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AN EQUATION FOR THE IDENTIFICATION OF

AVERAGE CAUSAL EFFECT IN NONLINEAR MODELS

Wing Hung Wong

Stanford University

Abstract: When the causal relationship between X and Y is specified by a structural

equation, the average causal effect of X on Y is the population average rate of change

of Y with respect to changes in X, when all other variables are kept fixed. This

parameter is not identifiable from the distribution of (X,Y ). We give conditions

under which the average causal effect is identified as the solution of an integral

equation based on the distributions of (X,Z) and (Y,Z), where Z is an instrumental

variable.
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1. Introduction

Suppose the causal relation between two real-valued random variables X

and Y is specified by a structural equation Y = f(X,U), where U represents

all other variables that may also affect Y . We assume f(x, U) is smooth in x,

and write Y (x) = f(x, U), Y (i)(x) = ∂if(x, U)/(∂xi), i = 1, 2. Then Y (1)(x),

which tell us how Y will change when X varies around the value x, can be

regarded as the causal effect of X on Y when X = x. This effect can be different

for different subject (or sampling unit) in the population. In this paper it is

assumed that we can observe X,Y but not U , the form of f() is unknown, and

we are interested in the estimation of the average causal effect (ACE) which

is defined as the function θ(x) = E(Y (1)(x)). ACE is a natural generalization

of ATE = E(Y (1) − Y (0)) when X is a binary variable indicating which of

two treatments were received. ATE stands for average treatment effect, which

is a parameter of central interest in the potential outcome framework for causal

inference (Rubin (1974)). Since Y (x) and Y (i)(x) are counterfactual variables (i.e.

potential outcomes) that are needed in the formulation of causal relations but

are not directly observable, θ(x) is not identifiable from the distribution (X,Y )

alone. The method of instrumental variable attempts to identify θ(x) from the

two distributions (X,Z) and (Y, Z) where the instrumental variable Z can affect X
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through another equation X = g(Z, V ). However, identifiability results for causal

parameters typically requires monotonicity assumptions on certain arguments of

the structural equations (Imbens and Angrist (1994); Angrist, Imbens and Rubin

(1996); Chernozhukov, Imbens and Newey (2007); Imbens and Newey (2009);

Chen et al. (2014); Torgovitsky (2015); Kennedy, Lorch and Small (2019), see

Wong (2021) for further review). Importantly, the causal parameters identified

under those conditions were defined as averages of counterfactuals over certain

subpopulations rather than as the unrestricted average over the whole population.

Since the unrestricted population average is often also of interest (e.g. when we

want to know the effect of an intervention for society at large), it is useful to

supplement the existing results by developing methods to identify the unrestricted

average causal effect.

We consider the following nonlinear, nonparametric causal model

(1) Y = f(X,U), Y ∈ R,X ∈ R,U ∈ Rp, f is bounded and smooth in x.

(2) X = g(Z, V ), Z ∈ Rq, V ∈ Rr.

(3) supx,z pz(x) <∞ where pz() denotes the density function of X(z).

(4) Z is independent of (U, V ).

In (1), the condition that f is bounded and smooth in x means that supu |f(x, u)|
< ∞ and supu |∂if(x, u)/∂xi| < m(x) for i = 1, 2, where m() is a bounded and

integrable function. Then, when x → ∞, we have Y (∞) = limY (x) exists and

E(Y (x)) → E(Y (∞)). Similarly for Y (−∞). Also, θ(x) = E(Y (1)(x)) is a

differentiable function and lim θ(x) = 0 as x → ±∞. For nonlinear f and g,

the independence condition (4) is not sufficient for the identification of θ(x) from

the distribution of (X,Y, Z). Under the condition that changes in Y caused by

varying X is uncorrelated to changes in X caused by varying Z, conditional on

Z = z, Wong (2021) showed that the distributions (X,Z) and (Y,Z) identify a

related function ψ(z) = E(Y (1)(X)|Z = z). That paper also demonstrated by

examples that sometimes the function θ(x) can be recovered from the function

ψ(z), but did not provide results on the direct identification of θ(x). To fill this

gap, in this paper we derive an integral equation that can be used to identify θ(x)

from the distributions of (X,Z) and (Y,Z).

