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Abstract: Model-assisted estimation based on complex survey data is an important

practical problem in survey sampling. When there are many auxiliary variables,

selecting the significant variables associated with the study variable is necessary

to achieve an efficient estimation of the population parameters of interest. In this

study, we formulate a regularized regression estimator in a Bayesian inference frame-

work using the penalty function as the shrinkage prior for model selection. The pro-

posed Bayesian approach enables both efficient point estimates and valid credible

intervals. Lastly, we compare the results from two limited simulation studies with

those of existing frequentist methods.

Key words and phrases: Generalized regression estimation, regularization, shrinkage

prior, survey sampling.

1. Introduction

Probability sampling is a scientific tool for obtaining a representative sample

from a target population. In order to estimate a finite population total from a

target population, the Horvitz–Thompson (HT) estimator obtained from a prob-

ability sample satisfies design consistency, and the resulting inference is justified

from a randomization perspective (Horvitz and Thompson (1952)). However, the

HT estimator uses the first-order inclusion probability only, and does not fully

incorporate all available information in the finite population. To improve its effi-

ciency, a regression estimation is often used to incorporate auxiliary information

from the finite population. Deville and Särndal (1992), Fuller (2002), Kim and

Park (2010), and Breidt and Opsomer (2017) present comprehensive overviews

of variants of regression estimation in survey sampling. The HT estimator has

also been extended using prediction and augmented models (e.g., Zeng and Little

(2003, 2005); Zanganeh and Little (2015)).

The regression estimation approaches in survey sampling assume a model for
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the finite population, that is, a superpopulation model, such as

yi = xtiβ + ei, (1.1)

where yi is a response variable, xi and β are vectors of auxiliary variables and

regression coefficients, respectively, and ei is an error term satisfying E(ei) = 0

and Var(ei) = σ2. The superpopulation model does not necessarily hold in the

sample because the sampling design can be informative (e.g., Pfeffermann and

Sverchkov (1999); Little (2004)). Under the regression superpopulation model in

(1.1), Isaki and Fuller (1982) show that the asymptotic variance of the regres-

sion estimator achieves the lower bound of Godambe and Joshi (1965). Thus,

the regression estimator is asymptotically efficient in the sense of achieving the

minimum anticipated variance under the joint distribution of the sampling design

and the superpopulation model in (1.1).

On the other hand, the dimension of the auxiliary variables xi can be large

in practice. Even when the number of observed covariates is not necessarily large,

the dimension of xi may be very large once we include polynomial or interaction

terms to achieve flexible modeling, as considered in Section 7. However, in this

case, the optimality of the regression estimator is untenable. When there are

many auxiliary variables, the asymptotic bias of the regression estimator using

all auxiliary variables is no longer negligible, and the resulting inference can be

problematic. Simply put, including irrelevant auxiliary variables can introduce

substantial variability in a point estimation. Despite this, its uncertainty is not

fully accounted for by the standard linearization variance estimation, resulting in

misleading inferences.

To overcome the problem, several variable selection techniques for regres-

sion estimation have been considered (e.g., Silva and Skinner (1997); Särndal

and Lundström (2005)). The classical selection approach is based on a step-wise

method. However, these methods do not necessarily produce the best model (e.g.,

Dempster, Schatzoff and Wermuth (1977)), and their potential effect on predic-

tion could be limited. Another approach is to employ a regularized estimation of

the regression coefficients. Recently, McConville et al. (2017) proposed a regu-

larized regression estimation approach based on the Lasso penalty of Tibshirani

(1996). However, there are two main problems with this approach in a regression

estimation. First, the choice of the regularization parameter is not straightfor-

ward under survey sampling. Second, the frequentist inference accounting for

model selection uncertainty is notoriously difficult.

To overcome the above difficulties, we adopt a Bayesian framework in the
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regularized regression estimation. We first introduce an approximate Bayesian

approach for a regression estimation when p + 1 = dim(x) is fixed, using the

approximate Bayesian approach considered in Wang, Kim and Yang (2018). The

proposed Bayesian method fully captures the uncertainty in the parameter esti-

mation for the regression estimator, and has good coverage properties. Second,

the proposed Bayesian method is extended to the problem of large p in a reg-

ularized regression estimation. By incorporating the penalty function for the

regularization into the prior distribution, we capture the uncertainty associated

with model selection and parameter estimation in the Bayesian machinery. Fur-

thermore, the choice of penalty parameter can be handled using its posterior dis-

tribution. Hence, the proposed method provides a unified approach to Bayesian

inference using sparse model-assisted survey estimation. The proposed method is

a calibrated Bayesian approach (Little (2012)), and is asymptotically equivalent

to the frequentist model-assisted approach for a fixed p.

The remainder of the paper is organized as follows. In Section 2, the ba-

sic setup is introduced. In Section 3, the approximate Bayesian inference using

a regression estimation is proposed under fixed p. In Section 4, the proposed

method is extended to the high-dimensional setup by developing a sparse regres-

sion estimation using shrinkage prior distributions. In Section 5, the proposed

method is extended to nonlinear regression models. In Section 6, we present the

results from two limited simulation studies. The proposed method is applied to

a real-data example in Section 7. Section 8 concludes the paper. The R code is

available at GitHub repository (https://github.com/sshonosuke/ABMASE).

2. Basic Setup

Consider a finite population of a known size N . Associated with unit i in

the finite population, we consider measurement {xi, yi}, where xi is the vector of

auxiliary variables with dimension p, and yi is the study variable of interest. We

are interested in estimating the finite population mean Ȳ = N−1
∑N

i=1 yi from

a sample selected using a probability sampling design. Let A be the index set

of the sample, and we observe {xi, yi}i∈A from the sample. The HT estimator
ˆ̄YHT = N−1

∑
i∈A π

−1
i yi, where πi is the first-order inclusion probability of unit

i, is design unbiased, but is not necessarily efficient.

