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Abstract: Nature-inspired metaheuristic algorithms have become increasingly pop-

ular in the last couple of decades, and now constitute a major toolbox for tackling

complex high-dimensional optimization problems. Using group sequential experi-

mentation, adaptive design, multi-armed bandits, and bootstrap resampling meth-

ods, this study develops a novel statistical methodology for efficient and systematic

group sequential selection of the tuning parameters, which are widely recognized

as pivotal to the success of metaheuristic optimization algorithms in practice, as

new information accumulates during the course of an experiment. The method-

ology is applied to compute optimal experimental designs in nonlinear regression

models, and is illustrated with solutions of long-standing optimal design problems

in early-phase dose-finding oncology trials.
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criterion for toxicity and efficacy, locally D-optimal and c-optimal designs.

1. Introduction

Metaheuristic optimization algorithms have become major tools for tackling

complex high-dimensional optimization problems of the Information Age in the

past two decades. They are essentially free of assumptions, fast, easy to imple-

ment, and frequently able to find the optimum or a solution close to the optimum

after relatively few iterations, but require good tuning parameters. In particular,

for the metaheuristic optimization quantum particle swarm optimization (qPSO),

Sun, Lai and Wu (2012, Chap. 5) provide a convergence analysis and performance

comparison for different choices of the tuning parameters to show the fundamental

importance of choosing them well. Huang, Li and Yao (2020) recently empha-

sized the importance of finding appropriate tuning parameters in metaheuristic
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optimization algorithms in their survey on the subject. They say that whereas

heuristic optimization algorithms are problem-specific and implement heuristic

rules or strategies to solve the specific problems, “metaheuristics are high-level

methodologies or general algorithmic templates” and “most of metaheuristics are

nature-inspired (inspired from some principles in physics, biology, etc.), contain

stochastic components, and often have several free parameters that can be set

by users according to the problem(s) at hand,” which can have a “strong impact

on the performance or efficiency of a metaheuristic.” To address the increas-

ing demand for systematic approaches for the metaheuristics’ parameter setting,

Section 2 develops a novel statistical methodology. In Section 3, we apply the

methodology to a metaheuristic optimization algorithm called particle swarm op-

timization (PSO). Section 4 shows how this methodology can be applied to solve

long-standing optimal sequential design problems in early-phase dose-finding on-

cology trials. Section 5 concludes the paper with further discussion about recent

advances, some of which are related to adaptive platform trials for COVID-19

vaccine development, and provides additional references to the background liter-

ature.

2. Adaptive Group Sequential Selection of Tuning Parameters in Meta-

heuristic Optimization

Our novel approach to adaptive tuning parameter selection for metaheuristic

optimization algorithms is presented in Section 2.1. The approach is developed

from two statistical ideas, namely, the group sequential design of adaptive trials

(Section 2.1) and multi-armed bandit schemes for selecting the unknown best

population/strategy (Section 2.2). An efficiency theory for this adaptive param-

eter tuning approach for metaheuristic optimization is given in Section 2.3. As

pointed out by Bartroff, Lai and Shih (2013, p.2–4), the statistical subject of se-

quential design and analysis “was born in response to the need for more efficient

testing of anti-aircraft gunnery during World War II, which led to the develop-

ment of the sequential probability ratio test.” Then, a few years after the War,

it was recognized that “sequential hypothesis testing might provide a useful tool

in clinical trials to test the efficacy of new medical treatments.” However, “in

double-blind multi-center clinical trials, it is not possible to arrange for continu-

ous examination of the data as they accumulate.” On the other hand, many trials

have Data and Safety Monitoring Committees (DSMC) who conduct periodic re-

views of the trials, particularly with respect to the incidence of treatment-related

adverse events. One such trial was the Beta-blocker Heart Attack Trial, which
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was terminated early during an interim analysis by its DSMC because of positive

results on the efficacy of the treatment. This success story in 1981 paved the way

for steadily increasing the adoption of group sequential designs. The major ad-

vances in group sequential methods are summarized in Chapter 4 of Bartroff, Lai

and Shih (2013). Because statistical applications of metaheuristic optimization

are often related to estimation, or hypothesis testing, of an unknown parameter θ,

we use λ to denote the vector of tuning parameters in the metaheuristic optimiza-

tion algorithm. An analog of λ is the hyperparameter of the prior distribution

in Bayesian inference.

2.1. Group sequential learning of optimal λ

Consider the problem of searching for x∗ ∈ Rd that minimizes f(x) ∈ R
over x belonging to some bounded region of Rd, where f is a given objective

function. In contrast to offline parameter tuning, surveyed by Huang, Li and

Yao (2020), group sequential updating of the optimal tuning parameter vector is

carried out during the running time T of the algorithm. Specifically, we assume

that the optimal tuning parameter vector belongs to some bounded region of

Rm, and search for it at user-specified t1 < · · · < tJ , with J = max{j ≥ 1 :

tj < T}. Illustrative examples are given in Section 4.2. Moreover, metaheuristic

optimization algorithms involve stochastic components, denoted by a multivariate

vector Zt at time t < T . We assume that Z1,Z2, . . . are independent in the basic

algorithm described below.

The metaheuristic optimization algorithm to search for x∗ that minimizes f ,

with tuning parameter λ, is denoted by A(λ), and the sample path generated

by A(λ) is denoted by xt(λ). Let x∗t (λ) = argmins≤tf(xs(λ)). Initialize λ

by choosing λ0 at random (or according to some given distribution) from the

bounded region Λ ⊂ Rm to which the tuning parameter belongs. Let Λ0 = {λ0}.
Run A(λ0) until t1 − 1, and at time tj (j = 1, . . . , J), update λ and run A(λj)

with the updated value λj to generate xt(λj) and x∗t (λj), for tj ≤ t < tj+1. Use

the following procedures to handle the stochastic components Zt in xt(λ), for

λ = λj ∈ Λj and tj ≤ t < tj+1, and to update the choice of λj and Λj at time tj .

