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In this supplementary, we provide simulation results, additional examples and technical
proofs for all theoretical results stated in the main paper. In particular, Appendix A provides
simulation results for validating our theories. Appendix B gives multiple examples to help
readers to better understand the structure of bifactor models. Appendix C collects the proofs
for the identifiability of standard bifactor models. Appendix D is for the extended bifactor
models. Appendix E gives the proofs of two-tier model’s identifiabiltiy. Finally, the proofs
of results in Section 4 can be found in Appendix F.

A Simulation

This section presents the results from several simulation studies designed to verify the the-
oretical identifiability results. Specifically, section A.1 presents the numerical results on the
probit bifactor model, and section A.2 presents the results on the probit extended bifactor
model. For both classes of models, several tests were considered: Some of the tests have true
parameters that satisfy the identifiability conditions, while others fail to meet the conditions.
For each test, 500 sets of responses were randomly generated, with random samples of size
N = 1000, 2000, or 4000.The stochastic expectation-maximization (StE) algorithm (Celeux,
1985; Ip, 2002) was employed to estimate both classes of models, which has been applied to
IRT models (Diebolt & Ip, 1996; Fox, 2003; Zhang, Chen, & Liu, 2020). Specifically, a Gibbs
sampler following Albert (1992) was adopted for the stochastic expectation (StE) step and
a gradient descent algorithm for the maximization (M) step. To guarantee the convergence,
the StE algorithm was iterated 10,000 times for each set and the first 5,000 iterations were
discarded as burn-in. The estimated parameters (Â, d̂) were evaluated in terms of root mean
squared error (RMSE) with respect to the true parameters. That is, for a particular entry
of the A matrix, ajk, its RMSE was given by

RMSE(âjk) = (
1

500

500∑
r=1

(âjk − ajk)2)1/2. (S1)

For tests that meet the identifiability requirements, parameter estimates are expected
to converge to the true values as N increases, with the RMSEs approaching 0. This will
not be the case for tests that fail to meet the identifiability conditions, in which case the
parameters cannot be consistently estimated.

A.1 Study 1: Probit bifactor model

Under the probit bifactor model, parameter recovery was evaluated under the following 4
cases:
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Table S1: True item parameters.

Testlet-specific factors

item Main factor 1 2 3 d

1 1.00 2.00 1.51

2 1.00 2.00 .39

3 1.00 2.00 -.62

4 1.00 2.00 -2.21

5 1.00 2.00 1.12

6 1.00 2.00 -.04

7 1.00 2.00 -.02

8 1.00 2.00 .94

9 1.00 2.00 .82

10 1.00 2.00 .59

11 2.00 1.00 .92

12 2.00 1.00 .78

13 2.00 1.00 .07

14 2.00 1.00 -1.99

15 2.00 1.00 .62

16 2.00 1.00 -.06

17 2.00 1.00 -.16

18 2.00 1.00 -1.47

19 2.00 1.00 -.48

20 2.00 1.00 .42

21 1.00 -.63 1.36

22 1.00 .18 -.10

23 1.00 -.84 .39

24 1.00 1.60 -.05

25 1.00 .33 -1.38

26 1.00 -.82 -.41

27 1.00 .49 -.39

28 1.00 .74 -.06

29 1.00 .58 1.10

30 1.00 -.31 .76

Case 1 Consider a test with three testlets. The true parameters are listed in Table S1. By
checking that |H1| = 3 and |Qg| > 3 for all g, the model is identifiable according to
Theorem 1.

Case 2 Remove testlet 3 from Case 1. The model is no longer identifiable according to Theorem
1, because |H1| = 2 and |H2| = 0.

Case 3 Remove testlet 2 from Case 1. According to Theorem 1, the model is identifiable,
because |H1| = 2, |H2| = 1 and |Qg| > 3 for all g.

Case 4 Based on the true parameters in Table S1, construct a new test containing item 1 from
testlet 1, items 11 and 12 from testlet 2, and all the 10 items in testlet 4. The model
is nonidentifiable according to Theorem 1 by checking that |Q1|, |Q2| < 3.

The average RMSEs for the 4 cases, across all non-zero âs and d̂s, are reported in Table
S2. Compared to the two identifiable cases (Case 1 and Case 3), the RMSEs from the two
unidentifiable cases (Case 2 and Case 4) were remarkably larger. This is consistent with the
theoretical results on the sufficient and necessary condition for bifactor models. Moreover,
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Table S2: RMSE of model parameters for bifactor models.

Case 1 Case 2 Case 3 Case 4

n 1000 2000 4000 1000 2000 4000 1000 2000 4000 1000 2000 4000

a .16 .10 .07 .77 .64 .55 .17 .11 .07 .49 .30 .20

d .11 .07 .05 .18 .10 .06 .11 .07 .05 .30 .18 .12

under Case 4 where |Q1|, |Q2| < 3 and |Q3| > 3, the average RMSEs of âs in testlet 1 were
1.65, .89 and .64, respectively, forN = 1000, 2000 and 4000. For testlet 2, the average RMSEs
of âs were 1.33, 0.91 and 0.58, respectively. However, for testlet 3, the average RMSEs were
0.12, 0.07 and 0.05. This suggests that, for a particular testlet g, the parameters were better
recovered when the requirement of |Qg| ≥ 3 was met.

A.2 Study 2: Probit extended bifactor model

Under the probit extended bifactor model, the following two cases were considered:

Case 5 The three-testlet extended bifactor model with loadings specified in Table S1. Accord-
ing to Theorem 3, we know the model is not identifiable by checking that |H3| = 1.

Case 6 Replace testlet 2 in Table S1 by testlet 4 in Table S3. According to Theorem 2, the
model is identifiable by observing that |H3| = 2, |H2| = 2 and |Qg| ≥ 3 for g = 1, 3, 4.

For both cases, the true covariance matrix is given in Table S4.
Table S5 reports the average RMSEs of the item parameters for the two cases with

different sample sizes. Table S6 provides the RMSE for each entry of ΣG, the covariance
among the testlet factors. The numerical findings again corroborate the theoretical results,
where both item and covariance parameters were recovered remarkably better under Case 6
compared to Case 5.
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Table S3: True parameters of testlet 4 for Case 6.

Testlet-specific factors

item Main factor 4 d

31 2.00 -.56 -.16

32 2.00 -.23 -.25

33 2.00 1.56 .70

34 2.00 .07 .56

35 2.00 .13 -.69

36 2.00 1.72 -.71

37 2.00 .46 .36

38 2.00 -1.27 .77

39 2.00 -.69 -.11

40 2.00 -.45 .88

Table S4: True covariance matrix for the extended bifactor model.

Testlet-specific factors

Main factor 1 2 3 4

Main factor 1.00

Testlet-specific factors

1.00

.44 1.00

.32 .52 1.00

.26 .21 .29 1.00
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Table S5: RMSE of item parameters for extended bifactor model, under Case 5 and Case 6.

