania data, except for the indicator for the first baby and

the indicator for whether there was a previous birth where the newborn died. In
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Figure 1. The estimated CATEs at different levels of linear index values, with corre-
sponding confidence intervals.

addition, it includes indicators for gestational diabetes (X8), hypertension (X9),

amniocentesis (X10), and ultrasound exams X11). In the analysis of Abrevaya,

Hsu and Lieli (2015), only the CATE of the mother’s age is estimated, and a

multi-dimensional kernel smoothing without dimension reduction is used in the

estimation procedure. In our analysis, we estimate the CATE of all collected

confounding variables, and the dimension reduction techniques are applied to

reduce the possible curse of dimensionality.

The estimated central mean subspace has dimension one. The coefficients

of the estimated linear index and the corresponding standard errors are also

displayed in Table 4. Figure 1 shows the estimated CATE at different levels of

linear index values, along with corresponding normal-type confidence intervals.

Similarly to the results from the Pennsylvania data, smoking has a significantly

negative effect on low birth weight. However, the estimated linear index includes

amniocentesis as the baseline covariate, and the mother’s educational attainment,

mother’s age, and hypertension as significant covariates. According to the signs

of the estimated coefficients and the fact that the estimated CATE decreases

when the estimated linear index values decrease, smoking has larger detrimental

effects for older mothers with lower educational attainment, no hypertension, and

amniocentesis. A practical implication is that mothers with such characteristics

should quit smoking to prevent low birth weight.

5. Discussion

We propose a nonparametric framework for making inferences about the

CATE with a multivariate confounder. Our approach is based on the sufficient

dimension reduction technique. The key insight is that SE(D|X) may be a strict
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subspace of SE{Y (0)|X}+SE{Y (1)|X}. Thus, we directly estimate the central mean

space of the CATE based on imputed potential outcomes. The contribution of

this work is multifold. First, a dimension reduction technique is applied to de-

tect a parsimonious structure of the CATE. This approach is nonparametric in

nature, and therefore does not require stringent parametric or semiparametric

model assumptions. Second, a kernel regression imputation with a prior dimen-

sion reduction is proposed to impute the counterfactual outcomes from observa-

tional studies, which has better finite-sample performance and a more efficient

computation than those of existing methods. Third, we derive the asymptotic

distribution of the estimated CATE given the estimated central mean space, al-

lowing for transparent interpretation and valid inference, in sharp contrast to

usual machine learning methods. In this regard, the proposed approach is the

middle ground between simple parametric model approaches and flexible machine

learning approaches. Fourth, in the theoretical development, the asymptotic dis-

tribution of the estimated central mean subspace is not involved in the asymptotic

distribution of the estimated CATE. With this observation, the inference proce-

dures on the conditional average treatment effects can be done by treating the

estimated central mean subspace as the true central mean subspace. This reduces

the computation time in our proposed bootstrap procedure. Overall, we believe

our method can be a valuable tool for causal inference with a reasonable number

of confounders.

However, our proposed estimator does have limitations. First, like most

approaches in the causal inference literature, our method relies on the key ignor-

ability assumption, which is not verifiable based on existing data. A sensitivity

analysis is often recommended to assess the robustness of the conclusion based on

the non-testable assumptions (Yang and Lok (2018)). Second, our proposal can-

not handle cases with ultrahigh-dimensional confounders. Regularization tech-

niques may be coupled with the dimension reduction to deal with these cases.

The proposed framework for a robust inference of the CATE can be generalized

in the following ways. We use under-smoothing to avoid the asymptotic bias of

the CATE estimator. Without under-smoothing, the asymptotic bias is not neg-

ligible, but may be estimated empirically as in Cheng and Chen (2019). We will

investigate the finite-sample and asymptotic properties of possible bias-corrected

estimators in future research. Moreover, we can extend our work to estimate the

CATE for continuous treatments. In this case, the first-stage dimension reduc-

tion applies to the potential outcomes for a given treatment level and a reference

treatment level, and the second-stage searches the central space for the contrast

between the two prognostic scores under the two levels. Third, the first-stage di-
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mension reduction is not confined to the central mean space, but can be applied

to a transformation of the outcome g{Y (a)} for any function g(·). This allows us

to estimate general-types conditional treatment effects, such as conditional dis-

tribution effects, quantile treatment effects, or survival treatment effects (Yang,

Pieper and Cools (2020)). We can also derive robust estimators for these causal

estimands.

Supplementary Material

Additional information is available in the online Supplementary Material,

including additional notation and the regularity conditions and the proofs of

Theorems 2–3.
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