A. How to deal with the stochastic components Zt in xt(λ) for given λ, tj ≤
t < tj+1:

A1. Generate B samples of independent Z
(b)
t , for tj ≤ t < tj+1 (b =

1, . . . , B).

A2. With the stochastic components Z
(b)
t of the metaheuristic optimization

algorithm, generate B simulated samples of (xt,b(λ),x∗t,b(λ)), for tj ≤
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t < tj+1 (b = 1, . . . , B).

A3. Taking the average of f(x∗t,b(λ)) over b = 1, . . . , B yields an estimate,

denoted by Êf(x∗t (λ)), of Ef(x∗t (λ)), for tj ≤ t < tj+1.

B. How to update λj and Λj at tj (1 ≤ j ≤ J):

B1. Choose λ∗ from Λ according to some given distribution, and let Λ∗j =

Λj−1 ∪ {λ∗}.

B2. Letting ∆j(λ) = f(x∗tj−1
(λ)) − f(x∗tj (λ)), compute Ê∆j(λ) for each

λ ∈ Λ∗j ; see Step A3 above.

B3. Let λ∗j = argmaxλ∈Λ∗j
Ê∆j(λ). Sample λj from Λ∗j with probability 1−ε

assigned to λ∗j and probability ε/j assigned to each λ ∈ Λ∗j \ {λ∗j}; this

is the ε-greedy randomization scheme, with user-specified 0 < ε < 1/2,

explained in Section 2.2. Let Λj = Λj−1 ∪ {λj}.

2.2. Multi-armed bandits and ε-greedy randomization

The multi-armed bandit problem, introduced by Robbins (1952) as a new

direction for the nascent field of sequential design of experiments, subsequently

evolved into an important area of reinforcement learning. Such learning combines

active learning (also called “exploration”), to gather information about unknown

system parameters, with passive learning (also called “exploitation”) from the

outputs, which the control system aims at driving toward some prescribed tar-

get; see Kaelbling, Littman and Moore (1996). Robbins (1952) considered two

populations (arms) from which to sample sequentially in order to maximize the

expected sum E(
∑T

t=1 Yt) of the observations Yt generated when the population

means are unknown. If the population with the larger mean µ∗ were known,

then one would sample from it to receive the expected reward Tµ∗. By sam-

pling at a sparse set of increasing times ti from the population with the smaller

total sample size up to time ti, while sampling from the population with the

larger sample mean at other times, Robbins used the law of large numbers to

show that E(
∑T

t=1 Yt) = T (µ∗ + o(1)) as T →∞, where sparsity means that for

I = max{i : ti ≤ T}, tI → ∞, but tI/T → 0. Subsequently Lai and Robbins

(1985) extended multi-armed bandits from 2 to K arms, and provided a definitive

theory by introducing the concept of regret for adaptive allocation rules, defined

by

RT = Tµ∗ − E

(
T∑
t=1

Yt

)
=

∑
k:µk<µ∗

(µ∗ − µk)ET (k),
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where T (k) is the total sample size from population k that has mean µk. An

allocation rule is called “adaptive” if its choice of which population to sample from

at time t depends on the observations prior to t. They derived an asymptotic lower

bound, as T →∞, for the regret RT of uniformly good adaptive allocation rules.

In this case, an adaptive allocation rule is called uniformly good if RT = o(T a)

for all a > 0 and at all values of (µ1, . . . , µk). The asymptotic lower bound is

given by

RT ≥ (1 + o(1))

{ ∑
k:µk<µ∗

(µ∗ − µk)
I(µk, µ∗)

}
log T,

where I(·, ·) denotes the Kullback–Leibler information number. Lai and Robbins

(1985) and Lai (1987) have shown for the exponential family of densities eθy−ψ(θ)

(for which µ = ψ′(θ)) that the asymptotic lower bound can be attained by al-

locating to the population with the largest upper confidence bound (UCB) at

stage t − 1. An alternative to the UCB rule for attaining the asymptotic lower

bound is the ε-greedy randomization algorithm, which allocates at stage t to the

population with the largest sample mean at stage t − 1 with probability 1 − ε,
and to each remaining population with probability ε/(K − 1); see Auer, Cesa-

Bianchi and Fischer (2002). Further discussion, including recent developments

and additional references are given in the Supplementary Material S4.

2.3. Efficiency theory of adaptive hyperparameter tuning

We first use of the multi-armed bandit theory summarized in Section 2.2 to

derive the optimality of the adaptive selection of the hyperparameter λ̂j at time tj
when the hyperparameter can be updated to run the metaheuristic optimization

algorithm for tj ≤ t < tj+1, with tJ+1−1 = T . Let τj = tj+1−tj . Following Chan

and Lai (2006, p.182), who use a function g to incorporate all previous measures

of the sampling cost in the selection, and the ranking literature on normal data

or more general observations from exponential families, define the total sampling

cost

CT (ΛJ) =

J∑
j=1

g(x∗ − x∗tj (λj))τj

for the metaheuristic optimization algorithm in Section 2.1. The group sequential

updating of the tuning hyperparameter at times t1, . . . , tJ leads to the set ΛJ =

{λ1, . . . ,λJ} of successive hyperparameter values to run the algorithm, as in part

A of Section 2.1. The case

(C) g(x) = 0 if ‖x‖ < δ and inf
‖x‖≥ε

g(x) > 0 for ε > δ
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corresponds to the “indifference zone” formulation, in which selecting a popula-

tion (or method) is as good as the best one if its expected outcome is within δ of

the best.

Theorem 1. Assume that g satisfies (C) and that Zt are independent, with

density from the exponential family eθ
>z−ψ(θ). The group sequential selection

method yielding Λ̂J in part B of Section 2.1 has asymptotically minimal ECT (ΛJ),

as B →∞, among all group sequential procedures that satisfy EθCT (ΛJ) = o(Br),

for all r > 0 and all θ.