Case 5 Case 6

N 1000 2000 4000 1000 2000 4000

a .46 .37 .32 .20 .11 .07

d .11 .07 .05 .11 .07 .05

Table S6: RMSE of the covariance matrix under Cases 5 and 6.

N = 1000 Case 5 Case 6

ΣG

.00 .00

.11 .00 .04 .00

.16 .32 .00 .04 .09 .00

N = 2000 Case 5 Case 6

ΣG

.00 .00

.11 .00 .03 .00

.17 .30 .00 .03 .04 .00

N = 4000 Case 5 Case 6

ΣG

.00 .00

.12 .00 .02 .00

.18 .27 .00 .02 .02 .00

B Illustrative Examples

Example 1. Consider a standard bifactor model for J = 7 items, where the true parameters

are

A =



a b 0 0

a b 0 0

c d 0 0

c d 0 0

e 0 f 0

e 0 f 0

e 0 f 0



, d =



d1

d2

d3

d4

d5

d6

d7



, (S2)

with a, b, c, d, e, f 6= 0 and ad 6= bc. One can check that (1) |H1| = 2, because both testlet 1 and

testlet 2 have nonzero main factor loadings; (2) |Qg| ≥ 3 for all g, because |Q1| = 4, |Q2| =

3; and (3) |H2| ≥ 1, because testlet 1 can be partitioned to Bg,1 = {1, 3},Bg,2 = {2, 4},
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each containing linearly independent columns. By Condition P2, we know that the model is

identifiable.

Example 2. Even though the main factors by themselves satisfy the identification condi-

tions of factor models, in a two-tier model context, the main factor loadings can still be

indistinguishable. Consider a three-testlet model with two main factors, where

A =



1 0 2 0 0

1 0 3 0 0

1 0 4 0 0

0 1 0 1 0

0 1 0 1 0

0 1 0 1 0

0 1 0 0 3

0 1 0 0 3

0 1 0 0 3



, ΣL = I3×3. (S3)

One can observe that the main factor loadings, A:,1:2, satisfy the sufficient condition for

factor model identifiability per the 3-indicator rule (see Bollen, 1989). In addition, there are

three testlets with nonzero main factor loadings. However, we can easily construct another
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set of parameters with the same observed data distribution, say,

A
′
=



√
3/2 0

√
1/2 0 0

√
4/2 0

√
2/2 0 0

√
5/2 0

√
3/2 0 0

0 1 0 1 0

0 1 0 1 0

0 1 0 1 0

0 1 0 0 3

0 1 0 0 3

0 1 0 0 3



, Σ
′

L = I2×2. (S4)

This is because main factor 1 only depends on one testlet 1 and is consequently mixed up

with the testlet-specific factor.
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We can easily construct another set of parameters.

A
′′

=



1 0 2 0 0

1 0 3 0 0

1 0 4 0 0

0
√

1/2 0
√

3/2 0

0
√

1/2 0
√

3/2 0

0
√

1/2 0
√

3/2 0

0
√

2 0 0 2
√

2

0
√

2 0 0 2
√

2

0
√

2 0 0 2
√

2



, Σ
′′

L = I2×2. (S5)

This time, main factor 2 depends on two testlets and it is mixed up with second and third

testlet-specific factors.

Example 3. It should further be noted that having testlets that load on multiple main factors

would not suffice for two-tier model identifiability. Consider a two-tier model with three
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testlets and three main factors, where

A =



0 1 −1 1 0 0

0 1 −1 2 0 0

0 1 −1 3 0 0

2 0 1 0 3 0

2 0 1 0 2 0

2 0 1 0 1 0

1 1 0 0 0 2

1 1 0 0 0 3

1 1 0 0 0 1



, ΣL = I3×3. (S6)

Though each of the main factors is associated with multiple testlets, we can construct
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another set of parameters which implies the same distribution.

A
′
=



0 − 3√
6
− 1√

2
1 0 0

0 − 3√
6
− 1√

2
2 0 0

0 − 3√
6
− 1√

2
3 0 0

√
3 0

√
2 0 3 0

√
3 0

√
2 0 2 0

√
3 0

√
2 0 1 0

2√
3
− 2√

6
0 0 0 2

2√
3
− 2√

6
0 0 0 3

2√
3
− 2√

6
0 0 0 1



, Σ
′

L = I3×3. (S7)

Example 4. Consider a probit bifactor model for J = 9 items, where the true parameters
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are given by

A =



a b 0 0

a b 0 0

a b 0 0

a 0 c 0

a 0 c 0

a 0 c 0

a 0 0 d

a 0 0 d

a 0 0 d



, d =



d1

d2

d3

d4

d5

d6

d7

d8

d9



, (S8)

with a, b, c, d 6= 0. The parameter is identifiable by checking that it satisfies Condition P1.
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Example 5. Consider a probit bifactor model with J = 8 items and true parameters

A =



a b 0 0

a b 0 0

a b 0 0

a 0 c 0

a 0 c 0

a 0 c 0

a 0 0 d

a 0 0 d



, d =



d1

d2

d3

d4

d5

d6

d7

d8



, (S9)

with a, b, c, d 6= 0. This setting is not identifiable by checking that it fails to satisfy either

Condition P1 or Condition P2.

Example 6. The theoretical results from the current paper provide explanations to the find-

ings in existing studies on bifactor identification with rigor and generality. For example,

Green and Yang (2018) considered the empirical underidentification problem of bifactor

model, which was encountered when fitting particular types of bifactor models to certain types

of data sets. They demonstrated that the bifactor model can be underidentified in samples

with homogenuous-within and homogenuous-between (HWHB) covariance structure, that is,

σj1j2 = σg1g2 where g1, g2 are the testlets that items j1, j2 belong to. In particular, they
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considered the following loading matrices.

A =



0.8 0.3 0

0.8 0.3 0

0.8 0.3 0

0.8 0.3 0

0.8 0 0.3

0.8 0 0.3

0.8 0 0.3

0.8 0 0.3



, A =



0.7 0.4 0

0.7 0.4 0

0.7 0.4 0

0.7 0.4 0

0.8 0 0.3

0.8 0 0.3

0.8 0 0.3

0.8 0 0.3



. (S10)

They showed that the above two bifactor models were not identifable by constructing different

solutions which lead to the same model-implied covariance matrix.

One can check that |H1| = 2, |H2| = 0 for both settings. It follows from the sufficient and

necessary conditions in Theorem 1 that the two models are not identifiable.
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C Proofs for Standard Bifactor Models

Proof of Theorem 1. We first introduce a few more notations.

� Define Q0,g = {j | gj = g, a0[j] 6= 0}.

� Define H6 = {g | |Q0,g| ≥ 2}.

It is easy to see that H2 ⊂ H6 ⊂ H1.
We prove the results by considering the follow cases. We aim to show that the model is

identifiable if and only if Case 1.a or Case 2.d holds.

Case 1: |H1| ≥ 3.

a |Qg| ≥ 3 for all g = 1, . . . , G.

b |Qg| ≤ 2 for some g ∈ {1, . . . , G}.