If the finite population mean X̄ = N−1
∑N

i=1 xi is known, then we can

https://github.com/sshonosuke/ABMASE
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improve the efficiency of ˆ̄YHT by using the following regression estimator:

ˆ̄Yreg =
1

N

N∑
i=1

xtiβ̂,

where β̂ is an estimator of β in (1.1). Typically, we use β̂ obtained by minimizing

the weighted quadratic loss

Q(β) =
∑
i∈A

π−1
i (yi − xtiβ)2, (2.1)

motivated by model (1.1). If an intercept term is included in xi such that xti =

(1,xt1i), we can express

ˆ̄Yreg = β̂0 + X̄
t
1β̂1 = N̂−1

∑
i∈A

π−1
i

(
yi − xt1iβ̂1

)
+ X̄

t
1β̂1, (2.2)

where N̂ =
∑

i∈A π
−1
i , and β̂1 is given by

β̂1 =

{∑
i∈A

π−1
i (x1i − ˆ̄X1,π)⊗2

}−1∑
i∈A

π−1
i (x1i − ˆ̄X1,π)yi, (2.3)

where ˆ̄X1,π = N̂−1
∑

i∈A π
−1
i x1i and B⊗2 = BB′ for some matrix B.

To discuss the asymptotic properties of ˆ̄Yreg in (2.2), we consider a sequence

of finite populations and samples, as discussed in Isaki and Fuller (1982), where

N increases with n. Note that

ˆ̄Yreg − Ȳ = ˆ̄Yπ − Ȳ +
(
X̄1 − ˆ̄X1,π

)t
β̂1

= ˆ̄Yπ − Ȳ +
(
X̄1 − ˆ̄X1,π

)t
β1 +Rn, (2.4)

where ˆ̄Yπ = N̂−1
∑

i∈A π
−1
i yi and

Rn =
(
X̄1 − ˆ̄X1

)t (
β̂1 − β1

)
,

for any β1. If we choose β1 = p limn→∞ β̂1 with respect to the sampling

mechanism, and p = dim(x1) is fixed in the asymptotic setup, then we obtain

Rn = Op(n
−1) and safely use the main terms of (2.4) to describe the asymptotic

behavior of ˆ̄Yreg. To emphasize its dependence on β̂1 in the regression estimator,
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Table 1. Popular penalized regression methods.

Method Reference Penalty function

Ridge Hoerl and Kennard (1970) pλ(β) = λ
∑p
j=1 β

2
j

LASSO Tibshirani (1996) pλ(β) = λ
∑p
j=1 |βj |

Adaptive LASSO Zou (2006) pλ(β) = λ
∑p
j=1

(
|βj | /

∣∣∣β̂j∣∣∣)
Elastic Net Zou and Hastie (2005) pλ(β) = λ1

∑p
j=1 |βj |+ λ2

∑p
j=1 β

2
j

we write ˆ̄Yreg = ˆ̄Yreg(β̂1). Roughly speaking, we obtain

√
n
{

ˆ̄Yreg(β̂1)− ˆ̄Yreg(β1)
}

= Op(n
−1/2p). (2.5)

In addition, if p = o(n1/2), then we can safely ignore the effect of estimating β1

in the regression estimator; see the Supplementary Material for a sketched proof

of (2.5).

If, on the other hand, the dimension p is larger than O(n1/2), then we cannot

ignore the effect of estimating β1. In this case, we can consider using variable

selection to reduce the dimension of X. For variable selection, we may employ a

regularized estimation of the regression coefficients. The regularization method

can be described as finding

(β̂
(R)
0 , β̂

(R)

1 ) = argmin
β0,β1

{Q(β) + pλ(β1)}, (2.6)

where Q(β) is defined in (2.1), and pλ(β1) is a penalty function with parameter

λ. Some popular penalty functions are presented in Table 1. Once the solution

to (2.6) is obtained, the regularized regression estimator is given by

ˆ̄Yreg(β̂
(R)

1 ) = X̄
t
1β̂

(R)

1 +
1

N̂

∑
i∈A

1

πi

(
yi − xt1iβ̂

(R)

1

)
. (2.7)

Statistical inferences based on the regularized regression estimator in (2.7) are not

fully investigated in the literature. For example, Chen, Valliant and Elliott (2018)

consider a regularized regression estimator using the adaptive Lasso of Zou (2006),

but they assume the sampling design is non-informative, and the uncertainty in

the model selection is not fully incorporated in their inference. In general, making

an inference after model selection in a superpopulation frequentist framework is

difficult. The approximated Bayesian method introduced in the next section

captures the full uncertainty in the Bayesian framework.
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3. Approximate Bayesian Survey Regression Estimation

Developing a Bayesian model-assisted inference under complex sampling is a

challenging problem in statistics. Wang, Kim and Yang (2018) recently proposed

the so-called approximate Bayesian method for design-based inference using the

asymptotic normality of a design-consistent estimator. Specifically, for a given

parameter θ with a prior distribution π(θ), if one can find a design-consistent

estimator θ̂ of θ, then the approximate posterior distribution of θ is given by

p(θ | θ̂) =
f(θ̂ | θ)π(θ)∫
f(θ̂ | θ)π(θ)dθ

, (3.1)

where f(θ̂ | θ) is the sampling distribution of θ̂, which is often approximated by

a normal distribution.