Chan and Lai (2006) mention in their last paragraph of Section 5.2 the

asymptotic lower bound for the regret of uniformly good adaptive allocation

rules in the multi-armed bandit problem, which we reviewed in Section 2.2, and

suggest how it can fit into the indifference zone formulation in the selection and

ranking literature. Theorem 1 provides concrete details for the problem of se-

lecting the best ΛJ within δ of the best by using the function g that satisfies the

“δ-indifference condition” (C) to define the total sampling cost CT (ΛJ). This

cost function is easily amenable to the Bayesian treatment of the hyperparam-

eter selection problem. Huang, Li and Yao (2020, p.202) remark that offline

parameter tuning “usually requires a large number of runs of the (metaheuris-

tic optimization) algorithm to analyze its performance on one instance, or a set

of parameter instances with different parameter settings.” In other words, they

essentially consider a family of prior distributions, indexed by a hyperparameter

vector λ ∈ Λ, on the optimal tuning parameter, and compute a dictionary of

Bayes procedures B(λ), for λ ∈ Λ, the performance of which is evaluated on a

given problem to find the best one. This Bayesian perspective provides a way to

circumvent the “time-consuming” disadvantage of offline parameter tuning; see

the Supplementary Material S2 after the proof of Theorem 1.

The δ-indifference zone is commonly used in the probability of correct se-

lection (PCS) constraint on the selected population/method in the selection and

ranking literature. A general formulation of the PCS for the case of population

means is P (µD > µ∗ − δ) ≥ 1 − α, for all µ1, . . . , µK , where µD denotes the µj

selected; see Eq. (1.3) of Chan and Lai (2006, p.181), whose Sections 3 and 4

consider the case of infx≤0 g(x) > 0 in the definition of the total sampling cost

CT for the one-parameter exponential family, and the asymptotic optimality of

µD in this case. Theorem 2 extends Theorem 1 to the PCS formulation; its proof

also uses multi-armed bandit theory and is given in the Supplementary Material

S1, where the theory underlying ε-greedy randomization in Section 2.2 is also

provided. In the current setting of group sequential hyperparameter tuning, let
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λθ denote the optimal hyperparameter vector when θ is the parameter of the

exponential family of densities for Zt. Precise details are given in the proof of

Theorem 2 in the Supplementary Material S1, and extensions beyond the expo-

nential family are provided in S4.

Theorem 2. Among all group sequential procedures that satisfy the PCS con-

straint Pθ(λθ ∈ ΛJ) ≥ 1− α for all θ, the method yielding ΛJ in part B of Sec-

tion 2.1 has asymptotically minimal ECT (ΛJ) as α → 0; moreover, ECT (ΛJ) =

O(logα−1).

In Theorems 1 and 2, ECT (ΛJ) refers to the expectation under the actual

probability measure generating Zt. As pointed out in Step A3 of Section 2.1,

Ê is an estimate of E based on B simulated samples Z
(b)
t , for b = 1, . . . , B.

The sampling variability of Ê∆j(λ) in Step B3 of Section 2.1 is why multi-armed

bandit theory (implemented using the ε-greedy randomization scheme) is needed.

The reason why E∆j(λ) is not used directly in this step is that the expectation

is usually difficult to compute, except by Monte Carlo simulations. Moreover,

the distribution of Zt often involves the unknown parameter θ, which has to be

estimated sequentially from the observed data up to time tj (j = 1, . . . , J).

3. PSO and Locally D-Optimal Designs

Given a statistical model, an optimization criterion, and the total number n

of observations allowed for the study, consider the problem of finding continuous

designs that optimize the criterion. Continuous designs, introduced by Kiefer

and Wolfowitz (1960), can be viewed as probability measures defined on the

design space; see Atkinson, Donev and Tobias (2007) and Pukelsheim (2006).

If a continuous design has k points with weight wi at the design point xi, for

i = 1, . . . , k, we implement it by taking [nwi] observations at xi, for i = 2, . . . , k,

where [nwi] is the nearest rounded integer of nwi subject to [nw1]+· · ·+[nwk] = n.

Continuous optimal designs are appealing because there is a unified theory for

checking whether a continuous design is optimal among all designs; and if not, the

theory provides an assessment of its proximity to the optimum without knowing

the latter. Although explicit formulae are available for relatively simple models

with few regressors, there are no analytical descriptions for optimal designs for

more complex settings, and thus numerical methods must be used. There are

algorithms for finding optimal continuous designs; some are ad hoc, and some

can be shown to converge in theory to the optimum. However, the algorithms

can be very slow, and may stall during the search. Others, such as the Fedorov-

type algorithms, require intermittent collapsing of clusters of points into a design



2388 CHOI ET AL.

point. Some also require that the design space be discretized, and do not work

well for models with many regressors.

For nonlinear regression models, the Fisher information matrix involves the

unknown parameter vector θ. Hence the D-optimal design that minimizes the

logarithm of the determinant of the inverse of the Fisher information matrix

requires a specification of θ that the design aims to estimate. To circumvent

this circuitous difficulty, Chernoff (1953) introduced the concept of “locally D-

optimal design,” which replaces θ with a nominal value arising from the design

objective (such as hypothesis testing) or a pilot study; see Atkinson, Donev and

Tobias (2007). Federov (1972) introduced an “exchange algorithm,” which was

recently refined by Huang et al. (2019) into the “point exchange” and “coordinate

exchange” algorithms PEA and CEA, respectively. In this section we apply the

systematic group sequential selection of θ, introduced in Section 2.1, to address

the issue of users of metaheuristic optimization algorithms being “unlucky with

the choice of tuning constants,” mentioned by Huang et al. (2019), to find optimal

designs in high-dimensional nonlinear regression models in Section 3.1. For these

applications, the distributions of the stochastic components Zt in Section 2.1

are not completely specified, because they depend on the unknown θ, which

can be estimated sequentially at times t1 < · · · < tJ from the observed data

in Section 3.2. We estimate the distributions of Zt directly by applying the

bootstrap method to these data.