Case 2: |H1| = 2.

a |Qg| ≤ 2 for some g ∈ {1, . . . , G}.
b |Q0,g| ≤ 1 for all g ∈ H1, i.e., H6 is empty.

c |Qg| ≥ 3 for g = 1, . . . , G; H6 is non-empty; H2 is empty.

d |Qg| ≥ 3 for g = 1, . . . , G; H2 is non-empty.

Case 3: |H1| ≤ 1.

First, we can see that if two sets of parameters lead to the same marginal distribution,
it must hold that

AAT + Λ = A
′
(A

′
)T + Λ

′
(S11)

where Λ = diag((λ1, . . . λJ)). In other words, the off-diagonal elements are not collapsed
with error variance.

Case 1 Suppose there is another set of parameters leading to the same model. Then
we have a0[Bg1 ]a0[Bg2 ]T = a

′
0[Bg1 ]a

′
0[Bg2 ]T for g1 6= g2 ∈ H1. Thus it implies that a0[Bg] =

±a′
0[Bg] for g ∈ H1. By a0[Bg1 ]a0[Bg]T = a

′
0[Bg1 ]a

′
0[Bg]T for g1 ∈ H1 and g /∈ H1, we further

have a0[Bg] = ±a′
0[Bg] for g ∈ H1. This implies that main factor loading is identifiable.

Note the fact that ag[j1]ag[j2] = a
′
g[j1]a

′
g[j2] for j1 6= j2 ∈ Bg by comparing the correlations

within testlet. By this, we consider the following.
If Qg ≥ 3, then we must have that ag[j] = ±a′

g[j] for j ∈ Qg. Further, it implies

ag[j] = ±a′
g[j] for j /∈ Qg. Thus Case 1.a is identifiable.

If Qg ≤ 2 for some g, we take out j1 and j2 from Qg (if exist). Set a
′
g[j1] = c · ag[j1] and

a
′
g[j2] = 1/c · ag[j2] for c satisfying that

|c2 − 1| · ag[j1]2 < λj1 and |1− 1/c2| · ag[j2]2 < λj2 . (S12)
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Such c exists since that c = 1 is one of the solution. By continuity, we know that any c
sufficiently close to 1 satisfy (S12) and keep the same sign of ag. This tells that ag[j] is not
uniquely determined. Hence Case 1.b is not identifiable.

Case 2 Suppose Qg ≤ 2 for some g. By the same construction in Case 1.b, parameter
ag[j] cannot be identified for j ∈ Qg. Thus Case 2.a is not identifiable.

Suppose Q0,g ≤ 1 for g ∈ H1. We can set a
′
0[j1] = c · a0[j1] for j1 ∈ Q0g1 , g1 ∈ H1; set

a
′
0[j2] = 1/c · a′

0[j2] for j2 ∈ Q0g2 , g2 ∈ H1 and keep other ag[j]’s fixed. It is easy to check
that ag[j1]ag[j2] = a

′
g[j1]a

′
g[j2] holds for any j1 6= j2 ∈ Bg and all g. We then choose c close

to 1 enough such that |c2 − 1| · a0[j1]2 < λj1 and |1 − 1/c2| · a0[j2]2 < λj2 . Then we can
find λ

′
j1

and λ
′
j2

to keep (S11) hold, and the sign remains unchanged. Thus Case 2.b is not
identifiable as the parameter a0 can not be determined.

Suppose |Qg| ≥ 3 for g = 1, . . . , G; |Qg| ≥ 3 for g = 1, . . . , G; H1∩H2∩H6 is non-empty.
Let g be the testlet satisfying that g ∈ H1 ∩H2 ∩H6. By comparing the off-diagonals of the
covariance matrix, it must hold that

(1− c2)a0[Bg − {j}]a0[j] + ag[Bg − {j}]ag[j] = a
′

g[Bg − {j}]a
′

g[j] (∀j ∈ Bg). (S13)

By the property of H2, we can find a partition of Bg = Bg,1 ∪ Bg,2. Hence (S13) can be
written as

(1− c2)a0[Bg,1]a0[Bg,2]T + ag[Bg,1]ag[Bg,2]T = a
′

g[Bg,1]a
′

g[Bg,2]T . (S14)

When c2 6= 1, the left hand side of (S14) has rank 2, while the right hand side of (S14) has
at most rank 1. Thus c2 ≡ 1, which reduces to Case 1.a. Hence Case 2.d is identifiable.

Suppose |Qg| ≥ 3 for g = 1, . . . , G; |Qg| ≥ 3 for g = 1, . . . , G; H1 ∩H2 ∩H6 is empty. By
Case 2.b, we only need to consider the situation that |H1 ∩H6| ≥ 1 and |H1 ∩H2 ∩H6| = 0.
Take g ∈ H1 ∩ H6, we then know that Āg can only take one of the following forms (after
suitable row ordering),

(1)

a b

c d

e f

 , (2)


a b

c d

c d

c d

 , (S15)

where the matrix of form (1) is 3 by 2 and satisfies that b, d, f 6= 0 and at most one of a, c, e
is zero; the matrix of form (2) is Jg (Jg ≥ 4) by 2 and contains at most two different rows
(i.e. rows are not equal up to scaling). Under both cases, we only need to check (S13) for
items corresponding to the first three rows. For notational simplicity, we denote three items
as 1,2 and 3.
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We can construct another set of parameters, where

a
′

g[1] =
(1− c2)a0[1]a0[3] + ag[1]ag[3]

ag[3]x
;

a
′

g[2] =
(1− c2)a0[2]a0[3] + ag[2]ag[3]

ag[3]x
;

a
′

g[3] = ag[3]x;

x =
((1− c2)a0[1]a0[3] + ag[1]ag[3])((1− c2)a0[2]a0[3] + ag[2]ag[3])

((1− c2)a0[1]a0[2] + ag[1]ag[2])ag[3]2
;

λ
′

j = λj + (1− c2)a2
0[j] + (ag[j])

2 − (a
′

g[j])
2, j = 1, 2, 3. (S16)

Notice that ag[3] 6= 0 according to the assumption that |Qg| ≥ 3. Hence the above solution
will be different from the true parameters when c2 6= 1. Note that x > 0 when c is sufficiently
close to 1. Then a

′
g has the same sign as ag. Thus Case 2.c is not identifiable.

Case 3 Apparently, it is not identifiable. This is because we can construct another
set of parameters, Ā

′
g = Āg, g = 2, . . . , G and Ā

′
1 = Ā1R with R being a 2 by 2 rotation

matrix. It is easy to see that the two sets of parameters lead to the same distribution, since
Σg1g2 = Σ

′
g1g2

for all g1 and g2. In addition, we can easily choose the rotation matrix R such
that it keeps sign of first non-zero element in each column of Ā1.

Identifiability of d is obvious by using the expectation of Yj. Thus we conclude the proof.