Drawing on this idea, one can develop an approximate Bayesian approach to

capture the full uncertainty in the regression estimator. Let

β̂ =

(∑
i∈A

π−1
i xix

t
i

)−1∑
i∈A

π−1
i xiyi

be the design-consistent estimator of β, and let V̂ β be the corresponding asymp-

totic variance-covariance matrix of β̂, given by

V̂ β =

(∑
i∈A

π−1
i xix

t
i

)−1
∑
i∈A

∑
j∈A

∆ij

πij

êixi
πi

êjx
t
j

πj

(∑
i∈A

π−1
i xix

t
i

)−1

, (3.2)

where êi = yi − xtiβ̂, ∆ij = πij − πiπj , and πij is the joint inclusion probability

of unit i and j. Under some regularity conditions, as discussed in Chapter 2 of

Fuller (2009), we can establish

V̂
−1/2
β11

(
β̂1 − β1

)
| β L−→ N(0, I) (3.3)

as n→∞, where V̂ β11 is the submatrix of V̂ β with

V̂ β =

(
V̂β00 V̂β01

V̂β10 V̂β11

)
. (3.4)

Thus, using (3.1) and (3.3), we obtain the approximate posterior distribution

of β as
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p(β1|β̂1) =
φp(β̂1;β1, V̂ β11)π(β1)∫
φp(β̂1;β1, V̂ β11)π(β1)dβ1

, (3.5)

where φp denotes a p-dimensional multivariate normal density, and π(β1) is a

prior distribution for β1. We use a flat prior here, but use a shrinkage prior in

Section 4.

Now, we consider the conditional posterior distribution of Ȳ for a given β1.

First, define
ˆ̄Yreg(β1) = X̄

t
1β1 +

1

N̂

∑
i∈A

1

πi

(
yi − xt1iβ1

)
.

Note that ˆ̄Yreg(β1) is an approximately design-unbiased estimator of Ȳ , regardless

of β1. Under some regularity conditions, we can show that ˆ̄Yreg(β1) follows a

normal distribution, asymptotically. Thus, we obtain

ˆ̄Yreg(β1)− Ȳ√
V̂e(β1)

| Ȳ ,β1
L−→ N(0, 1), (3.6)

where

V̂e(β1) =
1

N2

∑
i∈A

∑
j∈A

∆ij

πij

1

πi

1

πj
(yi − xt1iβ1)(yj − xt1jβ1) (3.7)

is a design-consistent variance estimator of ˆ̄Yreg(β1) for given β1. We then use

φ( ˆ̄Yreg(β1); Ȳ , V̂e(β1)) as the density for the approximate sampling distribution

of ˆ̄Yreg(β1) in (3.6), where φ(·;µ, σ2) is the normal density function with mean µ

and variance σ2. Thus, the approximate conditional posterior distribution of Ȳ

given β can be defined as

p(Ȳ | ˆ̄Yreg(β1),β1) ∝ φ( ˆ̄Yreg(β1); Ȳ , V̂e(β1))π(Ȳ | β1), (3.8)

where π(Ȳ | β1) is a conditional prior distribution of Ȳ given β1. Without extra

assumptions or any prior information, we can use a flat prior distribution, namely,

π(Ȳ | β1) ∝ 1.

Therefore, combining (3.5) and (3.8), the approximate posterior distribution

of Ȳ can be obtained as

p(Ȳ | ˆ̄Yreg(β̂1), β̂1)

=

∫
p(β1|β̂1)φ( ˆ̄Yreg(β1); Ȳ , V̂e(β1))π(Ȳ | β1)dβ1∫∫
p(β1|β̂1)φ( ˆ̄Yreg(β1); Ȳ , V̂e(β1))π(Ȳ | β1)dβ1dȲ

(3.9)
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=

∫
φ( ˆ̄Yreg(β1); Ȳ , V̂e(β1))φp(β̂1;β1, V̂ β11)π(β1)π(Ȳ | β1)dβ1∫∫
φ( ˆ̄Yreg(β1); Ȳ , V̂e(β1))φp(β̂1;β1, V̂ β11)π(β1)π(Ȳ | β1)dβ1dȲ

.

Generating posterior samples from (3.9) can be carried out easily using the fol-

lowing two steps:

1. Generate a posterior sample β∗1 of β1 from (3.5).

2. Generate a posterior sample of Ȳ from (3.8), for given β∗1.

Based on the approximate posterior samples of Ȳ , we can compute the pos-

terior mean as a point estimator, as well as credible intervals for the uncertainty

quantification for Ȳ , including the variability in estimating β1.

The following theorem presents an asymptotic property of the proposed ap-

proximate Bayesian method.

Theorem 1. Under the regularity conditions described in the Supplementary

Material, conditional on the full sample data,

sup
Ȳ ∈ΘY

∣∣∣p(Ȳ | ˆ̄Yreg(β̂1), β̂1)− φ(Ȳ ; ˆ̄Yreg, V̂e)
∣∣∣→ 0 (3.10)

in probability as n → ∞, while p is fixed, and n/N → f ∈ [0, 1), where ΘY is

some Borel set for Ȳ and p(Ȳ | ˆ̄Yreg(β̂1), β̂1) is given in (3.9).

Theorem 1 is a special case of the Bernstein—von Mises theorem (van der

Vaart (2000, Sec. 10.2)) in a survey regression estimation; a sketched proof is

given in the Supplementary Material. The proof is not quite rigorous but it

contains enough detail to convey the main ideas. According to Theorem 1, the

credible interval for Ȳ constructed from the approximated posterior distribution

(3.9) is asymptotically equivalent to the frequentist confidence interval based on

the asymptotic normality of the common survey regression estimator. Therefore,

the proposed Bayesian method implements the frequentist inference of the survey

regression estimator, at least asymptotically.