2. Result

To formulate our main result, consider the following conditions

(5) I(X(z) ≤ x) is uncorrelated with Y (1)(x), for all x, z.
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(6) The set of distributions of X|Z = z, induced by varying z, is a complete

set.

Theorem 1. If (1)–(6) hold and z0 is a fixed value, then θ is identifiable via the

integral equation ∫
K(z, x)θ(x)dx = µ(z)− µ(z0) (2.1)

where K(z, x) = P (X ≤ x|Z = z0)− P (X ≤ x|Z = z), µ(z) = E(Y |Z = z).

Proof.

µ(z) = E(Y |Z = z) = E(f(X,U)|Z = z) = E(f(g(z, V ), U)|Z = z)

= E(Y (X(z))) = E

∫
δ(x−X(z))Y (x)dx (2.2)

Before the formal proof we first provide a heuristic derivation. Suppose It

is valid to apply integration by part to (2.2) where the delta function δ(t) is

regarded as the derivative of the step function D(t) = I(t ≥ 0), then (2.1) follows

because

µ(z) = E

(
Y (∞)−

∫
I(X(z) ≤ x)Y (1)(x)dx

)
= EY (∞)−

∫
P (X(z) ≤ x)θ(x)dx.

To make this rigorous, replace δ() in (2.2) by the N(0, σ2) density ϕσ(), and

define

µσ(z) = E

∫
ϕσ(x−X(z))Y (x)dx (2.3)

Since Y (x) = Y (X(z)) + Y (1)(X(z))(x −X(z)) + (1/2)Y (2)(X(W ))(x −X(z))2

where W is an intermediate variable lying between x and X(z), we have

µσ(z) = EY (X(z)) + E

[
1

2
Y (2)(X(W ))

∫
ϕσ(x−X(z))(x−X(z))2dx

]
.

Thus,

|µσ(z)− µ(z)| ≤ σ2

2
sup
x
m(x) ≤ cσ2 for some constant c. (2.4)

Next, we claim that there exist a constant c > 0, so that∣∣∣∣E(Φ

(
x−X(z)

σ

)
Y (1)(x)

)
− P (X(z) ≤ x)θ(x)

∣∣∣∣ ≤ cm(x)
√
σ for all small σ.

(2.5)

Assuming (2.5) is true, we now analyze the integral in (2.3). Using integration
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by part, we have

µσ(z) = E

[
Y (∞)−

∫ (
Φ

(
x−X(z)

σ

)
Y (1)(x)

)
dx

]

= E(Y (∞))−
∫
P (X(z) ≤ x)θ(x)dx+ r(z, σ)

where for some constant c, |r(z, σ)| ≤ c
√
σ for all small σ. Thus,∣∣∣∣(µσ(z)− µσ(z0))−

∫
[P (X(z0) ≤ x)− P (X(z) ≤ x)]θ(x)dx

∣∣∣∣ ≤ 2c
√
σ. (2.6)

Taking the limit of (2.4) and (2.6) as σ → 0, we have

µ(z)− µ(z0) = lim
σ→0

(µσ(z)− µσ(z0)) =

∫
[P (X(z0) ≤ x)− P (X(z) ≤ x)]θ(x)dx.

The desired equation (2.1) follows because P (X(z) ≤ x) = P (g(z, V ) ≤ x) =

P (g(z, V ) ≤ x|Z = z) = P (g(Z, V ) ≤ x|Z = z) = P (X ≤ x|Z = z). To prove the

claim (2.5),∣∣∣∣E(Φ

(
x−X(z)

σ

)
Y (1)(x)

)
− P (X(z) ≤ x)θ(x)

∣∣∣∣
=

∣∣∣∣E(Φ

(
x−X(z)

σ

)
Y (1)(x)

)
− E(I(X(z) ≤ x))E(Y (1)(x))

∣∣∣∣
=

∣∣∣∣E(Φ

(
x−X(z)

σ

)
Y (1)(x)

)
− E(I(X(z) ≤ x)Y (1)(x))

∣∣∣∣ (by condition (5))

≤ m(x)E

∣∣∣∣Φ(x−X(z)

σ

)
− I(X(z) ≤ x)

∣∣∣∣
≤ m(x)

[
Φ

(
− 1√

σ

)
+ 4(sup

x,z
pz(x))

√
σ

]
(2.7)