Proof of Proposition 2. The sufficient part is straightforward by noticing that P (Yj1 =
1, . . . , Yjk = 1) only depends on dj/(a

T
j Σaj + 1)1/2’s and (aTj1Σaj2)/

(
(aTj1Σaj1 + 1)(aTj2Σaj2 +

1)
)1/2

’s for all possible combinations of j1, . . . jk.
The necessary part is also not hard. Notice that CDF function Φ is a strictly monotone

increasing function. By (3.2), we must have dj/(a
T
j Σaj+1)1/2 = d

′
j/((a

′
j)
TΣ

′
a

′
j+1)1/2 for all j.

In addition, Φ2(a, b, ρ) is a strictly monotone increasing function of ρ for any fixed a, b. Thus,

from (3.3), we get (aTj1Σaj2)/
(
(aTj1Σaj1 + 1)(aTj2Σaj2 + 1)

)1/2
= (aTj1Σ

′
aj2)/

(
((a

′
j1

)TΣ
′
a

′
j1

+

1)((a
′
j2

)TΣ
′
a

′
j2

+ 1)
)1/2

for any j1 6= j2. Hence we prove the proposition.

Proof of Theorem 6. We keep using the notations of Q0,g and H6. We still aim to show
that the model is identifiable if and only if Case 1.a or Case 2.d holds.

Case 1: |H1| ≥ 3.

a |Qg| ≥ 3 for all g = 1, . . . , G.

b |Qg| ≤ 2 for some g ∈ {1, . . . , G}.

Case 2: |H1| = 2.

a |Qg| ≤ 2 for some g ∈ {1, . . . , G}.
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b |Q0,g| ≤ 1 for all g ∈ H1, i.e., H6 is empty.

c |Qg| ≥ 3 for g = 1, . . . , G; H2 is empty.

d |Qg| ≥ 3 for g = 1, . . . , G; H2 is non-empty.

Case 3: |H1| ≤ 1.

The first step is to show that the mapping (x, y)→ ( x√
x2+y2+1

, y√
x2+y2+1

) is one-to-one.

It is easy to see that the mapping is onto. We only need to show it is injective. If there

exists another (x
′
, y

′
) such that x√

x2+y2+1
= x

′
√

(x′ )2+(y′ )2+1
and y√

x2+y2+1
= y

′
√

(x′ )2+(y′ )2+1
, we

can find (x
′
)2 + (y

′
)2 = x2 + y2 which further implies x = x

′
and y = y

′
. Therefore, in the

following, we only need to work with ãj, where ãj =
aj√

aT
j aj+1

.

Case 1 Suppose there is another set of parameters leading to the same distribution.
Then we have ã0[Bg1 ]ã0[Bg2 ]T = ã

′
0[Bg1 ]ã

′
0[Bg2 ]T for g1 6= g2 ∈ H1. Thus it implies that

ã0[Bg] = ±ã′
0[Bg] for g ∈ H1. By ã0[Bg1 ]ã0[Bg]T = ã

′
0[Bg1 ]ã

′
0[Bg]T for g1 ∈ H1 and g /∈ H1,

we further have ã0[Bg] = ±ã′
0[Bg] for g ∈ H1. This implies that main factor loading is

identifiable.
Notice that ãg[j1]ãg[j2] = ã

′
g[j1]ã

′
g[j2] for j1 6= j2 ∈ Bg by comparing the correlations

within testlet.
If Qg ≥ 3, then we must have that ãg[j] = ±ã′

g[j] for j ∈ Qg. Further, it implies

ãg[j] = ±ã′
g[j] for j /∈ Qg. Thus Case 1.a is identifiable.

If Qg ≤ 2 for some g, we take out j1 and j2 from Qg (if exist). Set ã
′
g[j1] = c · ãg[j1] and

ã
′
g[j2] = 1/c · ãg[j2] for c satisfying that ã0[j1]2 + c2 · ãg[j1]2 < 1 and

ã0[j2]2 + 1/c2 · ãg[j2]2 < 1. (S17)

Such c exists since that c = 1 is one of the solution. By continuity, we know that any c
sufficiently close to 1 satisfy (S17) and keep the same sign of ãg. This tells that ag[j] is not
uniquely determined. Hence Case 1.b is not identifiable.

Case 2 Suppose Qg ≤ for some g. By the same construction in Case 1.b, parameter
ag[j] cannot be identified for j ∈ Qg. Thus Case 2.a is not identifiable.

Suppose Q0,g ≤ 1 for g ∈ H1. We can set ã
′
0[j1] = c · ã0[j1] for j1 ∈ Q0g1 , g1 ∈ H1; set

ã
′
0[j2] = 1/c · ã′

0[j2] for j2 ∈ Q0g2 , g2 ∈ H1 and keep other ãg[j]’s fixed. It is easy to check
that ãg[j1]ãg[j2] = ã

′
g[j1]ã

′
g[j2]T holds for any j1 6= j2 ∈ Bg and all g. Here c is chosen to be

positive to keep the sign. Thus Case 2.b is not identifiable as the parameter a0[j1] can not
be determined.

Suppose |Qg| ≥ 3 for g = 1, . . . , G; |Qg| ≥ 3 for g = 1, . . . , G; H1∩H2∩H6 is non-empty.
Let g be the testlet satisfying that g ∈ H1 ∩H2 ∩H6. By comparing the correlation within
matrix, it must hold that

(1− c2)ã0[Bg − {j}]ã0[j] + ãg[Bg − {j}]ãg[j] = ã
′

g[Bg − {j}]ã
′

g[j] (∀j ∈ Bg). (S18)
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By the property of H2, we can find a partition of Bg = Bg,1 ∪ Bg,2. Hence (S18) can be
written as

(1− c2)ã0[Bg,1]ã0[Bg,2]T + ãg[Bg,1]ãg[Bg,2]T = ã
′

g[Bg,1]ã
′

g[Bg,2]T . (S19)

When c2 6= 1, the left hand side of (S19) has rank 2, while the right hand side of (S19) has
at most rank 1. Thus c2 ≡ 1, which reduces to Case 1.a. Hence Case 2.d is identifiable.

Suppose |Qg| ≥ 3 for g = 1, . . . , G; |Qg| ≥ 3 for g = 1, . . . , G; H1 ∩H2 ∩H6 is empty. By
Case 2.b, we only need to consider the situation that |H1 ∩H6| ≥ 1 and |H1 ∩H2 ∩H6| = 0.
Take g ∈ H1 ∩ H6, we then know that Āg can only take one of the following forms (after
suitable row ordering),

(1)

a b

c d

e f

 , (2)


a b

c d

c d

c d

 , (S20)

where the matrix of form (1) is 3 by 2 and satisfies that b, d, f 6= 0 and at most one of a, c, e
is zero; the matrix of form (2) is Jg (Jg ≥ 4) by 2 and contains at most two different rows
(i.e. rows are not equal up to scaling). Under both cases, we only need to check (S18) for
items corresponding to the first three rows. For notational simplicity, we denote three items
as 1,2 and 3.