4. Approximate Bayesian Method with Shrinkage Priors

We consider the case in which there are many auxiliary variables in a re-

gression estimation. When p is large, it is desirable to select a suitable subset of

auxiliary variables associated with the response variable to avoid an inefficient

regression estimation due to including irrelevant covariates.

To deal with the problem in a Bayesian way, we define the approximate

posterior distribution of Ȳ given β1 similarly to (3.9), but use a different prior
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for β1 to implement the variable selection. That is, we use the same asymptotic

distribution of the estimators β̂1 of β1, and assign a shrinkage prior for β1. Let

πλ(β1) be the shrinkage prior for β1, with a structural parameter λ that might

be multivariate.

Among the several choices of shrinkage priors, we specifically consider two

priors for β1: the Laplace (Park and Casella (2008)) and horseshoe (Carvalho,

Polson and Scott (2009, 2010)) priors. The Laplace prior is given by πλ(β1) ∝
exp(−λ

∑p
k=1 |βk|), which is related to the Lasso regression (Tibshirani (1996)),

such that the proposed approximated Bayesian method can be viewed as the

Bayesian version of a survey regression estimator with the Lasso (McConville

et al. (2017)). The horseshoe prior is a more advanced shrinkage prior of the

form

πλ(β1) =

p∏
k=1

∫ ∞
0

φ(βk; 0, λ2u2
k)

2

π(1 + u2
k)

duk, (4.1)

where φ(·; a, b) denotes the normal density function with mean a and variance

b. The horseshoe prior is known to enjoy greater shrinkage for the zero elements

of β1 than the Laplace prior, thus allowing strong signals to remain (Carvalho,

Polson and Scott (2009)).

Similarly to (3.5), we can develop a posterior distribution of β1 using the

shrinkage prior

pλ(β1|β̂1) =
φ(β̂1;β1, V̂β11)πλ(β1)∫
φ(β̂1;β1, V̂β11)πλ(β1)dβ1

, (4.2)

where V̂β11 is the asymptotic variance-covariance matrix of β̂1, defined in (3.4).

Once β1 is sampled from (4.2), we can use the same posterior distribution of Ȳ in

(3.8) for a given β1. Under the Laplace and horseshoe priors, generating posterior

samples of β1 can be carried out using simple Gibbs sampling algorithms. The

details are given in the Supplementary Material.

Therefore, the approximate posterior distribution of Ȳ is obtained as

pλ(Ȳ | ˆ̄Yreg(β̂1), β̂1)

=

∫
φ( ˆ̄Yreg(β1); Ȳ , V̂e(β1))φp(β̂1;β1, V̂ β11)πλ(β1)π(Ȳ | β1)dβ1∫∫
φ( ˆ̄Yreg(β1); Ȳ , V̂e(β1))φp(β̂1;β1, V̂ β11)πλ(β1)π(Ȳ | β1)dβ1dȲ

.
(4.3)

We generate posterior samples from (4.3) using the following two steps:

1. For a given λ, generate a posterior sample β∗1 of β1 from (4.2).

2. Generate a posterior sample of Ȳ from (3.8) for a given β∗1.
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Remark 1. Let β̂
(R)
0 and β̂

(R)

1 be the estimators of β0 and β1, respectively,

defined as

(β̂
(R)
0 , β̂

(R)

1 ) = argmin
β0,β1

{∑
i∈A

1

πi
(yi − β0 − xt1iβ1)2 + Pλ(β1)

}
, (4.4)

where P(β1) = −2 log πλ(β1) is the penalty (regularization) term for β1 induced

from the prior πλ(β1). For example, the Laplace prior for πλ(β1) leads to the

penalty term P(β1) = 2λ
∑p

k=1 |βk|, in which β̂
(R)

1 corresponds to the regu-

larized estimator of β1 used in McConville et al. (2017). Because the expo-

nential of −
∑

i∈A π
−1
i (yi − β0 − xtiβ1)2 is close to the approximated likelihood

φp((β̂0, β̂
t

1); (β0,β
t
1), V̂ β) used in the approximated Bayesian method when n is

large, the mode of the approximated posterior of (β0,β
t
1) is close to the frequentist

estimator (4.4) as well.

Remark 2. In the frequentist approach, λ is often called the tuning parame-

ter, and can be selected using a data-dependent procedure, such as the cross-

validation used in McConville et al. (2017). On the other hand, in the Bayesian

approach, we assign a prior distribution on the hyperparameter λ and consider

integration with respect to the posterior distribution of λ. As a result, we can

take into account the uncertainty of the hyperparameter estimation. Specifically,

we assign a gamma prior for λ2 in the Laplace prior, and a half-Cauchy prior for

λ in the horseshoe prior (4.1). Both lead to familiar forms of the full conditional

posterior distributions of λ or λ2; see the Supplementary Material.

As in Section 3, we obtain the following asymptotic properties of the proposed

approximate Bayesian method.

Theorem 2. Under the regularity conditions described in the Supplementary

Material, conditional on the full sample data,

sup
Ȳ ∈ΘY

∣∣∣pλ(Ȳ | ˆ̄Yreg(β̂1), β̂1)− φ(Ȳ ; ˆ̄Yreg(β̂
(R)

1 ), V̂e(β̂
(R)

1 ))
∣∣∣→ 0, (4.5)

in probability as n → ∞, while p is fixed, and n/N → f ∈ [0, 1), where ΘY is

some Borel set for Ȳ , and pλ(Ȳ | ˆ̄Yreg(β̂1), β̂1) is given in (4.3).

