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Abstract: The bifactor model and its extensions are multidimensional latent vari-

able models, under which each item measures up to one subdimension on top of the

primary dimension(s). Despite their wide applications to educational and psycho-

logical assessments, these multidimensional latent variable models may suffer from

nonidentifiability, which can further lead to inconsistent parameter estimation and

invalid inference. The current work provides a relatively complete characterization

of identifiability for linear and dichotomous bifactor models and the linear extended

bifactor model with correlated subdimensions. In addition, similar results for the

two-tier models are developed. Illustrative examples on checking model identifia-

bility by inspecting the factor loading structure are provided. Simulation studies

examine the estimation consistency when the identifiability conditions are/are not

satisfied.
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1. Introduction

The bifactor method (Holzinger and Swineford (1937)) for factor analysis

is a constrained factor analytic model that assumes the responses to a set of

test items can be accounted for by (G+ 1) uncorrelated latent dimensions, with

one primary dimension, assessed throughout the test, and G secondary “group”

dimensions. It further constrains each item to have a nonzero loading on only

one of the G secondary dimensions. The bifactor method for factor analysis

(henceforth referred to as the linear bifactor model) was originally developed for

continuous indicators. However, it has been extended to bifactor item response

models (e.g., Gibbons and Hedeker (1992); Gibbons et al. (2007); Cai, Yang

and Hansen (2011)) for dichotomous, ordinal, and nominal item responses by

introducing link functions, such as a probit link. The assumption of orthogonality

among the secondary dimensions has also been relaxed in the extended bifactor
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model (e.g., Jennrich and Bentler (2012); Jeon, Rijmen and Rabe-Hesketh (2013))

to allow for covariance between secondary dimensions unexplained by the primary

dimension. The bifactor model with one primary dimension has been extended

further to the two-tier model (Cai (2010)) with L ≥ 1 primary dimensions and G

secondary dimensions, with each item measuring up to one secondary dimension,

and the secondary dimensions being independent of the primary ones.

The bifactor model and its extensions have demonstrated significant prac-

tical merits in educational and psychological assessments. In contrast to uni-

or low-dimensional latent trait models, they can accommodate the local depen-

dence among clusters of items that measure the same subdimensions, and can

produce subdimension trait estimates. Compared with general multidimensional

latent variable models, they not only allow for the production of overall score(s),

but also remarkably reduce the computational burden of high-dimensional latent

trait model estimation. The bifactor model and its extensions have hence been

applied to hundreds of cognitive and psychological assessments. These include

psychiatric screenings that cover various domains of clinical disorders (e.g., Gib-

bons, Rush and Immekus (2009)), personality instruments that examine multiple

facets of the same trait (e.g., Chen et al. (2012)), intelligence batteries with mul-

tiple subscales (e.g., Gignac and Watkins (2013)), and patient-reported outcome

measures with broad situational representations (e.g., Reise, Morizot and Hays

(2007)). In educational testing, the bifactor model and its variants have seen wide

applications to assessments that involve testlets, that is, multiple questions that

originate from the same stem (e.g., passage Bradlow, Wainer and Wang (1999);

DeMars (2006, 2012); Jeon, Rijmen and Rabe-Hesketh (2013); Rijmen (2010)). In

longitudinal assessments with repeated administrations of the same item, bifactor

and two-tier models can account for the within-person dependence of responses

to the same item across time points (see, Cai et al. (2016)). Parameter estimation

for the bifactor and two-tier models has been implemented in many commercial

and open-source statistical software programs. The bifactor model is also robust

in practice as it tends to fit any data set better than other confirmatory mod-

els, regardless of the population’s true models (Caspi et al. (2014)). Thorough

introductions to the bifactor model and its generalizations can be found in Reise

(2012) and Cai, Yang and Hansen (2011).

Identifiability is a key issue in any type of latent variable modeling (Allman,

Matias and Rhodes (2009); Xu and Zhang (2016); Xu (2017); Gu and Xu (2019);

Chen et al. (2015); Chen, Li and Zhang (2019)). Intuitively, a model is iden-

tifiable if distinct parameter values produce unique probability distributions of

observed responses. Model identifiability is a necessary condition for consistency
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of parameter estimation and valid statistical inference. Without any additional

requirements, the bifactor model has been shown to be nonidentifiable: Under

the linear bifactor model, Green and Yang (2018) showed that two distinct sets

of model parameters could produce the same model-implied covariance matrix.