We can construct another set of parameters,

ã
′

g[1] =
(1− c2)ã0[1]ã0[3] + ãg[1]ãg[3]

ãg[3]x
;

ã
′

g[2] =
(1− c2)ã0[2]ã0[3] + ãg[2]ãg[3]

ãg[3]x
;

ã
′

g[3] = ãg[3]x;

x =
((1− c2)ã0[1]ã0[3] + ãg[1]ãg[3])((1− c2)ã0[2]ã0[3] + ãg[2]ãg[3])

((1− c2)ã0[1]ã0[2] + ãg[1]ãg[2])ãg[3]2
. (S21)

Notice that ãg[3] 6= 0 according to assumption that |Qg| ≥ 3. Hence the above solution will
be different from true parameter when c2 6= 1. When c is close enough to 1, we know that x
is positive and ã

′
g has the same sign as that of ãg. Thus Case 2.c is not identifiable.

Case 3 Obviously, it is not identifiable by the same reason as stated in Case 3 in the
proof of Theorem 1.

Once loading matrix is identifiable, we can immediately identify d by using (3.2). Thus
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we conclude the proof.
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D Proofs for Extended Bifactor Models

For the linear and probit extended bifactor model identifiability, we only provide the complete
proof for the linear case (i.e., Theorem 2 and Theorem 3). It should be apparent from
Appendix A that the proofs for linear and probit models are very similar.

The following are two support theorems for the proof of Theorems 2 and 3.

Theorem S1. Under the the linear extended bifactor model with known error variance, if

parameters satisfy |H3| ≥ 2 and |N | = 0, then it is identifiable.

Theorem S2. Under the linear extended bifactor model, the model parameter is not identi-

fiable if |H3| ≤ 1.

Before proof of Theorems S1 and S2, we first state the following Lemma S1 which plays
an important role in proving the identification of the extended bifactor model.

Lemma S1. Assume A and B are both two-column matrices. Let Σ and Σ
′

be two by two

matrices. Consider the following situations:

1. Suppose both A and B are full-column rank. Thus AΣBT = AΣ
′
BT implies that

Σ = Σ
′
.

2. Suppose A is full-column rank and B has column-rank 1, i.e., B = b

b1

b2


T

. Thus

AΣBT = AΣ
′
BT implies that Σ

b1

b2

 = Σ
′

b1

b2

 .

3. Suppose both A and B are column-rank 1, i.e., A = a

a1

a2


T

and B = b

b1

b2


T

.
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Thus AΣBT = AΣ
′
BT implies that

a1

a2


T

Σ

b1

b2

 =

a1

a2


T

Σ
′

b1

b2

 .

Proof of Theorem S1. We prove this by contradiction. Suppose there exists another set
of {A′

g} leading to the same distribution. We pick any item pair g1 and g2 from set H∗. We

know that Σgg = Σ
′
gg for g = g1, g2, which implies that

Ā
′

g1
= Āg1

(
cos θ1 sin θ1

− sin θ1 cos θ1

)
, Ā

′

g2
= Āg2

(
cos θ2 sin θ2

− sin θ2 cos θ2

)
(S22)

In addition, we know that Σg1g2 = Σ
′
g1g2

, which implies that

(
1 0

0 σg1g2

)
=

(
cos θ1 sin θ1

− sin θ1 cos θ1

)(
1 0

0 σ
′
g1g2

)(
cos θ2 − sin θ2

sin θ2 cos θ2

)
. (S23)

After simplification, we have that

0 = − cos θ1 sin θ2 + σ
′
sin θ1 cos θ2 (S24)

0 = − sin θ1 cos θ2 + σ
′
cos θ1 sin θ2. (S25)

Observe that cos θ1 and cos θ2 are not equal to zero, otherwise cos θ1 cos θ2+σ
′
sin θ1 sin θ2 < 1.

By (S24), we have tan θ1 = σ
′2 tan θ1. This implies that θ1 = 0, or π. It implies that

Āg1 = Ā
′
g1

and σg1g2 = σ
′
g1g2

.
Take any g not in H3 and g1 in H3, we know that Āg can be represented as ag[Bg](c1, c2).

It is easy to see that A
′
g = ag[Bg](c

′
1, c

′
2) with c

′2
1 + c

′2
2 = c2

1 + c2. Compare Σg1g and Σ
′
g1g

, we
have that

(
1 0

0 σg1g2

)(
c1

c2

)
=

(
1 0

0 σ
′
g1g2

)(
c
′
1

c
′
2

)
. (S26)

This implies that c
′
1 = c1, c

′
2 = c2 and σ

′
g1g

= σg1g.
Furthermore, if G > |H3|, we take any testlet pair g1 and g2 not in H3. By Σg1g2 = Σg1g2 ,
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we have

(
cg11 cg12

)(1 0

0 σg1g2

)(
cg21

cg22

)
=
(
cg11 cg12

)(1 0

0 σ
′
g1g2

)(
cg21

cg22

)
, (S27)

which implies that σ
′
g1g2

= σg1g2 . Hence, all parameters are identifiable. This concludes our
proof.

Proof of Theorem S2. For simplicity, we suppose |H3| = 1 and g1 ∈ H3. For any g 6= g1,
it must hold that

(
1 0

0 σ
′
gg1

)(
cos θg sin θg

− sin θg cos θg

)(
cg1

cg2

)
=

(
cos θ1 sin θ1

− sin θ1 cos θ1

)(
1 0

0 σgg1

)(
cg1

cg2

)
(S28)

according to Lemma S1, where Āg has the form of ag[Bg](cg1, cg2). Here c2 is a non-zero
constant. By simplification, we then have

(
cg1 cos θg + cg2 sin θg

σ
′
gg1

(−cg1 sin θg + cg2 cos θg)

)
=

(
cg1 cos θ1 + cg2σgg1 sin θ1

(−cg1 sin θ1 + cg2σgg1 cos θ1)

)
. (S29)

Equation (S29) can be viewed as a function of θ1, θg and σ
′
gg1

. Clearly, it admits the solution

θg = 0, θ1 = 0, σ
′
gg1

= σgg1 .
We perturb θ1 a bit at θ1 = 0 locally, i.e., θ1 = δ. Here we can always choose δ such that

it keeps the sign of the first item in Bg to be positive. Otherwise, we can choose −δ. Thus,
by the implicit function theorem, (S29) admits the solution θ

′
g = θg(δ) and σ

′
gg1

= σgg1(δ),

since the determinant of gradient does not vanish at θg = 0, σ
′
gg1

= σgg1 when cg2 6= 0. In
addition, we know that θg(δ) → 0 as δ → 0. Then it keeps the sign of first non-zero item
in Bg since both a0[jg] and ag[jg] > 0 when δ is close enough to 0. (Here jg is the first
non-zero item in Bg.) Furthermore, it admits that σ

′

gg′
= σgg′ (δ) for any item pair g, g

′ 6= g1.

Let δ go to 0, then σ
′

gg′
s uniformly go to σgg′ since the number of parameters is finite. By

eigenvalue perturbation theory, there exists a δ such that that Σ
′

is still positive definite.
This guarantees that Σ

′
is still a covariance matrix.

By the above displays, the model is not identifiable since we have constructed another
set of parameters leading to the same distribution. By the same technique, the model is not
identifiable when |H3| = 0. Thus we conclude the proof.