A sketched proof is given in the Supplementary Material. Theorem 2 ensures

that the proposed approximate Bayesian method is asymptotically equivalent to

the frequentist version in which β1 is estimated using the regularized method,

with a penalty corresponding to the shrinkage prior used in the Bayesian method.
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Moreover, the proposed Bayesian method can be extended to a general nonlinear

regression, as demonstrated in the next section.

5. Extension to Nonlinear Models

The proposed Bayesian methods can be readily extended to work with a

nonlinear regression. Extensions of the regression estimator to nonlinear models

are also considered in Wu and Sitter (2001), Breidt, Claeskens and Opsomer

(2005), and Montanari and Ranalli (2005).

We consider a general working model for yi as E(yi | xi) = m(xi;β) = mi,

and Var(yi | xi) = σ2a(mi) for some known functions m(·; ·) and a(·). The

model-assisted regression estimator for Ȳ with β known is then

ˆ̄Yreg,m(β) =
1

N

{
N∑
i=1

m(xi;β) +
∑
i∈A

1

πi

(
yi −m(xi;β)

)}
,

and its design-consistent variance estimator is obtained as

V̂e,m(β) =
1

N2

∑
i∈A

∑
j∈A

∆ij

πij

1

πi

1

πj
{yi −m(xi;β)}{yj −m(xj ;β)},

which gives the approximate conditional posterior distribution of Ȳ given β. That

is, similarly to (3.8), we obtain

p(Ȳ | ˆ̄Yreg,m(β),β) ∝ φ( ˆ̄Yreg,m(β); Ȳ , V̂e,m(β))π(Ȳ | β). (5.1)

To generate the posterior values of β, we first find a design-consistent esti-

mator β̂ of β. Note that a consistent estimator β̂ can be obtained by solving

Û(β) ≡
∑
i∈A

π−1
i {yi −m(xi;β)}h(xi;β) = 0,

where h(xi;β) = (∂mi/∂β)/a(mi). For example, for binary yi, we may use a

logistic regression model with m(xi;β) = exp(xtiβ)/{1+exp(xtiβ)} and Var(yi) =

mi(1−mi), which leads to h(xi;β) = xi.

Under some regularity conditions, we can establish the asymptotic normality

of β̂. That is,

V̂
−1/2
β (β̂ − β) | β L−→ N(0, I),

where
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V̂ β =

{∑
i∈A

1

πi
ĥiṁ(xi; β̂)t

}−1
∑
i∈A

∑
j∈A

∆ij

πij

êiĥi
πi

êjĥ
t

j

πj

{∑
i∈A

1

πi
ĥiṁ(xi; β̂)t

}−1

,

with êi = yi −m(xi; β̂), ĥi = h(xi; β̂), and ṁ(x;β) = ∂m(x;β)/∂β. Note that

ṁ(x;β) = mi(1−mi)xi under a logistic regression model.

Thus, the posterior distribution of β given β̂ can be obtained as

p(β | β̂) ∝ φ(β̂ | β, V̂ β)π(β). (5.2)

We can use a shrinkage prior π(β) for β in (5.2), if necessary. Once β∗ is generated

from (5.2), the posterior values of Ȳ are generated from (5.1) for a given β∗.

This formula lets us define the approximate posterior distribution of β of

the form (3.5), so that the approximate Bayesian inference for Ȳ can be carried

out in the same way as in the linear regression case. Note that Theorem 1 still

holds under the general setup, as long as the regularity conditions given in the

Supplementary Material are satisfied.

6. Simulation

Here, we compare the performance of the proposed approximate Bayesian

methods with that of the standard frequentist methods using two limited simu-

lation studies. In the first simulation, we consider a linear regression model for

a continuous variable y. In the second simulation, we consider a binary y, and

apply the logistic regression model for the nonlinear regression estimation.

In the first simulation, we generate xi = (xi1, . . . , xip∗)t for i = 1, . . . , N , from

a multivariate normal distribution with mean vector (1, . . . , 1)t and variance-

covariance matrix 2R(0.2), where p∗ = 50 and the (i, j)th element of R(ρ) is

ρ|i−j|. The response variables Yi are generated from the following linear regression

model:

Yi = β0 + β1xi1 + · · ·+ βp∗xip∗ + εi, i = 1, . . . , N,

where N = 10,000, εi ∼ N(0, 2), β1 = 1, β4 = −0.5, β7 = 1, β10 = −0.5, and

the other βk are set to zero. For the dimension of the auxiliary information, we

consider four scenarios for p of 20, 30, 40, and 50. For each p, we assume that

we can access only a subset (xi1, . . . , xip)
t of the full information (xi1, . . . , xip∗)t.

Note that for all scenarios, the auxiliary variables significantly related to Yi are in-

cluded; thus only the amount of irrelevant information increases with p. We select

a sample size of n = 300 from the finite population, using two sampling mecha-

nism: (A) simple random sampling (SRS), and (B) probability-proportional-to-



BAYESIAN REGRESSION ESTIMATION 489

size sampling (PPS), with size measure zi = max{log(1 + |Yi + ei|), 1}, where

ei ∼ Exp(2). The parameter of interest is Ȳ = N−1
∑N

i=1 Yi. We assume that

X̄k = N−1
∑N

i=1 xik is known for all k = 1, . . . , p.