Eid et al. (2018) showed that nonidentifiability can arise in structural equation

models with the bifactor measurement model. The current study addresses the

identifiability issue of the bifactor model and its extensions by providing a rela-

tively complete theory. We obtain the sufficient and necessary conditions for the

identifiability of the standard bifactor model with both continuous and binary

responses. Furthermore, we give the necessary conditions for the extended bi-

factor model identifiability and sufficient conditions for the identifiability of the

extended bifactor and two-tier models. For dichotomous responses, the discussion

is limited to probit item response models, because the theoretical identifiability

of logistic item response models with multivariate-normally distributed latent

traits is a more complex issue. The identifiability of the aforementioned models

can be achieved using the constraints on the loading structure of the items onto

the general and specific dimensions. These results provide practitioners with a

viable means of examining the identifiability of a certain test using a set of easily

checkable conditions.

A number of simple rules for checking confirmatory factor model identifica-

tion have been proposed in prior studies (e.g., Bollen (1989); Reilly (1995); Reilly

and O’Brien (1996)). Among them, the t-rule, which requires that the number of

unknown model parameters not exceed the number of unique covariance terms,

provides a necessary, but not sufficient condition for model identification. An-

other set of well-known rules are the three-indicator and two-indicator rules (see

Bollen (1989)), which are sufficient for identification, but require a simple factor

loading structure, and thus are not applicable to bifactor models. Empirical tests

for local identification based on the information or the Jacobian matrix have been

implemented in factor model estimation programs such as LISREL (Jöreskog and

Sörbom (1993)). However, the local identifiability of the parameters within the

neighborhood of the estimates does not guarantee global identifiability in the en-

tire parameter space. For many general factor models in which no simple rule is

applicable, checking global identification requires solving a system of equations

for observed and model-implied means and covariances to determine whether the

solution to each parameter is unique, either manually or with the aid of computer

algebra systems (Bollen and Bauldry (2010); Kenny and Milan (2012)). Owing

to the special structure of the bifactor model, simple and checkable sufficient and

necessary conditions can be developed. Readers are referred to Bollen (1989),
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Bollen and Bauldry (2010), and Jöreskog and Sörbom (1993) for introductions

to common methods for checking general factor model identification.

The rest of the paper is organized as follows. Section 2 presents the iden-

tifiability results on the linear bifactor, extended bifactor, and two-tier models.

Section 3 extends the theoretical results on the three models to dichotomous re-

sponses with the probit link. Section 4 discusses the connections between the

new results and the existing literature on bifactor identifiability. A discussion of

the findings is provided in Section 5. In the Supplementary Material, simulation

studies are designed to verify the theoretical identifiability results by examining

the estimation consistency under several identifiable and nonidentifiable loading

structures. The Supplementary Material also contains proofs of the main theo-

retical results, as well as detailed examples.

2. Linear Bifactor Model and Extensions

This section presents the results on the identifiability of the linear standard

bifactor, linear extended bifactor, and linear two-tier models, which assume that

the response to each item is normally distributed, with mean equal to an intercept

plus a linear combination of the latent factor scores. This class of models is thus

suitable for continuous observed indicators.

It is worth introducing the concept of identifiability in general before moving

on to specific models. In mathematical terms, a statistical model may be specified

by a pair (S,P), where S is the set of possible observations or the sample space,

and P is a set of probability distributions on S, which is parameterized as P =

{Pθ, θ ∈ Θ}. The set Θ defines the parameter space. We say the model parameter

θ∗ is identifiable (or the model is identifiable at θ∗) if Pθ(y) = Pθ∗(y), for all y ∈ S,

implies θ = θ∗. Essentially, identifiability implies that the underlying distribution

of the observed data cannot admit two distinct sets of parameter values.