Now we are ready to prove the main results.
Proof of Theorem 2. Proof under Condition E2S : The first step is to show that the
covariance is identifiable. We prove this by checking the Condition C0 of Theorem 4. It is
also suffices to check the Condition C1 of Theorem S3.
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By the requirement that |Qg| ≥ 3, we denote these three items in testlet g as jg,1, jg,2 and
jg,3. From the requirement that |H2| ≥ 1, we can assume g1 ∈ H2 and Āg1 [Bg1 , :], Āg1 [Bg2 , :]
are full-column rank with Bg1,1 = {jg1,1, jg1,2} and Bg1,2 = {jg1,3, jg1,4}. By the requirement
of |H3| ≥ 2, we know there exists g2 ∈ H3 such that g2 6= g1. Then we can assume Āg2 [jg2,2, :]
and Āg2 [jg2,3, :] are linearly independent for items jg2,2 and jg2,3.

We then can construct a partition B1∪B2 satisfying that B1 = {jg1,1, jg1,2, jg2,1, . . . , jg,1; g 6=
g1, g 6= g2}, B2 = {jg1,3, jg1,4, jg2,2, jg2,3, . . . , jg,2, jg,3; g 6= g1, g 6= g2}. It is easy to check that
A[B1, :] has full column rank. Let B2a = {jg1,3, jg1,4, jg2,2, . . . , jg,2; ; g 6= g1, g 6= g2}. It is also
easy to check that A[B2a, :] has full column rank and A[B2 − {j}, :] has full column rank for
∀j ∈ B2a. Thus Condition C1 is satisfied.

Hence the problem is reduced to the linear case with known variance. We only need to
check the condition that |N | = 0 according to Theorem S1. If not, there is a g such that
ag = 0. It contradicts with |Qg| ≥ 3. This concludes the proof.

Proof under Condition E1S : The first step is still to show that the item covariance
matrix is identifiable. Again, we prove this by checking the Condition C1.

By the requirement that |Qg| ≥ 3 for each testlet g, we take any three items in testlet
g and denote them as jg,1, jg,2 and jg,3. By the requirement of |H3| ≥ 3, we can assume
g1, g2, g3 ∈ H3 and assume Āg1 [Bg1,a, :], Āg2 [Bg2,a, :], Āg3 [Bg3,a, :] have full-column rank with
Bg1,a = {jg1,1, jg1,2}, Bg2,a = {jg2,1, jg2,2} and Bg3,a = {jg3,1, jg3,2}.

In the following, we need to verify that {1, . . . , J} − j can be partitioned into two item
sets B1,j and B2,j for each item j such that A[B1,j, :] and A[B2,j, :] satisfy Condition C1.

If j belongs to testlet g (g 6= g1, g2, g3), we can assume j = jg,1 without loss of generality.
Then we can set

B1,j = {jg1,1, jg1,2, jg2,3, jg3,3, . . . , jg,2, . . . ; g 6= g1, g2, g3},

and
B2,j = {jg1,3, jg2,1, jg2,2, jg3,1, jg3,2, . . . , jg,3, . . . ; g 6= g1, g2, g3}.

If j belongs to testlet g (g ∈ {g1, g2, g3}), we can assume j = jg1,1 without loss of
generality. Then we can set

B1,j = {jg1,2, jg2,1, jg2,2, jg3,3, . . . , jg,2, . . . ; g 6= g1, g2, g3},

and
B2,j = {jg1,3, jg2,3, jg3,1, jg3,2, . . . , jg,3, . . . ; g 6= g1, g2, g3}.

Then by Condition C1 we know that the covariance matrix is identifiable. Obviously |N | = 0
and |H3| ≥ 2 hold. Hence we conclude the proof.

Proof of Theorem 3. To prove the necessity that |H3| ≥ 2, we want to show that we
can always construct another set of parameters leading to the same distribution for any Θ
satisfies H1 ≤ 1.
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Under this case, we keep λ fixed and only consider to construct another loading matrix
A. It is easy to compute that the covariance between items j1 and j2 from group g is

σj1j2 = a0[j1]a0[j2] + ag[j1]ag[j2]; (S30)

the covariance between items j1 and j2 from groups g1 and g2 is

σj1j2 = a0[j1]a0[j2] + ag1 [j1]ag2 [j2]σg1g2 . (S31)

We can write them in matrix form which becomes

Σgg = ĀgĀ
T
g and Σg1g2 = Āg1

(
1 0

0 σg1g2

)
ĀTg2 . (S32)

Then, by Theorem S2, we have that |H3| ≥ 2.
To prove the necessity that |Qg| ≥ 2 for all g ∈ {1, . . . , G}, we construct another set of

parameters leading to the same distribution. Take any g such that |Qg| ≤ 1. Without loss
of generality, we can assume |Qg| = 1 and assume item j satisfies ag[j] 6= 0. Thus, we can
construct another set of parameters such that a

′
g[j] = x · ag[j], Σ

′
G[g, g

′
] = ΣG[g, g

′
]/x for

g
′ 6= g and keep other parameters fixed. It can be verified that this set of parameters works.

Furthermore, by the same argument in the proof of Theorem 1, we must have |Qg| ≥ 3
for all g satisfying ΣG[g,−g] = 0,

Proof of Proposition 1. We still use proof by contradiction. The first step is to show
that the main factor loadings are identifiable. By assumption, we must have that

Ā
′

g1

(
1 0

0 Σ
′
G[g1, g2]

)
Ā

′T
g2

= Āg1

(
1 0

0 ΣG[g1, g2]

)
ĀTg2 . (S33)

Since g1, g2 ∈ H3, we know Āg1 , Āg2 are full column rank matrices. There must exist full
rank matrices R1 and R2 such that Ā

′
g1

= Āg1 ·R1 and Ā
′
g2

= Āg2 ·R2.
Next, again by assumption, we know that

Ā
′

g1
[−j, :]Ā′

g1
[j, :]T = Āg1 [−j, :]Āg1 [j, :]T ; j ∈ Qg1 . (S34)

This implies that R1R
T
1Ag1 [j, :]

T = Ag1 [j, :]
T for j ∈ Qg1 , as the Kruskal rank of Āg1 is 2. It
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must hold that R1R
T
1 = I. We then parameterize R1 as

R1 =

(
cos θ − sin θ

sin θ cos θ

)
. (S35)

By (S33), we further have

R2 =

(
1 0

0 1
σ′

)(
cos θ sin θ

− sin θ cos θ

)(
1 0

0 σ

)
. (S36)

Again by assumption, we know that

Ā
′

g2
[−j, :]Ā′

g2
[j, :]T = Āg2 [−j, :]Āg2 [j, :]T ; j ∈ Qg2 . (S37)

This implies that determinant of R2R
T
2 − I is zero. By straightfoward calculation,

0 = det(R2R
T
2 − I)

= det(

(
sin2 θ · ( 1

σ′2 − 1) σ cos θ sin θ · (1− 1
σ′2 )

σ cos θ sin θ · (1− 1
σ′2 ) σ2

σ′2 cos2 θ + σ2 sin2 θ − 1

)
)

= sin2 θ · ( 1

σ′2
− 1) · (σ2 − 1).