3.1. Enhanced PSO with adaptively tuned hyperparameters

PSO, proposed by Kennedy and Eberhart (1995) as a nature-inspired opti-

mization method, was developed from a model of a swarm of flying birds col-

laborating to search for food on the ground. Each bird has its opinion of the

food’s position, and the birds communicate their findings with one another to

determine collectively where the food is. Thus, there are two types of positions,

called the “personal best” position and the “global best” position, respectively,

found by the flock to date. The velocities and locations of the birds are updated

iteratively. For the next iteration, each bird flies in a direction that takes into

account (i) its current direction, (ii) its current known personal best position

(cognitive component), and (iii) the flock’s current best known position (social

component). Extending the “birds” to “collaborating particles” to minimize a

loss function f : Rd → R, PSO denotes the location (respectively, velocity) of the

ith particle at the tth iteration by xi(t) (respectively, vi(t)), and defines
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x∗i (t) = argmin
0≤s≤t

f(xi(s)), x∗(t) = argmin
1≤j≤n,0≤s≤t

f(xj(s)), (3.1)

representing the personal best location found by the ith particle and the global

best location found by the swarm so far, respectively. We consider here the

following enhancement of the classical PSO algorithm:

xi(t+ 1) = χD (xi(t) + ηvi(t+ 1)) , (3.2)

vi(t+ 1) = (1− ηω)vi(t) + ηc1U1,i(t) ◦ (x∗i (t)− xi(t)) (3.3)

+ηc2U2,i(t) ◦ (x∗(t)− xi(t)) + ηZi(t+ 1),

where χD is the projection onto a bounded region D that is known to contain the

minimizer x∗ of f in its interior, ◦ denotes the Hadamard product, Uj,i(t) have

independent and identically distributed (i.i.d.) components with finite second

moments, for j = 1, 2, and Zi(t+ 1) have i.i.d. zero-mean random vectors in Rd

with finite second moments and are independent of U1,i(t) and U2,i(t).

The classical PSO algorithm uses η = 1, does not include the term ηZi(t+1)

in (3.3), and assumes the components of U1,i(t) and U2,i(t) to be i.i.d. Unif(0, 1).

Choosing c1 = c2 = c, the tuning parameter vector in this case is (η, ω, c), in

which η is the step size, whereas 1 − ηω and c are positive weights. We can

reduce the dimensionality of the search to two (instead of four) by modifying

part B in Section 2.1 as follows. Use a fixed value η+ = 0.95 of η for the initial

stages at user-selected times t1, . . . , tJ . With regard to the choice of η for the

later stages j > J , the strategy is to choose (ω, c) first, and then to determine η.

Without introducing additional notation, we simply let λ = (ω, c), and replace

A(λ) in Section 2.1 with A(λ, η), and replace xt(λj) and x∗t (λj) with xt(λj , ηj)

and x∗t (λj , ηj), respectively. In this way, we replace part B of Section 2.1 with

the following steps to update λj ,Λj , and ηj at tj (1 ≤ j ≤ J), after initializing at

time t = 1 by choosing η = η+, λ0 from Λ according to some given distribution,

and Λ0 = {λ0}:

(i) Choose λ∗ from Λ according to some given distribution, and let Λ∗j = Λj−1∪
{λ∗}.

(ii) Letting ∆j(λ, η) = f(x∗tj−1
(λ, η)) − f(x∗tj (λ, η)), compute Ê∆j(λ, η+) for

λ ∈ Λj .

(iii) Let λ∗j = argmaxλ∈Λ∗j
Ê∆j(λ, η+) and carry out the ε-greedy randomization

scheme to define λj and Λj .

(iv) Switch to a smaller, adaptively chosen step size at stage I, defined by
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I = inf

{
2 ≤ j ≤ K :

Ê∆j(λj , η+)

Ê[f(x∗tj−1
(λj , η+))− f(x∗t1−1(λj , η+))]

≤ δ

}
, (3.4)

with inf ∅ = K. Here, δ is user-selected, and K + 1 is a prespecified upper

bound on the size of Λj . The basic idea underlying the initial stages (up

to stage I) is to use a larger step size η+ to attain a fast descent of the

expected loss from Êf(x∗t1−1(·)) prior to time t1. In (3.4), δ is the threshold

that signals a relatively small incremental improvement at stage j. Hence,

we switch to a smaller η, as suggested by the theory in Section 2.3.

(v) For updates at times tj , with j > I, carry out Step (i) to generate λ∗,

and define Λ∗j = Λj−1 ∪ {λ∗}. Let λ∗j = argmaxλ∈Λ∗j
Ê∆j(λ, ηj−1). Then,

use the ε-greedy randomization scheme to define λj and Λj . Let ηj =

argmaxη≤0.95Ê∆j(λj , η).

3.2. Locally optimal designs in continuation-ratio model

Fan and Chaloner (2004) consider locally D-optimal designs for trinomial

responses in the regression model defined by

log

(
π3

1− π3

)
= θ1 + θ2x, log

(
π2

π1

)
= θ1 + a+ bx, (3.5)

where a ≥ 0, θ2 > 0, and b > 0. This is the continuation-ratio model. In contrast,

the “proportional odds model”, replaces log(π2/π1) with log ((π2 + π3)/π1) and b

with θ2 in the second equation of (3.5). In particular, locally D-optimal designs ξD
maximize log det(Iξ) of the Fisher information matrix Iξ over the design measures

ξ, and can be found numerically to have a fixed number (that increases with a)

of design points. Locally c-optimal designs ξψ minimize the asymptotic variance

of the MLE of a real-valued function ψ of the parameters, and can be found simi-

larly using numerical methods that need to address additional issues, such as the

singularity of the asymptotic covariance matrix, as explained in Fan and Chaloner

(2004, p.352–354), who also specify the choice of the “function of interest” for the

c-optimality criterion. They consider the maximum tolerated dose (MTD), which

is the highest dose xT that produces a user-specified proportion p of subjects with

dose-limiting toxicity (DLT) in dose-response studies; that is, π3(xT ; θ1, θ2) = p

in the continuation-ratio model (3.5). Solving this equation yields xT = (logit p−
θ1)/θ2. Hence, ∇xT (θ1, θ2) =

(
−1/θ2, θ

−2
2 (θ1 − logit p)

)>
, and the locally c-

optimal design minimizes the asymptotic variance of the MLE of ψ(θ1, θ2) =

log(∇>xT (θ1, θ2)I−ξ (θ1, θ2)∇xT (θ1, θ2)) for dose-response studies of the MTD,

where I−ξ is the generalized inverse of the Fisher information matrix Iξ, which
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may be singular. Denote this locally c-optimal design by ξT .