The last inequality (2.7) holds because |Φ((x−X(z))/σ) − I(X(z) ≤ x)| is

bounded by 2 on A(σ) and by Φ(−1/
√
σ) on A(σ)c, where A(σ) is the event

{|X(z)− x| ≤
√
σ}. Finally (2.5) follows from (2.7) because of the exponentially

decreasing tail of the normal distribution. Since both K(z, x) and µ(z) in the

integral equation (2.1) are determined by the distributions of (X,Z) and (Y,Z),

it follows that θ is also determined if the solution to (2.1) is unique. To establish

uniqueness, let a be a fixed constant, and define for any θ(), its anti-derivative

λ(x) = a −
∫∞
x θ(t)dt. Suppose θ1 and θ2 are two solutions to (2.1) and λ1 and
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λ2 are the corresponding anti-derivatives, then

E(λ1(X)− λ2(X)|Z = z) =

∫
pX|Z(x|z)(λ1 − λ2)(x)dx

= −
∫
P (X ≤ x|Z = z)(θ1 − θ2)(x)dx = −

∫
P (X ≤ x|Z = z0)(θ1 − θ2)(x)dx

Since the last expression does not depend on z, Condition (6) implies λ1 = λ2 ,

and therefore θ1 = θ2.

3. Discussion

Of the 6 conditions in the theorem, the first 3 are needed just to set up the

model and are not restrictive. On the other hand, conditions (4), (5), (6) each

represents a significant constraint on the model. Condition (4) says that Z is

independent of all other causal variables that affect X and Y . Together with

(1) and (2), this means that the only way Z can affect Y causally is indirectly

through its effect on X. This is a natural condition on an instrumental variable.

Condition (6) implies that the family of conditional distributions P (X|Z = z)

as z varies, is a large family. This means that Z has non-trivial relationship

with X in the sense that varying the value of z leads to rich changes in the

distribution of X. This is also a reasonable condition on an instrumental variable.

This type of completeness condition was first introduced into causal inference

by Newey and Powell (2003). Finally, condition (5) requires the causal effect

Y (1)(x) = (∂f/∂x)(x, U) to be uncorrelated to I(X(z) ≤ x) = I(g(z, V ) ≤ x),

which is a strong condition. However, even in the simplest case when both X

and Z are binary variables, it is not possible to identify the average treatment

effect (analog of θ in that case) from the distribution (X,Z) and (Y,Z) without

similarly strong conditions (see discussion in Angrist, Imbens and Rubin (1996)).

In the general context of (1)–(4), we are not aware of alternative conditions that

can be used to relate µ(z) to θ(x). The following example illustrates the use of our

result in a nonlinear, nonparametric model that allows i) unobserved confounders

and ii) heterogeneity in the causal effect of X on Y .

Example 1. Suppose Y = h(X,U1) + U2, X = g(Z, V ), where h() is a smooth

and bounded function in x. If U1 is independent of V , then condition (5) is

satisfied. Note that since no restriction is imposed on the joint distribution of

U2 and V , they may include unobserved confounders that affect both X and Y .

Also, the completeness condition (6) is not too restrictive. For example, (6) holds

in the following cases (a) g(z, v) = s(z + v) where s() is an invertible function
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and V is a continuous random variable, (b) g(z, v) = 1 + v1z + v2z
2, V1 and V2

are independent random variables.

From the proof of the theorem, it is clear that if condition (5) holds only

for some values of z and z0, then equation (2.1) will hold for those z and z0. If

we are willing to make some modeling assumptions on θ(), say θ(x) = Σk
1αibi(x)

where bi(), i = 1, . . . , k are fixed functions, then we may weaken condition (5)

by requiring it to hold only for a finite subset of values for z and then use the

corresponding finite set of equations to identify the parameters αi, i = 1, . . . , k.

Finally, we note that above proof of the theorem follows the way we discovered

the integral equation originally, namely, start with the expression for E(Y |Z =

z), replace the delta function in the expression by the normal kernel and then

integrate by part to obtain an expression involving θ(). Weijie Su (personal

communication) suggests a second proof, which starts from the given K(z, x) and

then shows that the integral in (2.1) gives rise to µ(z)− µ(0). His proof has the

advantage that it does not require the existence of bounded second derivatives.
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