Hence, θ = 0 and R1 = I. This implies that main factor loading ag1 is identifiable. By
assumption, it holds that

Āg1

(
1 0

0 ΣG[g1, g]
′

)
Ā

′T
g = Āg1

(
1 0

0 ΣG[g1, g]

)
ĀTg (S38)

for any g 6= g1. We must have that a
′
g = ag, since Āg1 has full column rank. Hence all main

factor loadings are identifiable.
Next, we prove the identifiability of testlet-specific loadings. By assumption we have that

a
′

g[−j] · a
′

g[j] = ag[−j] · ag[j] (S39)

for any j and g. If |Qg| ≥ 3, we have that ag = a
′
g according to proof in Theorem 1. If
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|Qg| = 2, we know that ΣG[g,−g] is not zero-vector. Hence, we must have that a
′
g = x · ag

for some positive x by comparing the cross variance. Finally, by (S39), we have x2 = 1.
Thus x ≡ 1. Then ag is identifiable. We conclude the proof.

To end this section, we provide a variant of Theorem 5.1 in Anderson and Rubin (1956)
to item factor models with probit link, which provides a basis to the identifiability results
for the probit extended bifactor and two-tier models. Based on this result, there will be no
difference between the proofs of linear bifactor models and probit bifactor models.

Theorem S3. Under the general factor model with probit link as in (3.1), assume the fol-

lowing holds:

C1 There exists a partition of the items {1, . . . , J} = B1 ∪B2 such that (1) A[B1, :] is full-

column rank; (2) there exists a subset of B2, B2a, satisfying that A[B2a, :] is full-column

rank and A[B2 − {j}, :] is full-column rank for ∀j ∈ B2a.

Then, the covariance matrix AΣAT is identifiable.

The result is closely related to Kruskal rank. That is, Condition C1 is satisfied when B2

contains a subset of B2a of K + 1 items and A[B2a, :]
T has Kruskal rank K. Thus, Theorem

S3 requires 2K+ 1 or more items. The condition is very weak, especially in terms of number
of required items. Notice that there are JK loading parameters and J(J − 1)/2 restrictions.
Then J(J − 1)/2 ≥ JK if and only if J ≥ 2K + 1. In fact, we can prove that 2K + 1 is
minimal possible number of items for model identifiability for K = 1 and 2.

For the probit bifactor model, due to its special structure, the conditions for identifiability
can be less restrictive than what Theorem S3 requires for general probit factor models:
Specifically, Theorem S3 requires at least 3K + 1 items for meeting Condition C1, which is
slightly stronger than the optimal conditions for the bifactor model as stated in Theorem 6.

Proof of Theorem S3. By comparing the correlation between B1 and B2, we have that

Ã[B1, :]ΣÃ[B2, :]
T = Ã

′
[B1, :]Σ

′
Ã

′
[B2, :]

T . (S40)

Since both Ã[B1, :] and Ã[B2, :] have full column rank, we can assume Ã
′
[B1, :] = Ã[B1, :]R1

and Ã
′
[B2, :] = Ã[B2, :]R2. Thus (S40) becomes

Σ = R1Σ
′
RT

2 . (S41)
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By comparing the correlation within B2, we have that

Ã[B2 − {j}, :]ΣÃ[j, :]T = Ã
′
[B2 − {j}, :]Σ

′
Ã

′
[j, :]T ∀j ∈ B2a. (S42)

Notice that Ã[B2 − {j}, :] has full rank K as A[B2 − {j}, :] does. (S42) is reduced to

ΣÃ[j, :]T = R2Σ
′
RT

2 Ã[j, :]T ∀j ∈ B2a, (S43)

that is (Σ−R2Σ
′
RT

2 )Ã[j, :]T = 0 for all j ∈ B2a. This implies that the kernel of the linear map
Σ − R2Σ

′
RT

2 is the whole vector space. Thus Σ ≡ R2Σ
′
RT

2 which further implies R1 = R2.
Therefore,

ÃΣÃT = Ã
′
Σ

′
(̃A

′
)T . (S44)

We conclude that the covariance matrix is identifiable by comparing the diagonals of the
above equation.
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E Proofs for Two-Tier Models

Following similar rationale as for the extended bifactor models, it suffices to prove the fol-
lowing three theorems.

Theorem S4. Under a linear two-tier model, suppose λ is known. Then the parameter is

identifiable if it satisfies T1S.

Theorem S5. Under a linear two-tier model, suppose λ is known. Then the parameter is

identifiable if it satisfies T2S.

Theorem S6. Under a linear two-tier model, suppose λ is known. Then the parameter is

identifiable if it satisfies T3S.

Proof of Theorem S4. We prove this by using method of contradiction. We adopt
notation ΣH1,H2 to denote the item covariance across testlets fromH1 andH2. Since |H3| ≥ 3,
we then take three Testlets g1, g2 and g3 such that g1, g2, g3 ∈ H3. Note that Σ

′

gg′
= Σgg′ by

comparing the item covariance across different testlets. We then know that A
′
[Bg, 1 : L] =

Ag[Bg, 1 : L]Rg (g = g1, g2, g3), where Rg is a L by L full rank matrix. We also know that
R

′
gΣ

′
LRg = ΣL. This indicates that Rg1 = Rg2 = Rg3 = R and RΣ

′
LR

T = ΣL. It further
implies

A[BH3 , 1 : L]RΣ
′

LR
TA[BH3 , 1 : L]T = A[BH3 , 1 : L]ΣLA[BH3 , 1 : L]T (S45)

Since A[BH3 , 1 : L] contains an identity, we then have R = I and Σ
′
L = ΣL.

For any g /∈ H3, we know that Σ
′
H3,g

= ΣH3,g, indicating that A
′
[Bg, 1 : L] = A[Bg, 1 : L].

Lastly, we then have a
′
g = ag for all g by comparing the item covariance within testlets.

Proof of Theorem S5. We still use method of contradiction to prove this theorem.
Suppose there exists another set of parameter leading to the same distribution. Since |H3| ≥
2 and |H4| ≥ 1, we then take two Testlets g1 and g2 such that g1 ∈ H3 ∩ H4 and g2 ∈ H3.
Notice that Σ

′
g1g2

= Σg1g2 . We then know that A
′
[Bg, 1 : L] = A[Bg, 1 : L]Rg (g = g1, g2),

where Rg is a L by L full rank matrix. Recall Āg1 = (A[Bg1 , 1 : L], ag1 [Bg1 ]), we then know

Ā
′
g1

= Āg1

(
Rg1 c

0 d

)
. Furthermore, we know that Σ

′
g1g1

= Σg1g1 . This gives us that

c · d = 0 and d2 = 1, (S46)
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which implies that a
′
g1

(a
′
g1

)T = ag1a
T
g1

. We then also have Rg1Σ
′
LR

T
g1

= ΣL. Since Rg1Σ
′
LR

T
g2

=

ΣL, it implies that Rg1 = Rg2 . Then RgΣ
′
LR

T
g = ΣL for any g ∈ H3. It implies that

A[BH3 , 1 : L]RΣ
′

LR
TA[BH3 , 1 : L]T = A[BH3 , 1 : L]ΣLA[BH3 , 1 : L]T (S47)

Since A[BH3 , 1 : L] contains an identity, we then have R = I and Σ
′
L = Σ.

