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Abstract: There is increasing interest in the study of community detection for sparse

networks. Here, we propose a new method for detecting communities in sparse

networks that uses the symmetrized Laplacian inverse matrix (SLIM) to measure

the closeness between nodes. The idea comes from the first hitting time in random

walks, and has a nice interpretation in diffusion maps. Community membership

is acquired by applying the spectral method to the SLIM. The SLIM outperforms

state-of-art methods in many real data sets and simulations. It is also robust to the

choice of tuning parameter, in contrast to spectral clustering with regularization.

Theoretical analyses show that in sparse scenarios generated by stochastic block

model, the SLIM ensures the same order of misclassification rate in E(degree) as

that of regularized spectral clustering.

Key words and phrases: Community, Random walk, Sparse network, Spectral method,

Stochastic block model.

1. Introduction

Early research on network community detection focused mostly on dense

networks. Many standard approaches are consistent when the networks are suf-

ficiently dense. Their performance on sparse networks is usually unsatisfactory,

owing to the intrinsic difficulties caused by sparsity. To illustrate the differences

between sparse and dense networks, we plot a stochastic block model (SBM) with

different expected degrees in Figure 1. Clearly, a very sparse network comprises

many tree-shaped disconnected components. As the network becomes slightly

denser (E(degree) ≥ 1), a giant connected component (subgraph) emerges. When

the network becomes even denser, rings start to appear, and the number of leaf

nodes decreases.

Sparse networks are ubiquitous in the real world, for example in social net-

works and gene co-expression networks. In such cases, the number of objects can
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Figure 1. Random networks generated from a SBM: nodes are colored according to true
community labels; from left to right, E(degree) grows from 0.5 to 4; for the description
of the SBM, please refer to section 3.1; the network generation process is described in
section 4.1; here we apply n = 100, K = 2, β = 0.1, ρ = 0, and π = (1/2, 1/2).

reach hundreds of thousands, but the edges are not so easily observable. Meth-

ods that are consistent for dense networks often fail in this case, empirically and

theoretically. Previous theoretical studies have usually considered the scenario

when E(degree) = Ω(log n) (see, e.g., Rohe, Chatterjee and Yu (2011); Lei and

Rinaldo (2015); Hajek, Wu and Xu (2016)), where n and degree are, respectively,

the number of nodes and the number of connections of a single node. However,

the scenarios in which E(degree) → ∞ and E(degree) = o(log n) are also of

practical interest.

The problem of sparse network community detection is receiving increasing

attention. Mossel, Neeman and Sly (2012, 2018) proved the theoretical boundary

of obtaining a community estimate that is better than a random guess, where

E(degree) is allowed to be as small as O(1). Krzakala et al. (2013) proposed

partitioning a sparse network by decomposing its non-backtracking matrix of

directed edges. Amini et al. (2013) presented a pseudo-likelihood method and

used a regularized version of spectral clustering to generate the initial estimate

for the iteration. Bhattacharyya and Bickel (2014) computed the distance matrix

to enhance the information in the network. Later, Joseph and Yu (2016) further

studied the effect of the regularization method used by Amini et al. (2013). Gao

et al. (2017) proved that normalized spectral clustering with regularization can

achieve consistency in sparse scenarios. Other recent works on sparse network

community detection include, among others, Massoulié (2014) and Chin, Rao and

Vu (2015).

In this paper, we propose an alternative method for partitioning sparse net-

works using the symmetrized Laplacian inverse matrix (SLIM). The SLIM de-

scribes the closeness between each pair of nodes. It depicts the indirect connec-

tions between nodes by considering a random walk on the network. The SLIM is,
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Figure 2. Plot of the adjacency matrix, normalized Laplacian matrix, and the SLIM:
We generate a network from an SBM with 100 nodes and three communities. We record
the adjacency matrix and compute the normalized Laplacian matrix and the SLIM. We
plot these three matrices in grayscale. Within each matrix, the colors white and black
correspond to its smallest and largest entries, respectively; the rows and columns of the
matrices have been arranged according to the community structure; the parameters for
the SLIM are γ = 0.25 and τ = 0.

in fact, an approximation of the matrix of exponentially transformed first hitting

times, which can also be interpreted as a diffusion map; see Section 2 for details.

There are many intuitive reasons for formulating the SLIM:

• The SLIM is no longer sparse, and it brings out the matrix blocks corre-

sponding to the communities within a network. It works for both sparse

and nonsparse networks.

• Because random walks are easily trapped in a community, the first hitting

time should be a suitable tool to fulfill the task of community detection.

• The exponential transformation enables the SLIM to emphasize information

in the local area and makes the matrix stable.

For illustration, in Figure 2, we plot the SLIM of a network generated from

an SBM, defined in section 3. The adjacency matrix and normalized Laplacian

matrix are also plotted for comparison. To ease interpretation, the nodes have

been ordered according to group indices. The three diagonal blocks of the matri-

ces reflect the intimacy of nodes in the same community. The SLIM fills the zero

entries in the adjacency matrix with a positive description of closeness. More

importantly, those entries within a community are assigned larger closenesses. A

clear contrast is observed at the boundaries of each diagonal block of the SLIM.