2.1. Standard bifactor model

The standard bifactor model (Holzinger and Swineford (1937)) assumes that

the response to each item in a test can be explained by one general factor, which

runs through the test, and up to one group factor, which runs through a subset

of items. Without loss of generality, we refer to a subset of items that load on

the same group factor as a testlet (e.g., Bradlow, Wainer and Wang (1999); De-

Mars (2006)), but the model formulation is equally applicable to psychological

assessments with subdimensions and cognitive batteries with subtests. Specifi-

cally, consider a test with J items that can be partitioned into G testlets, where
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the gth testlet consists of Jg items and
∑

g Jg = J . Let Bg denote the set of

items in the gth testlet. Under the standard linear bifactor model, the response

to item j ∈ {1, . . . , J} in testlet gj ∈ {1, . . . , G}, Yj , is given by

Yj = dj + aj0η0 +

G∑
g=1

ajgηg + εj , (2.1)

where η0 is the respondent’s latent score on the general factor, ηg is the latent

score on the gth group factor, ajk is item j’s loading on the kth latent dimension,

dj is the item intercept, and εj is the random error unexplained by the latent

factors. Across all items, εj is assumed to be independently distributed with

mean zero and variance λj ; that is, εj ∼ N(0, λj). In addition, for item j in

testlet gj , it is assumed that ajg = 0 for all g 6= gj ; in other words, the loadings

of item j on all other group factors are restricted to zero. Thus, Equation (2.1)

simplifies to

Yj = dj + aj0η0 + ajgjηgj + εj . (2.2)

Let η = (η0, η1, . . . , ηG)T denote a vector of the latent traits of a respondent,

which is assumed to follow a multivariate normal distribution with zero mean

and covariance Σ; that is,

η ∼ MVN(0,Σ). (2.3)

The standard bifactor model further assumes that all general and group factors

are independent; in other words, Σ = I(1+G),(I+G), where I(1+G),(I+G) is the

(1 + G) × (1 + G) identity matrix. The mean and standard deviation of each

latent factor are fixed to zero and one, respectively, to resolve the location and

scale indeterminacy of the latent dimensions.

Let A = [a0,a1, . . . ,aG] denote the J × (1 + G) matrix of factor loadings,

where the first column a0 = (a10, . . . , aJ0)
T is the items’ loadings on the gen-

eral factor, and the subsequent G columns (a1, . . . ,aG) are the loadings on each

of the G testlets. Note that A is a sparse matrix, with most of the testlet-

specific loadings restricted to zero by the single group factor loading assump-

tion. Let d = (d1, . . . , dJ)T denote a length-J vector of item intercepts, and let

λ = (λ1, . . . , λJ) denote a vector of item unique variances. To resolve the sign

indeterminacy of the latent factors, we further assume, without loss of generality,

that for each factor, the first item that loads on the factor has a positive loading.

Under the standard bifactor model, the parameter space P is then given by P =

{(A,d,λ) | The sign of first nonzero element in every column of A is positive}.
The identifiability of the standard bifactor model is defined as follows.
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Definition 1. We say a linear bifactor model is identifiable at (A,d,λ) if, for any

other set of parameters (A
′
,d
′
,λ
′
) that defines the same probability distribution,

it must hold that

(A,d,λ) = (A
′
,d
′
,λ
′
). (2.4)

Before stating the identifiability results on the standard bifactor model, we

introduce some additional notation. Let Āg be the submatrix of A corresponding

to the items in testlet g (i.e., Bg); that is, Āg = (a0[Bg],ag[Bg]), where x[Bg]
denotes a subvector with entries in the set Bg. Furthermore, let A[B, :] denote

the submatrix of A consisting only of rows in some generic set B. We define the

following subsets.

• H1 = {g | a0[Bg] 6= 0}: the set of testlets in {1,. . . , G} with nonvanishing

main factors; that is, at least one item in the testlet has a nonzero true

loading on the main dimension, η0;

• Qg = {j | ag[j] 6= 0}: the set of items in the gth testlet with nonzero true

loadings on the testlet-specific factor;

• H2 = {g | there exists a partition of Bg, i.e.,Bg = Bg,1 ∪ Bg,2, Bg,1 ∩ Bg,2 =

∅, such that Āg[Bg,1, :], Āg[Bg,2, :] are of full column rank.}: the set of testlets

that can be partitioned into two disjoint subsets of items, where each sub-

matrix of the (main and testlet) factor loadings has full column rank.

The following theorem characterizes the sufficient and necessary conditions

for the identifiability of the linear standard bifactor model.

Theorem 1. Under the standard linear bifactor model, the model parameters are

identifiable if and only if they satisfy one of the following conditions:

P1 |Qg| ≥ 3, for all g = 1, . . . , G; |H1| ≥ 3.

P2 |Qg| ≥ 3, for all g = 1, . . . , G; |H1| = 2; |H2| ≥ 1.