The proportional odds model was introduced by Thall and Russell (1998)

for dose finding “based on efficacy and adverse outcomes” in Phase I/II oncol-

ogy trials. They propose a trinomial outcome, with the outcome zero repre-

senting “no toxicity and no efficacy,” outcome one representing moderate tox-

icity, and outcome two representing severe toxicity in the bone marrow trans-

plant treatment of lymphoma. Instead of using this proportional odds model,

which Fan and Chaloner (2004, p.349 and Fig.1) find unlikely to be valid, and

the continuation-ratio model to fit the actual data, we use the continuation-

ratio model to define the MTD and the most efficacious dose (MED). The MED

is defined as the dose with the highest probability of efficacy without severe

toxicity, as illustrated by Thall and Russell (1998, Fig.1) for the outcome of

moderate graft-versus-host disease and no severe toxicity. In the continuation-

ratio model for toxicity and efficacy, the MED is defined as the maximizer xE of

p(x;θ) := (1−π3)
(
1 + eθ3+θ4x

)−1
, where π3 is given by the first equation of (3.5),

which is equivalent to 1− π3 =
(
1 + eθ1+θ2x

)−1
, θ = (θ1, θ2, θ3, θ4), and θ3 + θ4x

is the analog of θ1 + θ2x for the logarithm of the odds ratio for the probability of

efficacy, with θ4 < 0 (similar to θ2 > 0), because a dose with severe toxicity is no

longer efficacious. Solving (d/dx) log p(x;θ) = 0 yields xE(θ), from which we can

(a) use the delta method to derive the asymptotic variance of the MLE of xE(θ),

(b) apply the implicit function theorem to evaluate ∇xE(θ), and (c) derive the

locally c-optimal design ξE that minimizes ψ(θ) := log(∇>xE(θ)I−ξ (θ)∇xE(θ)).

Clyde and Chaloner (1996) considered a compound optimality criterion for

designs to estimate the MTD and MED, extending the earlier work of Cook

and Wong (1994) in this direction. We consider here a more general compound

optimality criterion

Ψ(ξ;λ) = λ1ΨT (ξ) + λ2ΨE(ξ) + λ3ΨD(ξ), (3.6)

with nonnegative λi that sum to one. Section 4 views λ = (λ1, λ2, λ3) as a tuning

parameter such that λ3 = 0 and λ1 + λ2 = 1, and applies the ideas in Section

2.1 to the multi-objective optimization problem that is implicit in the compound

optimization criterion (3.6) as an objective function, which we explain below. As

pointed out by Chen, Heyse and Lai (2018, Sec. 3.3 and p.90–91), multi-objective

optimization typically involves conflicting objectives, such as the benefit versus

the risk (or the efficacy versus the toxicity) of a treatment. Let f : S → Rm be a

vector-valued function such that fi(x) represents the ith objective function in a

multi-objective optimization problem, where S ⊂ Rd. We say that x′ dominates
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x if fi(x
′) ≥ fi(x), for every i = 1, . . . ,m, with strict inequality for some i, and

that x is “Pareto optimal” if there does not exist x′ ∈ S that dominates it. If x

is a random variable, then the fi are expected functionals of x. The set of Pareto

optimal elements of S is called the “Pareto boundary,” which is the solution of

the multi-objective optimization problem.

Example 1. As an illustration, Figure 1 in the Supplementary Material S3 plots

the Pareto surface of the multi-objective optimization problem of minimizing the

compound optimality criterion (3.6), for which

f1(ξ;λ) = λ1

{
log
(
∇>xT I−ξT∇xT

)
− log

(
∇>xT I−ξ ∇xT

)}
,

f2(ξ;λ) = λ2

{
log
(
∇>xEI−ξE∇xE

)
− log

(
∇>xEI−ξ ∇xE

)}
,

f3(ξ;λ) = (1− λ1 − λ2) (log det(IξD)− log det(Iξ)) .

Here, we consider the locally D-optimal design ξD that maximizes log det(Iξ) at

(θ1, θ2, θ3, θ4) = (−3.3, 0.5,−3.4,−1) in (3.5) and the locally c-optimal designs

ξT (for MTD, with p = 0.3) and ξE (for MED). Including these designs for the

individual criteria in defining (f1, f2, f3)> amounts to subtracting the constant

λ1ΨT (ξT ) +λ2ΨE(ξE) +λ3ΨD(ξD) from (3.6), which does not change the Pareto

optimal boundary. Note that minimizing fi corresponds to maximizing −fi;
hence, f3 considers−(1−λ1−λ2)p−1(log det(Iξ)− log det(IξD)). For given λ1, λ2 ∈
[0, 1] with 0 < λ1 + λ2 < 1, we can use the equivalence theorem to show that the

optimal compound design is a weighted sum of the optimal designs ξT , ξE , and ξD
under the individual criteria, thereby reducing the problem to a single-objective

design after determining the weights.

Refinement 1. Consider the compound optimality criterion (3.6) with λ3 = 0

and λ2 = 1− λ1, reducing the problem to one of finding only ξT and ξE .

Example 2. For the parameter configuration (θ1, θ2, θ3, θ4) in Example 1, con-

sider the compound criterion (3.6), with λ3 = 0 and λ2 = 1− λ1. Figure 2 in the

Supplementary Material S3 plots the Pareto curve of the two-objective compound

criterion in this case.