We apply the spectral method to the SLIM to estimate the community struc-

tures. Here, we theoretically prove the asymptotic consistency of the proposed

method under the SBM framework, in both dense (E(degree) = Ω(log n)) and
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Figure 3. Motivating the SLIM from the first hitting time.

sparse (E(degree)→∞ and E(degree) = o(log n)) scenarios. Specifically, in the

sparse scenario, a regularization step is needed in the algorithm to allow the proof

of consistency. To the best of our knowledge, for both scenarios, the consistency

rate of the SLIM reaches the best among those of all methods realized by apply-

ing spectral clustering to a certain matrix. Empirically, we demonstrate that our

method is superior to other methods in many settings, for both simulated and

real networks. It is always (among) the best, and it is robust in the selection of

the regularization parameter.

The remainder of the paper is organized as follows. Section 2 introduces the

formulation and the algorithms of the SLIM. Section 3 proves the consistency of

the method. In section 4, we demonstrate the performance of the SLIM using

numerical experiments. We conclude the paper in section 5. Section S2 in the

online Supplementary Material presents detailed proofs of our theorems.

2. Methodology

2.1. Motivation

Let A denote the adjacency matrix, consisting of zeros and ones. For sparse

networks, A contains many zero entries, and there is a lack of information on the

closeness between nodes. It is desirable to obtain a new matrix that can better

depict the closeness between each pair of nodes. We motivate our methodology

from two different, but somewhat related angles.

2.1.1. Derivation of the SLIM from the first hitting time in a random
walk

Our method is motivated by the first hitting time of random walks. Consider

a random walk on a network: starting from each node, one of its edges is chosen
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Figure 4. The idea behind the formulation of the SLIM M̂.

with equal probability. For example, in Figure 3, the first hitting time from C to

B is larger than that from C to E, despite their graph distances both being 2.

Let hi,j denote the first hitting time from node i to node j. Then, E(exp(

−γhi,j)) is a good local similarity measure between the two nodes, where the

exponential transformation emphasizes the local information by down-weighting

the large first hitting time. However, E(exp(−γhi,j)) is very difficult to calculate.

Therefore we approximate it by

H =

∞∑
k=1

exp(−γk)(D̂−1A)k =

∞∑
k=1

αk(D̂−1A)k,

where α = e−γ , A is the adjacency matrix, D̂ is the diagonal matrix of degrees,

and D̂−1A is the transition matrix of a random walk on the network. In this

approximation, instead of counting only the first hitting time, we count all hitting

times. Because exp(−γk) is very small when k is large, the approximation is

reasonable.

It is easy to see that H = (I − αD̂−1A)−1 − I. We denote the inverse of the

Laplacian matrix

(I − αD̂−1A)−1

by Ŵ , which has the same eigenvectors as H. From Ŵ , we can define the sym-

metrized Laplacian inverse matrix (SLIM):

M̂ =
Ŵ + Ŵ ∗

2
.

Figure 4 depicts the idea behind its formulation, and Figure 2 shows the plot of

M̂ − I. Under the SBM, E(M̂)− I is a block matrix.

2.1.2. Derivation of the SLIM from the diffusion map

The formulation of Ŵ can also be motivated by the idea of a diffusion map.

Note that Ŵ = H + I is a power series of the transition matrix D̂−1A. Coifman

and Lafon (2006) interpreted (D̂−1A)k as an integration of the local geometry of
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Figure 5. Plots of different powers of the transition matrix: We generate a network with
200 nodes and three communities from an SBM, and compute (D̂−1A)k with different
ks; the left-most plot of E(A) shows the model setting; the rows and columns of the
matrices are ordered according to the community indices.

the system, where k is the scale of integration. As k increases, small cliques start

to merge and, eventually, all nodes merge into a single group. Under this idea,

Ŵ is a weighted summation of different scales of representations of the network

structure.

Figure 5 shows plots of (D̂−1A)k. For k = 1, it is difficult to observe the

community structure. With increasing k, the structure becomes clearer. As k

becomes even larger, the boundaries between the communities become blurred.

Eventually, (D̂−1A)k no longer contains any block structure, and all nodes merge

into one giant community. It is reasonable to adopt a decreasing weight of e−kγ for

this summation, because the matrix power contains very little group information

as k increases.

In practice, it suffices to replace Ŵ with a finite number m of matrix powers,

resulting in

Ŵm =

m∑
k=1

αk(D̂−1A)k, where α = e−γ . (2.1)

This is useful for large networks, where the calculation of a matrix inverse is very

time consuming. We include the performance of Ŵm in section 4. Furthermore,

in appendix 4.2.3, we specially examine the performance of this approach. The

simulation results indicate that Ŵm behaves similarly to Ŵ even for small m’s.

2.2. Algorithm for community detection using the SLIM

The estimate of community indices is obtained by decomposing M̂ .

Several remarks are in order.

• The method using A to compute the SLIM is called the SLIM method, and

the method using Aτ is referred to as SLIM with regularization, denoted by
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Define the similarity matrix using the SLIM:

1. Calculate the inverse Laplacian matrix Ŵ = (I − αD̂−1A)−1, where α = e−γ

and D̂ = diag(A× 1n×1).