Theorem 1 gives the minimum requirements for the identifiability of the

standard bifactor model. Specifically, it requires that the test contains at least

two testlets, each containing at least three items. In addition, if there are only two

testlets, Theorem 1 requires that one of them can be partitioned into two disjoint

subsets of items, such that both subsets have linearly independent primary and

testlet-specific factor loadings.
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2.2. Extended bifactor model

The extended bifactor model, also known as the oblique bifactor model (Jen-

nrich and Bentler (2012)), relaxes the assumption of independence between the

secondary dimensions. Instead of restricting the latent covariance matrix, Σ, to

be the identity matrix, the extended bifactor model allows the covariance between

the latent dimensions to take the form of Σ =

(
1 0T

0T ΣG

)
, where the covariance

matrix for the testlet dimensions, ΣG, is positive definite, with all diagonal ele-

ments being one and no additional restriction on the off-diagonal elements. Note

that the covariances between the primary dimension and each testlet dimension

are still restricted to be zero.

Under the extended bifactor model, in addition to the item intercepts, load-

ings, and unique variances, the latent covariance matrix needs to be estimated.

Let P = {(A,d,ΣG,λ) | first nonzero element in every column of A is positive,

diag(ΣG) = 1,ΣG positive definite} denote the parameter space of the extended

bifactor model. Then, the identifiability of the extended bifactor model is defined

as follows.

Definition 2. We say a linear extended bifactor model is identifiable at (A,d,

ΣG,λ) if, for any other set of parameters (A
′
,d
′
,Σ
′

G,λ
′
) that defines the same

probability distribution,

(A,d,ΣG,λ) = (A
′
,d
′
,Σ
′

G,λ
′
) (2.5)

must hold.

In addition to H2 and Qg in the standard bifactor model identifiability re-

sults, we introduce another set that is key to the identifiability of the extended

bifactor model:

• H3 = {g | Āg has column rank 2}: the set of testlets with full main factor

and testlet-specific factor information; that is, columns a0[Bg] and ag[Bg]
are linearly independent.

Theorem 2 gives two sets of sufficient conditions for the identifiability of the

extended linear bifactor model.

Theorem 2. Under the linear extended bifactor model, the model parameters are

identifiable if one of the following sets of requirements is satisfied:

E1S |Qg| ≥ 3, for all g = 1, . . . , G; |H3| ≥ 3.

E2S |Qg| ≥ 3, for all g = 1, . . . , G; |H3| = 2; |H2| ≥ 1.
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The sufficient conditions in Theorem 2 are very similar to the sufficient and

necessary conditions for the standard bifactor model in Theorem 1, where H3 is

the counterpart to H1. Unlike H1, which contains testlets with a nonzero main-

factor loading vector, H3 further requires the main- and testlet-factor loading

vectors to be linearly independent. Note that E1S and E2S are sufficient for the

identifiability of the extended bifactor model, but they are not necessary. Theo-

rem 3 provides the necessary, but not sufficient conditions, that is, the minimum

conditions that need to be met.

Theorem 3. Under the linear extended bifactor model, the model parameters are

identifiable only if both conditions below are satisfied:

E1N |Qg| ≥ 2, for all g = 1, . . . , G; and |Qg| ≥ 3, for g such that ΣG[g,−g] =

0.

E2N |H3| ≥ 2.

Essentially, at least two testlets with linearly independent main- and testlet-

factor loadings are required. In addition, each subdimension should be measured

by at least two items, and if a subdimension is uncorrelated with others, at least

three items are required, as before. The nonzero correlation between the testlet

factors provides additional information on the testlet-specific loadings, reducing

the number of required items per testlet to two for those testlets with nonzero

correlations with others.

Note that E1N and E2N together are not enough for the identifiability

of the extended bifactor model. Additional requirements are needed to render

parameter identifiability. Theorem 2 gives one way to impose such additional

requirements. The requirement of |H2| ≥ 1 in E2S may be replaced by other

requirements. See the following proposition.

Proposition 1. Under the linear extended bifactor model, the model parameters

are identifiable if E1N and E2N are satisfied, and

E3S There exist g1, g2 ∈ H3, such that (1) ΣG[g1, g2] 6= 0, (2) |Qg1 | ≥ 3, |Qg2 | ≥
3, and (3) the Kruskal rank of ĀTg1 is two. (A matrix A has Kruskal rank

(Kruskal (1977)) R if any R columns of A are linearly independent).