For the simulated data set, we apply the proposed approximate Bayesian

methods with the uniform prior π(β1) ∝ 1, Laplace prior, and horseshoe prior

(4.1) for β1, denoted by AB, ABL, and ABH, respectively. For the Bayesian

methods, we use π(Ȳ |β1) ∝ 1. We generate 5,000 posterior samples of Ȳ after

discarding the first 500 samples, and compute the posterior mean of Ȳ as the

point estimate. For the frequentist methods, we apply the original generalized

regression estimator without variable selection (GREG), as well as the GREG

method with a Lasso regularization (GREG-L; McConville et al. (2017)), ridge

estimation of β1 (GREG-R; Rao and Singh (1997)), and forward variable selection

(GREG-V) using the adjusted coefficient of determination. We also apply the

mixed modeling approach to the GREG estimation (GREG-M; Park and Fuller

(2009)), which is similar to GREG-R. Moreover, the HT estimator is employed as

a benchmark for the efficiency comparison. For GREG-L, the tuning parameter

is selected using 10-fold cross-validation, and we use the gamma prior Ga(λ2
∗, 1)

for λ2 in ABL, where λ∗ is the selected value for λ in GREG-L. For ABH, we

assign the half-Cauchy prior HC(0, 1) for the tuning parameter λ2. Based on 1,000

replications, we calculate the square root of the mean squared errors (RMSE) and

the bias of the point estimators; see Table 2. We also evaluate the performance

of the 95% confidence (credible) intervals using coverage probabilities (CP) and

the average length (AL); see Table 3.

Table 2 shows that the RMSE and bias of AB and GREG are almost iden-

tical, which is consistent with the fact that AB is a Bayesian version of GREG.

Moreover, GREG-L and the proposed Bayesian methods ABL and ABH tend to

produce smaller RMSEs and smaller absolute biases than those of GREG or AB

as p increases, indicating the importance of selecting suitable auxiliary variables

when p is large. Table 3 shows that the CPs of GREG decrease as p increases,

and are significantly smaller than the nominal level, because GREG ignores the

variability in estimating β and the variability increases as p increases. On the

other hand, the Bayesian version AB takes into account the variability in esti-

mating β; thus the CPs are around the nominal level, and the ALs of AB are

larger than those of GREG. Although the performance of GREG-L is much bet-

ter than GREG, owing to the shrinkage techniques, the CPs are not necessarily

close to the nominal level. Note that GREG-M takes into account the variabil-

ity in estimating β, but not that in other parameters; as a result, the coverage

performance is limited. It is also confirmed that the proposed ABH and ABL
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methods produce narrower intervals than those of AB.

In the second simulation study, we consider a binary case for yi, and apply

the nonlinear regression method discussed in Section 5. The binary response

variables Yi are generated from the following logistic regression model:

Yi ∼ Ber(δi), log

(
δi

1− δi

)
= β0 + β1xi1 + · · ·+ βpxip, i = 1, . . . , N,

where β0 = −1, and the other settings are the same as the linear case. We select a

sample size of n = 300 from the finite population using two sampling mechanisms:

(A) simple random sampling, and (B) probability-proportional-to-size sampling,

with size measure zi = max{log(1+0.5Yi+ei), 0.5}, where ei ∼ Exp(3). We again

apply the three Bayesian methods and three frequents methods, GREG, GREG-

L, and GREG-R, based on a logistic regression model to obtain point estimates

and confidence/credible intervals for the population mean Ȳ = N−1
∑N

i=1 Yi.

The RMSE and bias of the point estimates and the CP and AL of the intervals

based on 1,000 replications are reported in Tables 4 and 5, respectively. These

results again show the superiority of the proposed Bayesian approach over the

frequentist approach in terms of uncertainty quantification.

In the Supplementary Material, we report additional simulation results under

larger sample sizes and different data generation scenarios.

7. Example

We apply the proposed methods to the synthetic income data available from

the sae package (Molina and Marhuenda (2015)) in R. In the data set, the nor-

malized annual net income is observed for a certain number of individuals in each

province of Spain. The data set contains nine covariates: four indicators for four

age groups (16-24, 25-49, 50-64 and ≥65, denoted by ag1, . . . ,ag4, respectively),

an indicator for having Spanish nationality na, indicators for education levels (pri-

mary education ed1, and post-secondary education ed2), and indicators for two

employment categories (employed em1, and unemployed em2). We also employ

13 interaction variables, ag1*na, ag2*na, ag3*na, ag4*na, ag2*ed1, ag3*ed1,

ag4*ed1, ag1*em1, ag2*em1, ag3*em1, ag4*em1, ed1*em1, and ed2*em1, as aux-

iliary variables; thus p = 22 in this example. The data set also contains infor-

mation on survey weights. Therefore, we use their inverse values as the sampling

probabilities. Because there is no information on the sampling mechanism, we

approximate the joint inclusion probability as the product of two sampling prob-

abilities. In this example, we focus on estimating the average income in three
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Table 2. Square root of mean squared errors (RMSE) and bias of point estimators
under p ∈ {20, 30, 40, 50} in scenarios (A) and (B) with linear regression. All values are
multiplied by 100.

(A) (B)

Method 20 30 40 50 20 30 40 50

GREG 11.7 11.8 12.0 12.3 11.4 11.8 12.1 12.3

GREG-L 11.7 11.7 11.7 11.8 11.1 11.1 11.1 11.1

GREG-R 11.8 11.9 12.1 12.4 11.4 11.6 11.8 12.0

GREG-V 11.6 11.7 11.8 12.0 11.3 11.5 11.8 12.0

MSE GREG-M 11.7 11.8 12.0 12.3 11.4 11.8 12.1 12.3

AB 11.7 11.9 12.1 12.4 11.6 11.9 12.2 12.5

ABL 11.7 11.8 11.9 12.2 11.4 11.7 11.8 12.0

ABH 11.6 11.6 11.6 11.8 11.2 11.3 11.3 11.4

HT 17.5 17.5 17.5 17.5 14.8 14.8 14.8 14.8

GREG 0.21 0.12 0.13 0.23 0.54 1.24 1.87 2.41

GREG-L 0.19 0.16 0.18 0.19 0.00 0.11 0.20 0.26

GREG-R 0.22 0.16 0.18 0.31 0.56 1.21 1.79 2.32

GREG-V 0.16 0.05 0.08 0.17 0.29 0.80 1.26 1.64

Bias GREG-M 0.21 0.12 0.13 0.23 0.54 1.24 1.87 2.41

AB 0.19 0.10 0.11 0.22 0.60 1.28 1.92 2.44

ABL 0.19 0.11 0.11 0.21 0.49 1.06 1.55 1.95

ABH 0.16 0.12 0.11 0.17 0.06 0.29 0.51 0.71

HT 0.78 0.78 0.78 0.78 -1.08 -1.08 -1.08 -1.08

provinces, Palencia, Segovia, and Soria, where the number of sampled units are

72, 58, and 20, respectively. The number of nonsampled units is around 106. Note

that the sample sizes are not large relative to the number of auxiliary variables,