2. Calculate M̂ = (Ŵ + Ŵ ∗)/2.

3. Force the diagonal entries of M̂ to zero.

*. For the SLIM with regularization, replace the A and D̂ in step 1 with Aτ and
D̂τ = diag(Aτ × 1n×1) respectively, where Aτ = A+ (τ/n)11T .

Perform spectral clustering:

4. Perform spectral decomposition on M̂ , and find the first k eigenvectors. Here,
the eigenvectors are ordered according to the eigenvalues in decreasing order.

5. Align these eigenvectors as columns to form an n× k matrix X.

6. Consider the rows of X as positions of the nodes, and apply clustering methods
to obtain the community label of each node.

SLIMτ . Furthermore, we use SLIM methods to refer to all methods that

apply the SLIM (matrix).

• For sparse networks, a small perturbation τ is added to A to make D̂−1

stable, following Amini et al. (2013); Joseph and Yu (2016); Gao et al.

(2017). The perturbation guarantees the theoretical consistency of sparse

networks. In practice, though, the SLIM method works well enough; see

section 4.

• The diagonal entries of M̂ are set to a constant before the decomposition,

which is found to work well in practice. This step is not included in the

theoretical analysis though.

• Steps 4 to 6 are standard steps for spectral clustering, and the clustering

method in the last step can use the k-means, Gaussian mixture model based

EM Algorithm and so on. The k-means is often used in prior studies. In

our experiments, we find that partitioning around medoids (PAM) Kaufman

and Rousseeuw (1990) works consistently well for the SLIM methods.

• The computational complexity of the SLIM methods is O(max(n2, Cinverse,

Csvd−k , Ckmeans)). Here, Cinverse, Csvd−k, and Ckmeans are the computational

complexities of the matrix inversion, k-top SVD for the n×n matrices, and

k-means with n k-dimensional observations, respectively, which depend on

the specific algorithms applied. Taking Cinverse = O(n3), Csvd−k = O(n3),

and Ckmeans = O(Ik2n), the computational complexity of the SLIM methods

is then O(max(n3, Ik2n)). Here I is the number of iterations in the k-means.
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• When handling a large network, we suggest approximating Ŵ by
∑m

k=1 α
k(

D̂−1A)k, rather than calculating Ŵ explicitly. This approximation approach

(SLIMappro) is examined using numerical experiments in section 4.

2.3. Choice of tuning parameters

We need to set two tuning parameters, τ and γ.

• We recommend choosing τ = cd̃, for a small constant c > 1, where d̃ is the

observed average degree of the nodes. In section 4, we show that the SLIM

is not very sensitive to the amount of perturbation τ . Empirically, we find

τ = 0.1d̃ to be a consistently good choice.

• We recommend setting γ = 0.25. This has been found to be a good choice

for many different scenarios, including the SBM and the degree-corrected

SBM. This choice of γ is applied in all of the numerical studies discussed in

this paper.

Overall, our recommendation is to use the SLIMτ with τ being 0.1 times the

observed average degree of nodes and γ = 0.25, by default. When n is large, we

recommend applying the SLIMappro approach to accelerate the computation.

3. Main Results

In this section, we show that the SLIM is consistent in the sense that the

error rate approaches zero asymptotically in the context of an SBM.

3.1. Model assumptions and notation

The SBM assumes that in generating the edges, there is a K ×K symmetric

matrix B that guides the process, where K is the number of communities. The

edges between pairs of nodes are generated independently, and node i and node

j are connected with probability bgigj , where gi is the group index of node i. We

store the group indices in a matrix Θ ∈ Fn,K , with Fn,K the collection of all n×K
matrices, such that each row is composed of a single one and (K− 1) zeros. Here

Θ is called a membership matrix, and Θi,gi = 1.

An observed network is represented by its adjacency matrix An×n, a 0-1

symmetric matrix. Let P = ΘBΘT . Then, Ai,j(i < j) follows an independent

Bernoulli distribution, with p = pi,j = bgigj . The edge generating process is

illustrated as follows:
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P =


b1,11n1×n1

b1,21n1×n2
· · · b1,K1n1×nK

b2,11n2×n1
b2,21n2×n2

· · · b2,K1n2×nK

...
...

. . .
...

bK,11nK×n1
bK,21nK×n2

· · · bK,K1nK×nK

 .

For example, when K = 2,

P =


0.8 0.8 0.8 0.2 0.2

0.8 0.8 0.8 0.2 0.2

0.8 0.8 0.8 0.2 0.2

0.2 0.2 0.2 0.6 0.6

0.2 0.2 0.2 0.6 0.6

⇒ A =


1 1 1

1 1 1

1 1

1

1 1

 .

Here, the nodes have been ordered according to their group memberships. Clearly,

E(A) = P and the task is to recover the block structure of P from A, whose nodes

are unordered.

We now define the error rate to evaluate the performance of the community

detection. Let Θ̂ ∈ Fn,K be the estimated membership matrix. We consider the

overall proportion of misclassified nodes,

L(Θ̂,Θ) = n−1 min
Q∈EK

‖Θ̂Q−Θ‖0, (3.1)

where EK is the set of all K ×K permutation matrices. This value is some-

times called the “misclassification rate.”