In applications such as those in Section 4, the complication is that λ1 and

θ = (θ1, θ2, θ3, θ4) are unspecified. The latter is needed to define the locally c-

optimal designs ξT and ξE . We update the values of λ and θ at times t1 < · · · < tJ ,

with J = max{j ≥ 1 : tj < T} and T being the time that Phase II of the trial

begins, applying Section 2.1 to the metaheuristic optimization algorithm PSO.

The PSO recursions (3.1)–(3.3) can be used to efficiently compute an optimal
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discrete set Dj of doses at time tj when the information set Ftj generated by the

doses and the toxicity-efficacy outcomes up to that time is used to update θ,λ,

and Dj (see below). First, we explain how, for a given θ, the PSO can be used to

compute the Pareto boundary for optimizing the compound criterion (3.6), with

λ3 = 0 and λ1 = λ. The directional derivative of the design ξλ that minimizes

λΨT (ξ) + (1− λ)ΨE(ξ), in the direction off the design measure δx degenerate at

x, is given by

λ
tr
{

Iδx(θ)I−ξλ(θ)
(
∇xT (θ)∇xT (θ)>

)
I−ξλ(θ)

}
tr
{

(∇xT (θ)∇xT (θ)>) I−ξλ(θ)
} (3.7)

+(1− λ)
tr
{

Iδx(θ)I−ξλ(θ)
(
∇xE(θ)∇xE(θ)>

)
I−ξλ(θ)

}
tr
{

(∇xE(θ)∇xE(θ)>) I−ξλ(θ)
} .

The equivalence theorem for optimal designs (Pukelsheim (2006)) yields that

ξλ is optimal for (3.6) if and only if (3.7) is bounded above by one for all x ∈
[xmin, xmax], with equality at the support points of ξλ. For each value λ, carry out

the PSO to minimize λΨT (ξ)+(1−λ)ΨE(ξ), yielding the minimizer ξλ; the Pareto

boundary is {ξλ : 0 < λ < 1}. Note that m = 2 and S ⊂ [xmin, xmax] in this case.

Actually, we need only approximate the Pareto boundary over a discrete grid DJ
for the doses in Phase II, with λ belonging to a discrete subset ΛJ of (0, 1), rather

than the entire Pareto boundary {ξλ : 0 < λ < 1}. For the PSO algorithm, we

generate a discrete set Λj of hyperparameter values λ and the corresponding

ξλ, Iξλ(θj) and the tuning parameters ω, c, and ηj of the PSO described in the

second paragraph of Section 3.1. Then, we choose (Z1(s), . . . , Zn(s))> in (3.3),

for tj < s ≤ tj+1, to be i.i.d. replicates of the random vector in (3.7), with θ = θj
and λ ∈ Λj ; see parts A and B of the basic algorithm in the second paragraph of

Section 2.1.

With regard to the choice of θj , one can use the glm function in CRAN to

fit generalized linear models using the maximum likelihood, and then substitute

θj in Z(s) := (Z1(s), . . . , Zn(s))>, for tj < s ≤ tj+1, with θ̂j . This has the

drawback of neglecting the sampling validity of θ̂j in carrying out the multi-

armed bandit scheme (part B of Section 2.1) to update the set Λj of the selected

hyperparameters. We use the following better approach.

Refinement 2. (bootstrap). Liu (1988) introduced bootstrap resampling, which

“is known to be a good general procedure for estimating a sampling distribution

under i.i.d. models,” for independent but non-identically distributed data, fo-
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cusing in particular on the setting of Z(1), . . . ,Z(T ) drawn from distributions

G1, . . . , GT , and on the regression case that Z(t) depends on covariates. For i.i.d.

data, the population distribution G can be approximated by an empirical dis-

tribution Ĝ that places a weight 1/T on each of the observed Z(t), and by the

bootstrap resamples Z∗(t) from Ĝ. For the independent Z(s) that are identically

distributed if s ∈ {tj + 1, . . . , tj+1}, the bootstrap procedure resamples Z∗(s)

from the empirical distribution that places the weight (tj+1− tj)−1 on each item

of the observed sample {Z(t) : tj < t ≤ tj+1}, which is basically the regression

case discussed in Section 4B of Liu (1988).

4. Optimal Sequential Design of Dose-Finding Trials

The locally D-optimal and c-optimal designs for the continuation-ratio or

proportional odds model in Section 3.2 are related to designs of dose-finding

studies of treatments that have dose-limiting toxicities. These include cytotoxic

chemotherapies for cancer patients, for which risk-benefit modeling and analysis

play an important role, as discussed in the last paragraph of the preceding section.

In practice, these dose-finding trials are early-phase open-label clinical trials,

and there are ethical, informed consent, and sample size constraints in giving

experimental doses to patients accrued to a trial. In a special issue on this

topic in Statistical Science 25(2) in 2010, overviews of the progress and emerging

trends in the design of Phase I (or Phase I/II) trials were presented. In Section

4.1, we (a) summarize these methods and subsequent developments in the past

decade, (b) integrate them with locally c-optimal designs for the MTD and MED

estimations, and weight them in the compound optimality criterion (3.6) with

λ3 = 0, so that λ2 = 1 − λ1, as in Example 2, and (c) formulate an optimal

adaptive choice of the weight λ1 (as a tuning parameter). In Section 4.2, we use

the methods in Sections 2.1, 2.2, 3.2, and 4.1 to develop an optimal sequential

design of early-phase trials to determine the dose for a late-phase confirmatory

trial of the treatment. We also give some concluding remarks.