especially in Soria. Hence, the estimation error of regression coefficients is not

negligible and the proposed Bayesian methods are appealing in this case.

In order to perform a joint estimation and inference in the three provinces,

we employ the following working model:

yi = α+
∑

h∈{1,2,3}

x
(h)
0i β

(h)
0 + xtiβ1 + ei, (7.1)

where α is an intercept term, x
(h)
0i = 1 if i belongs to province h, where h = 1 for

Palencia, h = 2 for Segovia, and h = 3 for Soria, and xi is a vector of auxiliary

variables with dimension p = 22 (nine auxiliary variables and 13 interaction

variables). Here, yi is the log-transformed net income, and ei is the error term.
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Table 3. Coverage probabilities (CP) and average lengths (AL) of 95% confi-
dence/credible intervals under p ∈ {20, 30, 40, 50} in scenarios (A) and (B) with linear
regression. All values are multiplied by 100.

(A) (B)

Method 20 30 40 50 20 30 40 50

GREG 92.8 92.8 92.7 89.9 94.2 92.1 92.1 90.1

GREG-L 93.5 93.4 93.2 93.3 94.5 94.8 94.4 94.8

GREG-R 93.0 92.4 91.8 90.0 93.3 92.4 91.9 90.4

GREG-V 93.6 93.7 93.3 91.4 94.1 93.8 92.5 91.2

CP GREG-M 93.9 93.9 93.9 92.9 94.5 93.7 93.8 92.9

AB 95.3 94.8 94.9 94.2 95.1 94.8 94.9 95.2

ABL 95.2 94.6 94.8 94.5 95.3 95.3 95.1 94.9

ABH 94.8 95.0 95.0 94.7 95.4 95.9 95.1 95.5

HT 94.5 94.5 94.5 94.5 95.2 95.2 95.2 95.2

GREG 43.1 42.3 41.5 40.7 43.1 42.3 41.5 40.7

GREG-L 43.8 43.7 43.6 43.5 43.3 43.1 42.9 42.8

GREG-R 43.2 42.5 41.9 41.4 42.8 42.0 41.3 40.7

GREG-V 43.4 42.8 42.2 41.6 43.4 42.9 42.3 41.8

AL GRREG-M 44.2 44.2 44.3 44.4 44.3 44.4 44.6 44.8

AB 45.8 46.3 46.8 47.3 46.2 47.0 47.8 48.7

ABL 45.6 45.9 46.1 46.3 45.8 46.4 46.8 47.3

ABH 45.1 45.2 45.2 45.1 45.2 45.4 45.4 45.6

HT 66.4 66.4 66.4 66.4 59.1 59.1 59.1 59.1

Under the working model (7.1), the posterior distribution of Ȳh is

p{Ȳh | ˆ̄Yh,reg(β
(h)
0 ,β1), β

(h)
0 ,β1} ∝ φ( ˆ̄Yh,reg(β

(h)
0 ,β1) | Ȳh, V̂e,h(β))π(Ȳh),

where
ˆ̄Yh,reg = β̂

(h)
0 + X̄

t
hβ̂1 +

1

Nh

∑
i∈Ah

1

πi

(
yi − β̂(h)

0 − xtiβ̂1

)
,

and

V̂e,h(β) =
1

N2
h

∑
i∈Ah

∑
j∈Ah

∆ij

πij

1

πi

1

πj

(
yi − β(h)

0 − xtiβ1

)(
yj − β(h)

0 − xtjβ1

)
.

Based on the above formulae, we perform the proposed approximate Bayesian

methods for Ȳh for each h, and compute the 95% credible intervals for the log-

transformed average income of 5,000 posterior samples, after discarding the first

500 samples as a burn-in period. We consider three types of priors for β1, namely,

the flat, Laplace, and horseshoe priors, as considered in Section 6, where we
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Table 4. Square root of mean squared errors (RMSE) and bias of point estimators under
p ∈ {20, 30, 40, 50} in scenarios (A) and (B) with logistic regression. All values are
multiplied by 100.

(A) (B)

Method 20 30 40 50 20 30 40 50

GR 2.24 2.29 2.32 2.36 2.32 2.39 2.50 2.57

GRL 2.17 2.18 2.19 2.20 2.27 2.29 2.31 2.30

GRR 2.22 2.26 2.29 2.31 2.32 2.38 2.44 2.49

RMSE AB 2.23 2.26 2.28 2.30 2.31 2.37 2.45 2.50

ABL 2.21 2.23 2.24 2.25 2.27 2.28 2.26 2.23

ABH 2.18 2.20 2.23 2.26 2.26 2.27 2.28 2.32

HT 2.80 2.80 2.80 2.80 2.83 2.83 2.83 2.83

GR -0.10 -0.12 -0.12 -0.11 0.10 0.18 0.31 0.43

GRL -0.11 -0.11 -0.10 -0.11 0.03 0.05 0.07 0.08

GRR -0.11 -0.12 -0.12 -0.12 0.07 0.13 0.20 0.27

Bias AB -0.11 -0.13 -0.13 -0.13 0.09 0.17 0.27 0.38

ABL -0.10 -0.10 -0.07 -0.02 0.07 0.13 0.19 0.22

ABH -0.10 -0.11 -0.10 -0.11 0.01 0.03 0.04 0.03

HT -0.15 -0.15 -0.15 -0.15 0.07 0.07 0.07 0.07

Table 5. Coverage probabilities (CP) and average lengths (AL) of 95% credi-
ble/confidence intervals under p ∈ {20, 30, 40, 50} in scenarios (A) and (B) with logistic
regression. All values are multiplied by 100.