Define

M =
1

2
((I−αD−1P )−1+((I−αD−1P )−1)T ), where D = diag(P1) and α = e−γ .

We define Mτ similarly by replacing P and D above with Pτ = P + τ
n11T and

Dτ = diag(Pτ1), respectively. Under the SBM, M and Mτ have a block structure

corresponding to the group structure in the network. Here, M̂ and M̂τ are close

to M and Mτ , respectively, with high probability.

3.2. Main result

We now show the consistency of the SLIM methods under different scenarios.

3.2.1. Consistency of the SLIM with regularization for sparse networks

For sparse networks, we eliminate the nodes with degree larger than Cd,

where C is a sufficiently large constant, and d is the expectation of the average

degree, which can be estimated by the mean of the observed degrees. This step
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is only for the technical proof. It makes little difference in a real application if

we take C to be sufficiently large.

Theorem 1. Let Θ̂τ be the membership matrix using the SLIM with regular-

ization with τ ∈ [C1d,C2d], for some large constants C1, C2 > 0, taking α as

any constant in (0, 1), and using the k-means as the clustering method. Here,

d= npmax + 1 and pmax = maxu≥v Puv. Then, as n → ∞, for any C ′ > 0, there

exists a constant C > 0, and with probability 1− n−C′
, we have

L(Θ̂τ ,Θ) ≤ C log d

(γτ,K − γτ,K+1)2d
,

if log d/((γτ,K − γτ,K+1)
2d) ≤ ε, for some small ε ∈ (0, 1), here γτ,K is the Kth-

largest eigenvalue of Mτ .

The proof of Theorem 1 is given in appendix S2. Theorem 1 reveals that the

upper bound of the misclassification rate is negatively correlated with the eigen

gap (γτ,K − γτ,K+1) of Mτ and the average degree d. Moreover, the eigen gap of

Mτ is determined by the values of the SBM parameters and the choice of τ . The

interpretation of Theorem 1 becomes much easier in the following simple case.

Condition 1. B = (a/n−b/n)IK+(b/n)1K1TK and n1 = n2 = · · · = nK = n/K.

Here, IK is the K ×K identity matrix, and a > b > 0.

Corollary 1. Assume the conditions in Theorem 1 and Condition 1 hold. Then,

as n → ∞, for any C ′ > 0, there exists a constant C > 0, such that, with

probability 1− n−C′
,

L(Θ̂τ ,Θ) ≤ C
(

τ

a− b

)2 log a

a
.

Remark 1. Because a/n and b/n indicate the possibility of an edge existing

between a pair of nodes from the same group and from two different groups,

respectively, a−b in Corollary 1 reflects the strength of the signal. From Corollary

1, recalling that τ ∈ [C1d,C2d], τ cannot be too large, and a − b cannot be too

small. Moreover, as a→∞, the error rate goes to zero, as long as
√
a log a/(a− b)

goes to zero.

3.2.2. Consistency of the SLIM method for dense networks

The results for dense networks are stated below. We omit the details of the

proofs because they are similar to those in Lei and Rinaldo (2015).

Theorem 2. Let Θ̂ be the membership matrix obtained using the SLIM, with α

as any constant in (0, 1), and using the k-means as the clustering method. Then,
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as n → ∞, for any C ′ > 0, there exists a constant C > 0, and with probability

1− n−C′
, we have

L(Θ̂,Θ) ≤ C log d

(γK − γK+1)2d
,

if log d/((γK − γK+1)
2d) ≤ ε, for relatively small ε in (0, 1), and dmin = Ω(log n);

here γK is the Kth-largest eigenvalue of M .

Remark 2. To the best of our knowledge, for the SLIM (SLIMτ ) method, the

consistency rates in both dense and sparse regimes are among the best, con-

sidering all one-step spectral algorithms. Its rate is the same as that achieved

by normalized spectral clustering with regularization (Theorem 4 in Gao et al.

(2017)). Because the SLIM method satisfies the weak consistency condition in

Gao et al. (2017), if it is adopted as the initialization method for Algorithm 1

in Gao et al. (2017), the optimal misclassification proportion proposed in Zhang

and Zhou (2016) can be achieved. We demonstrate in the next section that the

SLIM usually outperforms normalized spectral clustering with regularization em-

pirically. It is much more independent of the choice of the regularization term

τ .

4. Numerical Results

We investigate the performance of the SLIM using simulated and real net-

works. In section 2, we introduced the SLIM method and the SLIM with regular-

ization (SLIMτ ). In this section, we examine the performance of both methods,

as well as the approximation approach (SLIMappro) introduced in (2.1). The

following methods/algorithms are adopted for comparison purposes:

• normalized spectral clustering (SC),

• normalized spectral clustering with regularization (SCτ ) Amini et al. (2013);

Joseph and Yu (2016),

• spectral clustering on ratios-of-eigenvectors (SCORE) Jin (2015),

• spectral algorithms based on a non-backtracking walk (NB) Krzakala et al.

(2013),

• a pseudo-likelihood algorithm (PL) Amini et al. (2013), and

• a pseudo-likelihood conditional on node degrees (CPL) Amini et al. (2013).