4.1. Model-based sequential designs of dose-finding trials

Cheung (2010) contrasts model-based designs that “make dose decisions

based on the explicit use of dose-toxicity models” with commonly used “algorithm-

based designs whereby a set of dose-escalation rules are prespecified for any given

dose.” He also highlights the difference between dose-finding studies in bioassays

of laboratory animals and those in Phase I clinical trials involving human sub-

jects, for whom he lists the ethical constraint of coherence. A group sequential
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design ξ with group size m and dose xi is called coherent if there is a threshold

p such that

Pξ(xi − xi−1 > 0|Ỹi−1 ≥ p) = 0 and Pξ(xi − xi−1 < 0|Ỹi−1 ≤ p) = 0 (4.1)

for all i. Here, Ỹi−1 is the observed proportion of toxicities in group i − 1 and

Pξ denotes the probability measure induced by the design ξ, for which (4.1)

is tantamount to a dose de-escalation if Ỹi−1 ≥ p, and to a dose escalation if

Ỹi−1 ≤ p. Cheung says that “an algorithm-based design can explicitly incorporate

dose decision rules that respect coherence,” such as the traditional 3 + 3 design

for which p = 0.33. He also mentions the desirable properties of consistency

and unbiasedness (i.e., Pξ(xT = dk) is nonincreasing in π(di) for i ≤ k, and

nondecreasing in π(dj) for j > k, where π(di) is the true toxicity probability at

dose di, π(dk) = p, and xT is the selected dose when the trial terminates after T

dose-finding moves).

O’Quigley and Conaway (2010) and Thall (2010) consider model-based se-

quential designs for Phase I or Phase I/II trials. Thall estimates the toxicity and

efficacy responses for trinomial outcomes from the proportional odds model of

Thall and Russell (1998) in a Phase I/II trial. O’Quigley and Conaway consider

the continual reassessment model (CRM) (O’Quigley, Pepe and Fisher (1990);

Shen and O’Quigley (1996)) in Phase I trials to estimate the MTD, or the more

general most successful dose presented in their Section 7 and illustrated using

HIV treatment, for which “failure is either a toxicity (that causes) inability to

maintain treatment, or an unacceptably low therapeutic response.” As such, the

probability P (di) of success is Q(di)(1−R(di)), where R(di) is the probability of

toxicity at dose di, and Q(di) is the probability of a therapeutic response given

no toxicity at that dose. “A successful trial would identify the dose level ` such

that P (d`) > P (di) for i 6= `,” and “CRM can be readily adapted to address

these kinds of questions.”

Tighiouart and Rogatko (2010) and Bartroff and Lai (2010) consider model-

based sequential designs of Phase I trials involving the Bayesian escalation with

overdose control (EWOC) model, introduced by Babb, Rogatko and Zacks (1998).

Both papers consider MTD estimation and the choice of prior distribution. Theo-

rem 2.2 of Tighiouart and Rogatko (2010) gives conditions on a reparam-

eterized prior distribution to ensure coherence of the EWOC. In contrast,

Bartroff and Lai (2010) incorporate the risk to patients in the trial using a “global

risk” E[
∑T

k=1 h(xk, η) + g(η̂T , η)], where η denotes the MTD, η̂T is the MTD es-

timate at the termination of the trial, g(η̂T , η) measures the effect of η̂T on future
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patients, and h(x, η) = ω(η−x)+ +(1−ω)(x−η)+, because the EWOC doses are

the ωth quantiles of the posterior distributions of η. They use the rollout algo-

rithm in approximate dynamic programming to minimize the global risk, the idea

of the rollout is “to approximate the optimal policy x∗k by the minimizer (over

x) of hk−1(x) +E[
∑T

i=k+1 hi−1(x̂i)|Fk−1, x̂k = x] (that replaces) x∗k+1, . . . , x
∗
T by

some base policy x̂k+1, . . . , x̂T , which ideally is some easily computed policy that

is not far from the optimum,” where Fk−1 denotes the “information set generated

by (x1, y1), . . . , (xk−1, yk−1).”

Bartroff, Lai and Narasimhan (2014) propose a novel group sequential design

of early-phase clinical trials for cytotoxic chemotherapies. They note that “much

(recent) work on early phase cancer trials incorporate both toxicity and efficacy

data,” but “do not explicitly address the Phase II hypothesis test of H0 : p ≤
p0, where p is the probability of efficacy at the estimated MTD dose η̂ and p0

is the baseline efficacy rate.” Their new design “addresses the uncertainty in

the estimate p = p(η̂) in H0 by using sequential generalized likelihood ratio

theory,” and “can be used all the way from the first dose of Phase I through the

final accept/reject (go/no go) decision about H0 at the end of Phase II, utilizing

both toxicity and efficacy data throughout” and allowing for “early stopping to

show treatment effect or futility” in Phase II hypothesis testing. In the next

subsection, we integrate this idea with those in the preceding paragraphs of this

subsection and the last paragraph of Section 3.3 to formulate a new optimal

group sequential model-based design of early-phase clinical trials of a cytotoxic

chemotherapy to decide whether the treatment should proceed to Phase III for

confirmatory testing, and the dose to be used if the decision is positive. As in

Bartroff and Lai (2010), we use the EWOC scheme for Phase I to determine the

MTD and its coherence property established by Tighiouart and Rogatko (2010),

rather than incorporate the risk to patients in the trial into the global risk to

circumvent the difficult dynamic programming problem. After Phase I, we use

the compound optimality criterion (3.6) with λ3 = 0, and treat λ1 = 1 − λ2 as

a tuning parameter. Section 2.1 describes how t select the optimal parameter

value, where Bayesian c-optimal designs are used to define optimality. Because

the solution to the compound optimality criterion is a Pareto boundary, this

entails loop optimization. Here, the PSO in Section 3.2, with adaptively chosen

tuning parameters, is particularly effective, as shown in the next subsection.

4.2. Efficient group sequential design of early-phase trials

We decompose the group sequential design into three stages: Phase I (for

MTD estimation), Phase I/II (for finding a discrete set D of doses, belonging
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to the Pareto boundary, that are c-optimal for estimating the MED, subject to

probability constraints on the DLT), and Phase II (for adaptively choosing the

dose from D and testing the efficacy at the dose). Implementation details and

the underlying rationale for each stage are given separately under Phase I, Phase

I/II, and Phase II.