(A) (B)

Method 20 30 40 50 20 30 40 50

GR 92.3 90.8 88.8 86.4 91.9 90.3 87.3 84.6

GRL 94.1 94.1 93.9 93.2 93.2 93.0 92.6 92.9

GRR 92.8 92.1 91.0 90.6 92.0 90.8 89.6 89.0

CP AB 94.8 95.5 95.4 96.1 94.6 94.1 94.5 95.1

ABL 95.1 95.7 95.9 96.5 94.6 95.2 96.6 97.2

ABH 95.1 96.0 96.0 96.2 95.1 95.2 95.9 96.2

HT 95.3 95.3 95.3 95.3 94.5 94.5 94.5 94.5

GR 8.02 7.80 7.56 7.30 8.20 7.95 7.69 7.39

GRL 8.21 8.17 8.14 8.11 8.42 8.37 8.33 8.30

GRR 8.15 7.99 7.88 7.79 8.34 8.17 8.04 7.94

AL AB 8.74 8.90 9.10 9.42 9.05 9.27 9.59 10.10

ABL 8.79 8.99 9.24 9.55 9.07 9.31 9.61 9.99

ABH 8.76 8.96 9.18 9.45 9.02 9.22 9.46 9.75

HT 11.14 11.14 11.14 11.14 11.00 11.00 11.00 11.00
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adopted the same priors for the hyperparameters in the Laplace and horseshoe

priors. For the Laplace priors, we also applied two different priors for the hyper-

parameter λ2, given by Ga(1, 1) and Ga(1/p, 1), but the results were almost the

same. We also calculate the 95% confidence intervals of the log-transformed av-

erage income based on the two frequentist methods, GREG and GREG-L, using

the working model (7.1). In applying GREG-L, we selected the tuning parameter

in the Lasso estimator using 10-fold cross-validation.

The 95% credible intervals of β1 based on the approximate posterior distri-

butions under the Laplace and horseshoe priors are shown in Figure 1, in which

the design-consistent and Lasso estimates of β1 are also given. It is observed that

the approximate posterior mean of β1 shrinks the design-consistent estimates of

β1 toward zero. However, exactly zero estimates are not produced in the same

way as the frequentist Lasso estimator does. The Lasso estimate selects only

one variable from among the 22 candidates, and the variable is also significant in

terms of the credible interval for both priors. Moreover, the two Bayesian meth-

ods detect one or two more variables as significant, judging from the credible

intervals. Lastly, the horseshoe prior provides narrower credible intervals than

the Laplace prior does.

In Figure 2, we show the resulting credible and confidence intervals of the

average income in the three provinces. It is observed that the proposed Bayesian

methods, AB and ABL, tend to produce wider credible intervals than the confi-

dence intervals of the corresponding frequentist methods, GREG and GREG-L,

which is consistent with the simulation results in Section 6. We also confirm that

the credible intervals of ABH are slightly narrower than those of ABL, reflecting

the differences in the interval lengths of β1 as shown in Figure 1.

8. Conclusion

We here proposed an approximate Bayesian method for model-assisted sur-

vey estimation using parametric regression models as working models. The pro-

posed method is justified under the frequentist framework. A main advantage

of the proposed method is that it can naturally implement a shrinkage prior for

regularized regression estimation. This not only provides an efficient point es-

timator, but also fully captures the uncertainty associated with model selection

and parameter estimation by means of a Bayesian framework. Although we only

consider two popular prior distributions, the Laplace prior and the horseshoe

prior, other priors, such as the spike-and-slab prior (Ishwaran and Rao (2005)),

can be adopted in the same way. This remains as an important future research
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− − − −

Figure 1. 95% credible intervals of regression coefficients under Laplace (left) and horse-
shoe (right) priors.

topic.

Although our working model is parametric, the proposed Bayesian method

can be applied to semiparametric models, such as the local polynomial model

(Breidt and Opsomer (2000)), P-spline regression model (Breidt, Claeskens and

Opsomer (2005)), and neural network model (Montanari and Ranalli (2005)).

By finding suitable prior distributions for the semiparametric models, the model

complexity parameters will be determined automatically, and the uncertainty will

be captured in the approximate Bayesian framework.

Finally, under a more complicated sampling design, such as multi-stage strat-

ified cluster sampling, the main idea can be applied in a similar manner, because

the proposed Bayesian method relies on the sampling distribution of the GREG

estimator, which is asymptotically normal, as shown by Krewski and Rao (1981).

If the asymptotic normality is questionable, one can use a weighted likelihood

bootstrap to approximate the Bayesian posterior, as in Lyddon, Holmes and

Walker (2019). Such extensions are beyond the scope of this study, but will be
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Figure 2. 95% confidence and credible intervals for average income based on five methods
in three provinces in Spain.

considered in future research.

Supplementary Material

The online Supplementary Material includes technical details for the poste-

rior computation, proofs of the theorems, and additional simulation results.
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