Among these methods, SC represents the traditional approaches. In addition,

SCτ , NB, PL, and CPL represent the state of the art for sparse community de-

tection, and SCORE is the benchmark for the degree-corrected SBM (DCSBM).
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The first four methods and the SLIM method are spectral methods. For all of

them, we applied k-means as the clustering method in the last step. PL and CPL

adopt the expectation-maximization (EM) algorithm. Following the suggestions

in Amini et al. (2013), we applied SCτ to initialize the iterations of PL and CPL.

The numerical results suggest that the SLIM (even without regularization)

successfully addresses the sparsity issue in network community detection. Its

performance is robust with respect to the regularization parameter τ , in contrast

to SCτ . Furthermore, simulation results in various model settings show that the

proposed methods (SLIM, SLIMτ , and SLIMappro) are competitive with cutting-

edge methods. Furthermore, the SLIM works well, not only in the standard SBM

setting, but also for the DCSBM. Moreover, the SLIM method maintains the best

accuracy in all three of our real data experiments.

In section 4.1, we introduce the network generation scheme implemented

in our simulations, criteria adopted as performance measures, and the default

parameters of the methods. The simulation results follow. In section 4.2, we

investigate the SLIM method and find the scenarios it specializes in. The perfor-

mance of SLIMτ and SLIMappro, with varying parameters, is also studied here.

Section 4.3 compares the SLIM methods and the methods listed above. The

results of the real-data analysis are given in section 4.4.

4.1. Network generation scheme, performance measure, and default

parameters

Throughout the simulation studies, we use an SBM (DCSBM) to generate

networks with 1,200 nodes and three communities. We follow the simulation

scheme in Amini et al. (2013). The community labels of the nodes are the out-

comes of independent multinomial draws, with π = (π1, π2, π3). Conditioning

on these labels, the edges are generated as independent Bernoulli variables, with

p = Bgigj , while under the DCSBM, p = θiθjBgigj . We use θi to represent the

popularity of node i, and θi are drawn independently, with P (θ = 0.2) = ρ and

P (θ = 1) = 1 − ρ. We consider two settings, namely, ρ = 0 and ρ = 0.9, which

correspond to the standard SBM and the DCSBM, respectively.

The block probability matrix B is controlled by two parameters: the overall

edge density λ, and the “out-in-ratio” β. Here, λ is E(degree), and λ ranges

from 2 to 10 in our simulations, where a small λ indicates a sparse networks. In

addition, β controls the ratio between the inter- and intra-community connection

probabilities, and is set between 0.02 and 0.2. The generation of B consists two

steps:
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1. Generate B(0), whose diagonal and off-diagonal entries are set to one and

β, respectively.

2. Obtain B by rescaling B(0), making E(degree) = λ. Specifically,

B =
λ

(n− 1)(πTB(0)π)(Eθ)2
B(0). (4.1)

All simulations discussed below adopt the same network generation scheme

as described above. We control the parameters λ, β, ρ, and π to model different

settings. Under each parameter setting, we replicate the simulation process and

report the average performance of the methods. The number of replications is

100, unless otherwise stated. In order to be coherent with our theories, we adopt

the missclassification rate (3.1) as the measure of performance. Note that other

performance measures are possible; see Liu, Cheng and Zhang (2019).

Note that throughout the numerical studies, we use γ = 0.25 for the SLIM

methods, as suggested in section 2.3. Furthermore, in sections 4.3 and 4.4, we

apply τ = 0.1 for both SCτ and the SLIMτ . This choice was made referring to

the experimental results shown in section 4.2.2.

4.2. Performance of the SLIM method, SLIMτ , and SLIMappro

Before comparing the methods, we examine the experimental properties of

the SLIM.

4.2.1. The SLIM addresses the sparse issue

In this section, we compare the accuracy of the SLIM and the SC in the SBM

setting, with varying average degree (λ) and ”out-in ratio”(β). Here, we apply the

SLIM method (τ = 0). Note that SLIMτ has the potential to improve the SLIM

method, with a proper choice of τ . In the simulations, we fix π = (1/3, 1/3, 1/3)

and ρ = 0. Figure 6 shows the performance of the SLIM method and the SC,

where the color indicates average accuracy.

The figures show the deficiency boundary of the SLIM method and the SC.

When the “out-in ratio” is large, or when the expected degree is small, the

accuracy is low. This observation coincides with the numerical results reported

in previous works, and validates our statement that the sparse scenario is difficult

and needs special treatment. The SLIM method successfully pushes the deficiency

boundary toward the upper-left corner (see the comparison between Figure 6b

and 6a). Figure 6c presents the improvement of the SLIM method over the SC. It

appears in the sparse area, at the deficiency boundary of the SC. This observation
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Figure 6. Comparison between the SC and SLIM (without regularization): Networks are
simulated from an SBM with n = 1,200, K = 3, ρ = 0, π = (1/3, 1/3, 1/3), and varying
λ and β; (c) shows the result of subtracting (b) from (a).

justifies our motivation and intuition for presenting the SLIM. Furthermore, it

suggests that the perturbation τ may not be necessary for sparse scenarios.