Furthermore, for any g /∈ H3, we know that Σ
′
H3,g

= ΣH3,g, indicating that A
′
[Bg, 1 : L] =

A[Bg, 1 : L]. Lastly, we have a
′
g = ±ag by using the fact that Σ

′
gg = Σgg for all g.

Proof of Theorem S6. By the same strategy, suppose the model is not identifiable.
There exists another set of parameters A

′
and Σ

′
leading to the same model. Hence,

A
′
[BG1 , 1 : L]Σ

′
LA

′
[BG2 , 1 : L]T = A[BG1 , 1 : L]ΣLA[BG2 , 1 : L]T . Since both A[BG1 , 1 : L]

and A[BG2 , 1 : L] are full column rank matrices according to Condition T3S -(b). This im-
plies that A

′
[BG1 , 1 : L] spans the same subspace as A[BG1 , 1 : L] does. In other words,

A
′
[BG1 , 1 : L] has the form of A[BG1 , 1 : L] ·D for some D being a L by L full rank matrix.
By Condition T3S -(a) that span(A[BG1 , 1 : L]) ∩ span(A

′
[BG1 , L + G1]) = 0 and by

assumption that A
′
[BG1 , :]Σ

′
A

′
[BG1 , :]T = A[BG1 , :]ΣA[BG1 , :]T , we then know A

′
[BG1 , (1 :

L) + G1] = A[BG1 , (1 : L) + G1] · R where R is L + G1 by L + G1 matrix (Here G1 = |G1|).

Furthermore, R should has the form of

(
D X1

0 X2

)
. As a result, we then have

(
D X1

0 X2

)(
Σ

′
L 0

0 I

)(
D 0

XT
1 XT

2

)
=

(
ΣL 0

0 I

)
, (S48)

which implies that X1X
T
2 = 0, X2X

T
2 = I, DΣ

′
LD+X1X

T
1 = ΣL. Therefore, it gives X1 = 0,

X2 = I and DΣ
′
LD

T = ΣL. This further gives us that A[:, 1 : L]DΣ
′
LD

TA[:, 1 : L]T = A[:
, 1 : L]ΣLA[:, 1 : L]T . Since A:,1:L contains an identity, we then have D is an identity matrix.
Thus, we have A[:, 1 : L]

′
= A[:, 1 : L] which further implies A

′
= A. We thus conclude the

proof.
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F Proof of Theorem 10 in Section 4

Proof of Theorem 10. Let AG be (a1, . . . , aG). We prove the results by considering the
following two cases.

Case 1: a0 is not in the range of AG. Under this case, we have that a0, . . . , aG are
linearly independent. If not, there exists c0, . . . , cG such that

∑G
g=0 cgag = 0. Then

we have
∑G

g=1 cgag = 0 by assumption that a0 is not in the range of A0. Since ag has
non-zero loadings on gth testlet, a1, . . . , aG are linearly independent. Thus we have
c0 = · · · = cG = 0.

If there is another model P ′
(A

′
, d,Σ

′
G, ρ

′
) that implies the same distribution, we must

have

A
′
= A

(
x 0T

y Λ

)
(S49)

since A has full column rank. Furthermore, we must have

(
x 0T

y Λ

)(
1 (ρ

′
)T

ρ
′

Σ
′
G

)(
x yT

0 Λ

)
=

(
1 ρT

ρ ΣG

)
. (S50)

This gives us that x2 = 1, x(y+ Λρ
′
) = ρ and yyT + Λρ

′
yT +y(ρ

′
)TΛ + ΛΣ

′
GΛ = ΣG.

After simplification, we have

(y + Λρ
′
)(y + Λρ

′
)T − (Λρ

′
)(Λρ

′
)T + ΛΣ

′

GΛ = ΣG

ρρT − (Λρ
′
)(Λρ

′
)T + ΛΣ

′

GΛ = ΣG

ρρT − (ρ̃)(ρ̃)T + ΛΣ
′

GΛ = ΣG,

where ρ̃ = Λρ
′
.

We choose ρ̃ to be arbitrary close to ρ, set Λ[g, g] =
√

(ΣG + (ρ̃)(ρ̃)T − ρρT )[g, g] and
set Σ

′
G = Λ−1(ΣG+(ρ̃)(ρ̃)T−ρρT )Λ−1. Hence we find another set of parameters which

leads to the same distribution. Thus the model is not identifiable.

Case 2: a0 is in the range of AG. We construct another model P(A
′
, d

′
,Σ

′
G,ρ

′
) such

that A
′
G = AG, Σ

′
G = ΣG. To determine the value of a

′
0 and ρ

′
, we use the following
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equations.

(a0, AG)

(
1 ρ

ρ ΣG

)
(a0, AG)T = (a

′

0, AG)

(
1 ρ

′

ρ
′

ΣG

)
(a

′

0, AG)T

a0a
T
0 + AGρa

T
0 + a0ρ

TATG = (a
′

0)(a
′

0)T + AGρ
′
(a

′

0)T + (a
′

0)(ρ
′
)TATG

(a0 + AGρ)(a0 + AGρ)T − (AGρ)(AGρ)T = (a
′

0 + AGρ
′
)(a

′

0 + AGρ
′
)T − (AGρ

′
)(AGρ

′
)T

xxT − yyT = (x
′
)(x

′
)T − (y

′
)(y

′
)T

where x = a0 + AGρ, y = AGρ and x
′
, y

′
are defined correspondingly. It is easy to

check that x
′
=
√

1 + c2x+ cy, y
′
= cx+

√
1 + c2y satisfies the above equations. This

give us

a
′

0 + AGρ
′
=
√

1 + c2(a0 + AGρ) + cAGρ (S51)

and

AGρ
′
= c(a0 + AGρ) +

√
1 + c2AGρ (S52)

By assumption that a0 is in the range of AG, there exists b0 such that a0 = AGb0.
Equation (S52) becomes AGρ

′
= AG(cb0 + (c +

√
1 + c2)ρ). This implies ρ

′
= cb0 +

(c+
√

1 + c2)ρ. Plug this into (S51), we have

a
′

0 + AG(cb0 + (c+
√

1 + c2ρ)) =
√

1 + c2(a0 + AGρ) + cAGρ.

Thus a
′
0 =
√

1 + c2(a0 +AGρ) + cAGρ−AG(cb0 + (c+
√

1 + c2)ρ) = (
√

1 + c2− c)a0.

In summary, we constructed a different set of parameters which has the same distribu-
tion as the true model.

Hence we conclude the proof.
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