Remark 1. The gap between the necessary and sufficient conditions in Theorems

2 and 3 is that |H3| ≥ 2 itself cannot guarantee identifiability. Either more testlets

(|H3| ≥ 3) are needed, or at least one of the testlets needs to be “strong” (|H2| ≥
1). Nonzero correlations (Σ) between testlet factors increase the complexity of

the identifiability problem compared with the uncorrelated case.
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Remark 2. The conditions in Theorems 1-3 are easy to check in practice. We

need only to do simple algebras (i.e., counting the number of nonzero entries,

computing the column rank, etc.) on the estimated loading matrix A and covari-

ance matrix Σ. Additionally, H2 ≥ 1 in Condition P2 generically holds when a

testlet contains four or more items.

Example 1. Consider an extended bifactor model with three testlets, where

testlet 1 has only two items. Suppose the true A and ΣG are given by

A =



a10 a11 0 0

a20 a21 0 0

a30 0 a32 0

a40 0 a42 0

a50 0 a52 0

a60 0 a62 0

a70 0 0 a73
a80 0 0 a83
a90 0 0 a93


, ΣG =

 1 σ12 σ13
σ12 1 σ23
σ13 σ23 1

 , (2.6)

respectively, where σ12, σ13, σ23 6= 0, and any Ag (g = 1, 2, 3) has two linearly

independent columns. According to Proposition 1, the model parameter is iden-

tifiable, even though |Q1| = 2.

2.3. Two-tier model

The two-tier model (Cai (2010)) extends the standard bifactor model by

allowing for more than one primary dimension. Consider a test that measures L

primary factors and G group factors. Under the two-tier model, denote the latent

factors by η = (η1,η2); with η1 = (η1, . . . , ηL)T and η2 = (ηL+1, . . . , ηL+G)T .

The response to the jth item in testlet gj is given by

Yj = dj +

L∑
l=1

ajlηl +

L+G∑
g=L+1

ajgηg + εj . (2.7)

Similarly to the bifactor model, εj is independent and normally distributed with

εj ∼ N(0, λj), and only the gjth testlet factor loading is nonzero for item j;

that is, ajg = 0, for all g 6= gj . The latent covariance matrix of η takes the

form

(
ΣL 0T

0T IG×G

)
, where ΣL is an L × L positive-definite matrix with diago-

nal elements of one and no additional restriction on the off-diagonal elements.
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Let P = {(A,d,ΣL,λ) | first nonzero element in every column of A is positive,

diag(ΣL) = 1,ΣL positive definite} represent the model space of the two-tier

model. Furthermore, let I denote the configuration mapping function, with

I(X) = X̃, where X̃ij = 1{Xij 6= 0} for an arbitrary matrix X. The two-tier

model identifiability is defined as follows.

Definition 3. A linear two-tier model is identifiable at (A,d,ΣL,λ) if, for any

other set of parameters (A
′
,d
′
,Σ
′

L,λ
′
) that defines the same distribution and

satisfies I(A) = I(A
′
), it must hold that (A,d,ΣL,λ) = (A

′
,d
′
,Σ
′

L,λ
′
).

Here, note that a factor model is only identifiable up to some rotation. In the

definition, the requirement for equal factor loading configurations, I(A
′
) = I(A),

is included to resolve the rotational indeterminacy.Note too that the identifiability

of the two-tier model is nontrivial, in the sense that the model could fail to be

identifiable, even if (1) the loading matrix of main factors, A:,1:L, satisfies the

usual identifiability conditions for multivariate factor models, and (2) the testlets

satisfy the identifiability conditions for the bifactor model. See the examples

provided in the Supplementary Material.

The proposed sufficient conditions for two-tier model identifiability build

upon the sufficient conditions for unique variance identifiability under factor mod-

els with uncorrelated errors, which can be found in Theorem 5.1 of Anderson and

Rubin (1956), and is rephrased below.

Theorem 4. (Anderson and Rubin (1956)). Consider a general factor model

with implied covariance matrix Ψ = AΣAT + Λ, where the item error covariance

matrix, Λ, is diagonal with diag(Λ) = λ. Then, AΣAT and Λ are identifiable if

the following holds:

C0 If any row of A is deleted, there remain two disjoint submatrices of A with

full column rank.