4.2.2. The effect of τ to SLIMτ

The regularization parameter τ is introduced in the SLIMτ to ensure the-

oretical consistency in sparse scenarios. This form of regularization was first

introduced in SCτ by Amini et al. (2013) to improve the performance of the

SC in sparse scenarios, and has proven effective, both empirically and theoreti-

callyAmini et al. (2013); Gao et al. (2017); Joseph and Yu (2016). However, to

the best of our knowledge, there is no practical criterion for choosing the best τ .

Previous analysis has only suggested that τ should have the same order as the

observed average degree. In figure 7, we show the effect of τ for SLIMτ and SCτ .

For both methods, the performance at τ = 0 is also included. This corresponds

to the SLIM method and SC, respectively. For ease of presentation, we only

specify the ratio between τ and the observed average degree. For example, τ = 2

actually means τ = 2
∑
d̂i/n. The simulations are carried out under an SBM

with π = (1/3, 1/3, 1/3), ρ = 0, and varying λ.

From Figures 7, we have the following observations:

• Under the adopted SBM setting, the best τ for both methods is about

0.1
∑
d̂i/n.

• For both the SLIMτ and SCτ , either a τ that is too small or too large re-

sults in suboptimal performance. However, as τ decreases from the optimal

choice, the accuracy of SCτ decreases abruptly, while the performance of

SLIMτ is much more stable (see the comparison between Figure 7a and 6b).

• Figure 7c shows the improvement of SLIMτ over SCτ . When the same
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Figure 7. The effect of τ in SLIMτ and SCτ : Here, n = 1,200, K = 3, β = 0.05, ρ = 0,
π = (1/3, 1/3, 1/3), and λ varies. (c) shows the result of subtracting (b) from (a); the
results at τ = 0 show the performance of the SLIM method and SC respectively.

τ is applied in both methods, SLIMτ improves SCτ the most at small τ .

Moreover, for all τ , we observe a slight advantage for SLIMτ in sparse areas.

Note that SLIMτ is less dependent on the choice of τ than SCτ is. This

property is desirable. Unlike for SCτ , in real applications, a small τ is always a

safe choice for SLIMτ . Furthermore, the simulation results above show that the

regularization term τ might not be necessary. However, we are not able to prove

this at present. We give real-data experiments for τ in section 4.4.1.

4.2.3. The performance of SLIMappro

In section 2.1.2, we suggested an approximation approach for the SLIM to

accelerate its computation; when n is large,

Ŵm =

m∑
k=1

αk(D̂−1A)k, where α = e−γ .

Here, we experimentally examine the performance of this approach, with m rang-

ing from 1 to 32. We repeatedly generate networks from an SBM with ρ = 0 and

π = (1/3, 1/3, 1/3). We vary λ and β, and report the average misclassification

rate obtained from Ŵm in Figure 8. The performance of the SC, SCORE, and

SLIM method are also shown, for comparison. Specifically, for both the SLIM

method and the approximation approach, we used γ = 0.25 and τ = 0.

In the figure above, the average misclassification rate of each setting is rep-

resented by color, where a blue color is better. We observe that Ŵm, with m as

small as 2, performs satisfactorily. Furthermore, in the simulated settings, this

approximation approach behaves very similarly to the SLIM method. In the case

of a low “out-in” ratio, it is even better. These results suggest that, in cases

of large networks, we can safely use this approximation approach with a small



16 JING ET AL.

0.57439

0.43590

0.29442

0.47072

0.38570

0.27236

0.29325

0.04110

0.43866 0.33313 0.28864 0.28563 0.29386

0.15373

0.05326

0.03455

0.02144

0.01622

0.01168

0.00825

0.00631

0.14364

0.09460

0.06916

0.05360

0.04129

0.03305

0.02573

0.02333

0.14835

0.07987

0.05676

0.04061

0.02819

0.02148

0.01626

0.01180

0.00822

0.00640

0.63924

0.64242

0.64195

0.52154

0.15202

0.06381

0.02964

0.01236

0.00848

0.19643

0.09679

0.05818

0.02857

0.02175

0.01639

0.01193

0.00819

0.00656 0.00649

0.15381

0.31785

0.08059

0.05420

0.04070

0.02817

0.14810

0.07993

0.05394

0.04061

0.14823 0.14833

0.07982 0.07989

0.05676 0.05675

0.04062 0.04063

0.02819 0.02822 0.02818

0.02151 0.02146 0.02149 0.02148

0.01627 0.01621 0.01625 0.01626

0.01188 0.01185 0.01181 0.01180

0.00820 0.00824 0.00821 0.00822

0.00638 0.00641 0.00640 0.00640

SC        SCORE      SLIM        m= 1        m =2         m =4        m = 8       m =16       m= 32

7
.0

  
  

  
  

  
  

6
.5

  
  

  
  
  

  
6

.0
  

  
  

  
  

  
5

.5
  
  

  
  

  
  
5

.0
  

  
  
  

  
  

4
.5

  
  

  
  

  
  

4
.0

  
  

  
  
  

  
3

.5
  

  
  

  
  

  
3

.0
  

2
.5

  
  

  
  

  
  

2
.0

A
v

er
ag

e 
D

eg
re

e

(a) MISCLASSIFICATION RATE with
varying λ and m.