Phase I. The groups refer to successive cohorts, each of size m, and the model-

based design is the EWOC, which Bartroff and Lai (2010) reparameterize as

follows, and choose the dose for each cohort in the interval [xmin, xmax] (without

discretization) to circumvent rigidity. Assuming an upper bound q > 0 on the

probability ρ of toxicity at xmin, uniform distributions over [xmin, xmax] and [0, q]

are taken as the prior distributions for η (the MTD) and ρ, respectively. The

EWOC assumes a logistic regression model 1/(1+e−(α+βx)) for the probability of

DLT at dose level x. Because the logistic regression parameters can be expressed

in terms of η and ρ as

α =
xminlogit p− ηlogit ρ

xmin − η
, β =

logit ρ− logit p

xmin − η
,

the Ft-posterior density of (ρ, η) is equal to

C−1
t∏
i=1

[
eyiψ(xi;ρ,η)

1 + eyiψ(xi;ρ,η)

]
on [xmin, xmax]× [0, q], (4.2)

where yi is the binary indicator of DLT for subject i, ψ(x; ρ, η) = α+ βx, and

C =

∫ xmax

xmin

∫ q

0

t∏
i=1

[
eyiψ(xi;ρ,η)

1 + eyiψ(xi;ρ,η)

]
dρ dη (4.3)

is the normalizing constant, which can be determined by numerical evaluation

of a double integral using MATLAB or other software packages. Letting F (x, η)

denote the probability of DLT at dose level x when the MTD is η (at which the

probability of DLT is p) in the logistic regression model, Tighiouart and Rogatko

(2010, Thm. 2.2) show that the EWOC is coherent if F (x, η) is non-increasing in

η for fixed x. This is implicitly assumed by Bartroff and Lai (2010) in their rollout

algorithm to minimize the global risk, which explains the role of the Ft-posterior

density (4.2) in the rollout algorithm. The Phase I design here simply uses the

coherence of the EWOC, and applies (4.2) to the current cohort of m subjects

to determine the dose of the next cohort as the pth quantile of the posterior

distribution of η, given the binary indicators yi of DLT in the current cohort.
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The pth quantile η∗ is defined by∫ q

0

t∏
i=1

[
eyiψ(xi;ρ,η∗)

1 + eyiψ(xi;ρ,η∗)

]
dρ/C = p,

where {(xi, yi) : 1 ≤ i ≤ m} are the observations of the cohort, and C is given

by (4.3).

Phase I/II. This stage uses the toxicity and efficacy outcomes of the subjects

treated at doses that are chosen adaptively using PSO to minimize the com-

pound optimality criterion (3.6), with λ3 = 0 and adaptively chosen λ1 = 1−λ2,

assuming the continuation-ratio model for toxicity and efficacy outcomes, as in

Refinements 1 and 2 in Section 3.3.

Phase II. With the discrete subset Dj of doses determined in Phase I/II, we

can proceed as in Section 3.2 of Bartroff, Lai and Narasimhan (2014, BLN). For

tj > T , we perform order-restricted generalized likelihood ratio (GLR) tests at

the jth interim analysis. Let π(x) and p(x) denote the probability of DLT and

that of efficacious response and no DLT, respectively, as in the first and sec-

ond paragraphs of Section 3.3, in which the dependence of these probabilities

on θ = (θ1, θ2, θ3, θ4) is also highlighted. Relabeling the doses in the discrete

set DJ with cardinality ν as d1 < d2 < · · · < dν , assume the order restrictions

π(d1) ≤ · · · ≤ π(dν) and p(d1) ≤ · · · ≤ p(dν), which yield an order-restricted

MLE of θ (Section 2.2 of BLN). Taking advantage of the discrete dose set

DJ , Section 3.2 of BLN first introduces πi(y, z) = P (yt = y, zt = z|xt = di)

to relate the binary indicator zt of an efficacious response without DLT, for

tj < t ≤ tj+1, when the dose xt (determined at time tj of the jth interim

analysis) is di. It then expresses the log-likelihood ratio at the jth interim anal-

ysis as `j(θ) =
∑tj

t=1 log πi(xt)(yt, zt), where i(xt) = di if xt is assigned dose di,

and introduces ν parameters ρi = πi(xt)(0, 0)πi(xt)(1, 1)/{πi(xt)(1, 0)πi(xt)(0, 1)},
for i = 1, . . . , ν. This yields the log GLR statistic at the jth interim analy-

sis for testing the efficacy of the selected doses up to that time, in terms of

the MLEs of π(d1), . . . , π(dν), p(d1), . . . , p(dν), ρ1, . . . , ρν , subject to these or-

der restrictions, and the stopping rules in Section 3.1 of BLN, whose Section

4 (particularly Section 4.2) provides extensive simulation studies showing the ad-

vantages of this approach. The software to implement Phase II, together with

examples, data, simulation studies, and real-world applications, is available at

https://med.stanford.edu/cisd/research/software.html.

https://med.stanford.edu/cisd/research/software.html
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5. Conclusion

Nature-inspired metaheuristic optimization algorithms are important tools

in machine intelligence (commonly called AI), which has increasingly permeated

lives in modern society. Yet, despite the recent advances and promises of these al-

gorithms, a long-standing open problem is how to tune them effectively to achieve

maximal performance for particular systems and problems. We use recent ad-

vances in statistics to address this open problem in AI, showing the usefulness of

our solution in tackling challenging optimal design problems in early-phase oncol-

ogy trials. The Supplementary Material S4 describes further advances that are

still ongoing, including (a) precision-guided development of personalized therapies

and master protocols of confirmatory clinical trials to test them for regulatory

approval, (b) valid statistical inference from the data in these adaptive designs

of group sequential trials, and further discussion of Phase II and its extension

to Phase II/III, (c) metaheuristic optimization algorithms other than PSO that

Section 3 focuses on, and the convergence theory of these adaptively tuned algo-

rithms, and (d) extensions of Theorems 1 and 2 beyond the exponential family,

and an extension of the multi-armed bandit theory in Section 2.2 to nonparamet-

ric multi-armed bandits with covariates (which are important for personalized

medicine and recommendation systems).
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