SC          SCORE        SLIM         m =1          m =2           m =4          m =8          m =16        m =32

0
.2

  
  
  
  
  
  
0
.1

8
  
  
  
  
  
  
0
.1

6
  
  
  
  
  
  
0
.1

4
  
  
  
  
  
  
0
.1

2
  
  
  
  
  
  
  
0
.1

  
  
  
  
  
  
 0

.0
8
  
  
  
  
  
  
0
.0

6
  
  
  
  

0
.0

4
  
  
  
  
  
  
0
.0

2
  
  
  
  
 

O
u

t-
In

 R
at

io

0.01708 0.06867

0.06515

0.55802

0.22167

0.62026

0.36507 0.25270

0.29226

0.44847

0.38228

0.43300

0.49706

0.21325

0.32327

0.43682

0.29774

0.38089

0.46156

0.27716

0.36884

0.44931

0.29534

0.40633

0.48340

0.21071

0.31709

0.43611

0.21327

0.32210

0.436860.63147

0.64148

0.64872

0.65072

0.11182

0.17956

0.54574

0.57754

0.59144

0.01720

0.04099

0.07384

0.12215

0.50017

0.57172

0.59583

0.60167

0.62319

0.64376

0.64796

0.64762

0.64815

0.65011

0.65014

0.01785

0.04188

0.07473

0.11902

0.19721

0.53627

0.57044

0.01739

0.04130

0.07147

0.11167

0.18244

0.53241

0.56944

0.01728

0.04108

0.07100

0.11664

0.20143

0.55875

0.58870

0.01719

0.04097

0.07382

0.12196

0.49989

0.56892

0.59308

0.01720

0.04098

0.07383

0.12218

0.50011

0.57122

0.59568

(b) MISCLASSIFICATION RATE with
varying β and m.

Figure 8. MISCLASSIFICATION RATE of the approximation approach using Ŵm:
This approach is tested with different m (from 1 to 32); the last six columns correspond
to SLIMappro, with m as indicated below; networks are simulated from an SBM with
n = 1,200, K = 3, ρ = 0, and π = (1/3, 1/3, 1/3); in (a), β = 0.05; in (b), λ = 3.5; for
each parameter setting, the number of replications is 100.

m ≥ 2. We show more results using this approach, with m = 8, in sections 4.3

and 4.4.

4.3. Comparison with other methods

We carry out extensive simulations to compare the SLIM methods with

cutting-edge methods introduced for sparse networks in the literature. All three

SLIM methods examined above are considered. In the notation of the figures,

“SLIM” stands for the SLIM method (τ = 0), “SLIMτ” is applied with τ = 0.1,

and “SLIMappro” is applied with m = 8. We implement the same choice of τ

for SCτ . Because the model settings for the simulations in this section are sim-

ilar to those in Figure 7, we believe the best choice for τ should be close to 0.1.

Moreover, for both PL and CPL, we adopt SCτ=0.1 to initialize the iterations.

4.3.1. Standard SBM

We start the simulations under the standard SBM setting (ρ = 0). We

run three groups of simulations to test the methods, with varying λ, β and π.

Specifically, for π, we use π = (1/3 −∆, 1/3, 1/3 + ∆), with ∆ varying between

zero and 0.3. Here, ∆ can be interpreted as the degree of imbalance in the
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Figure 9. Comparison in standard SBM: For all three figures, n = 1,200, K = 3, and
ρ = 0; β = 0.05 in (a) and (c); ∆ = 0 in (a) and (b); λ = 3.5 in (b) and (c).

community size.

Figure 9a shows the performance of the methods as the networks change

from sparse to dense. Figure 9b shows their performance as the “out-in” ratio

changes. In general, a larger β means there is a smaller “contrast” in the observed

networks, and therefore harder tasks. On the other hand, we also consider varying

π, because imbalances in group sizes could be a practical issue in real applications.

Figure 9c shows the performance of the tested methods pertaining to this issue.

Overall, the SLIM methods behave satisfactorily. In Figure 9a, SLIMτ , SCτ ,

PL, and CPL have the same and the lowest misclassification rates. Figure 9b

shows that SLIMτ outperforms the others considerably in the case of “low con-

trast,” that is when the “out-in ratio” is large. When the community sizes are

nonhomogeneous, the misclassification rate of SLIMτ is still close to the lowest

rate (PL and CPL). Moreover, the SLIM method (τ = 0) and SLIMappro per-

form acceptably as well, with large improvements over the SC in all settings.

Note that SLIMappro behaves comparably with the SLIM method.

4.3.2. DCSBM

We repeat the simulations above in DCSBM. The only difference here is that,

in the generation of the networks, 10% of the nodes are hubs with high popularity.

The results are shown in Figure 10.

We obtain similar observations from this set of simulations to those in section

4.3.1. The SLIM methods are still competitive. Note that all methods designed

for sparse networks work well in the simulated DCSBM settings. Though tradi-

tional methods tend to deteriorate when the degrees of nodes are heterogeneous

Jin (2015), the methods for sparse networks largely improve the performance of

the SC. They even outperform SCORE in most of the applied settings.
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Figure 10. Comparison in DCSBM: Here ρ = 0.9; n, K, β, λ, and ∆ are as in Figure 9.

Table 1. Data description

n (# of nodes) K (# of communities) average degree
Politic blogs 1,222 2 27.36
Politic books 105 3 8.40

College football 115 12 7.67

4.4. Real-Data Analysis

In this section, we examine the performance of the SLIM using real network

data. Those methods considered in the simulations above are applied here as

well. Three commonly studied data sets are used, which can be downloaded at

https://github.com/yningc/SLIM/tree/master/SLIM_MATLAB.

Political blog network (Pbl) Adamic and Glance (2005) is regarded as

a typical degree-corrected network Jin (2015). These data were collected

immediately after the 2004 US presidential election. Pairs of blogs are con-

nected if there is a hyperlink between them. The giant component contains

1,222 blogs and 16,714 edges, where each blog is manually labeled as either

liberal or conservative. The belief that blogs with similar political attitudes

tend to connect makes this network ideal for a network community study.

Many researchers have tested their methods on this data set to see how close

their community detection results are to the manual labels.

Political books network (Pbk) contains 105 nodes and 441 edges. Nodes

are US political books sold by Amazon.com, and edges represent the occur-

rence of co-purchasing. Nodes have been manually partitioned into three

groups, namely, liberal, neutral, and conservative. These partitions are

adopted as true community labels in the measure of accuracy.

https://github.com/yningc/SLIM/tree/master/SLIM_MATLAB
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Table 2. MISCLASSIFICATION RATE (%) of methods: We considered the same meth-
ods here as in section 4.3; for a detailed description of the methods and the parameters
used, please refer to the beginning of section 4.3; here, τ = 0.1 means τ = 0.1

∑
d̂i/n;

the lowest misclassification rate in each row is presented in bold face.

SLIM
SCORE SC SCτ NB PL CPL

data τ = 0 appro τ = 0.1
Pbl 4.26 4.34 5.16 4.75 49.02 18.82 5.32 4.75 4.99
Pbk 16.19 16.19 15.23 24.76 16.19 16.19 18.10 17.14 17.14
Cfb 7.83 7.83 7.83 10.43 7.83 10.43 15.65 11.30 11.30

College football network (Cfb) is derived from the schedule of Division I

games for the 2000 season in the United States Girvan and Newman (2002).

It has 115 nodes, representing the football teams, and the 441 edges, indicat-

ing regular-season games between pairs of teams. This network has a natural

community structure inherited from the formation of 12 conferences. Each

contains 8–12 teams. Games were more frequent within a conference than

between members of different conferences. On average, each team played

about seven intra-conference games and four inter-conference games. This

fact makes it possible to infer the conference membership of teams from the

network structure.

Table 1 summarizes the data and Table 2 reports the performance of the

considered methods. The set of methods examined here is the same as that in

section 4.3.

The SLIM performs very competitively, reporting the lowest misclassification

rate in all three networks.

Note too that, for the political blogs data, the SLIM method is better than

SLIMτ . This indicates that, for this particular data, a τ smaller than 0.1
∑
d̂i/n

should be used. Although the network size of this data is similar to that of

simulation shown in Figure 7, the best τ is quite different. This observation

validates our statement that, in applications, the selection of τ for SLIMτ and

SCτ could be tricky. Therefore, the robustness of the SLIM with respect to τ is

crucial. We perform additional experiments for the choice of τ below.

4.4.1. Apply SLIMτ and SCτ to the political blogs network with dif-
ferent τ

Figure 11 shows the misclassification rate of SLIMτ and SCτ with varying

τ . Specifically, for each method, we try both k-means and partitioning around

medoids (PAM) Kaufman and Rousseeuw (1990) as clustering methods in the

last step.
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Figure 11. MISCLASSIFICATION RATE of SLIMτ and SCτ on the political blogs
network; the x-coordinate is the ratio between τ and

∑
d̂i/n.

This result indicates that the SLIM gives satisfactory performance, as long as

τ is smaller than 0.125
∑
d̂i/n, while for SCτ , one has to use τ between 2−4 and

2−8 times
∑
d̂i/n. When τ is properly selected, the misclassification rate of SCτ

can be reduced from the 18.82% in Table 2 to 4.91%. However, its performance

highly depends on this choice. In contrast, for the SLIM, the arbitrary selection

of τ = 0 is good enough.

5. Conclusion and Discussioin

We have proposed a new scalable method, SLIM, for detecting communities

in networks. The underlying idea is to enhance the information represented

by an adjacency matrix by considering a random walk on the network. This

method is designed specifically for sparse networks, although it works well for

dense networks as well.

The method is stable in the choice of the regularization parameter. This pa-

rameter is required to prove consistency in the E(degree) = ω(1) sparse scenario.

However, simulations suggest that it is not necessary in practice. Therefore, it

would be promising to explore whether we can remove the regularization in a

theoretical study. Our simulations indicate that the stability of the SLIM with

regard to τ may be due to the third step of the SLIM method, namely, the

step forcing diagonal entries to zero. Furthermore, simulations and a real-data

analysis suggest that methods designed for sparse networks mostly specialize in

DCSBM as well. The intrinsic reason for this finding is another interesting topic

for future research.
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Supplementary Material

The online Supplementary Material contains the proof of Theorem 1 (part

A) and additional simulation results (part B) for increasing n.
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