Under the two-tier model, let Āg be the submatrix of A corresponding to

items in testlet g; that is, Āg = (A[Bg, 1 : L], A[Bg, L + g]). Similarly, for a

subset of testlets G1 ⊆ {1, . . . , G}, denote the submatrix of A corresponding to

testlets in G1 by ĀG1 = (A[BG1 , 1 : L], A[BG1 , L+G1]), where BG1 =
⋃
g∈G1

Bg and

L+G1 = {L+g∗ | g∗ ∈ G1}. We introduce two sets, H4 and H5, that are essential

to the identifiability results for the two-tier model:

• H4 = {g | A[Bg, 1 : L] is of full column rank}: the set of testlets with non-

degenerate main factor information; that is, the L columns corresponding

to the main factor loadings are linearly independent;
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• H5 = {g | Āg is of full column rank}: the set of testlets with nondegenerate

all-factor information, that is, with linearly independent main factor and

testlet factor loadings.

The following theorem provides the sufficient conditions for the identifiability

of the linear two-tier model.

Theorem 5. Under the linear two-tier model, if the true loading matrix, A,

satisfies Condition C0 and one of Conditions T1S-T3S, then the parameters are

identifiable.

T1S |H4| ≥ 3, A[BH4
, 1 : L] contains an identity, where BH4

is the set of items

that makes up the testlets in H4.

T2S |H4| ≥ 2, |H5| ≥ 1, A[BH4
, 1 : L] contains an identity.

T3S A[:,1:L] contains an identity, and there exists a partition of testlets {1, . . . ,
G} = G1∪̇G2, such that (1) ĀG1 has full column rank, and (2) A[BG2 , 1 : L]

has full column rank.

In other words, the linear two-tier model is identifiable if the following two

conditions are simultaneously met:

• After removing any row of the loading matrix A, the remaining rows of

A can be partitioned into two disjoint submatrices, both of which contain

L+G linearly independent columns.

• One of the following is satisfied:

T1S: (1) The test contains at least three testlets with linearly independent

main factor loadings, and (2) within these testlets satisfying (1), for

each main factor, there exists at least one item that exclusively mea-

sures this main factor (i.e., having nonzero loadings only on this main

factor and possibly the testlet factor);

T2S: (1) The test contains two testlets with linearly independent main factor

loadings, (2) within these testlets satisfying (1), for each main factor,

there exists at least one item that exclusively measures this main factor,

and (3) at least one of the testlets satisfying (1) has linearly independent

main and testlet factor loadings;

T3S: (1) For each main factor, at least one item in the test exclusively mea-

sures that main factor (aside from the testlet factor), and (2) the set of

all testlets can be partitioned to two disjoint subsets, G1 and G2, such
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that (a) the loading matrix corresponding to the first subset of testlets,

ĀG1 , has L + |G1| linearly independent columns, and (b) for the sec-

ond subset, the columns of the main factor loadings, A[BG2 , 1 : L], are

linearly independent.

3. Extensions to Dichotomous Responses

Notwithstanding the wide application of linear factor models in the social sci-

ence literature, a large proportion of educational and psychological assessments

consist of items with dichotomous responses. For instance, these may include cog-

nitive questions where an examinee responds either correctly (1) or incorrectly

(0), or clinical screening questions where a participant either exhibits certain

behavior (1) or not (0). Probit item response models, also known as normal

ogive models (e.g., Thurstone (1927); Lawley (1943); Lord (1952); Christoffers-

son (1975)), have been widely adopted for dichotomous responses. In general,

consider a test of J items. The responses to the J items are assumed to be lo-

cally independent, given the respondents’ latent traits, η, and the probability of

responding “1” to the jth item is given by

P (Yj = 1|η) = Pε(εj ≤ dj + aTj η) = Φ(dj + aTj η), (3.1)

where εj ∼ N(0, 1), Φ(·) is the standard normal cumulative distribution function

(i.e., the probit link), and η ∼ N(0,Σ), dj , and aj are the person’s latent traits,

item intercept, and item slopes/loadings, respectively. As before, let A denote

the matrix of factor loadings.

Item bifactor models and extensions have also been proposed to accommo-

date dichotomous response tests with underlying bifactor-like latent structures.

Examples of such models include the item bifactor model (Gibbons and Hedeker

(1992)), extended item bifactor model (Jeon, Rijmen and Rabe-Hesketh (2013)),

and two-tier item factor model (Cai (2010)). The identifiability results for the

linear bifactor model and its extensions do not directly apply to dichotomous item

bifactor-type models, owing to different parameterizations and forms of observed

data. This section presents the results on the identifiability of the dichotomous

bifactor model, extended bifactor model, and two-tier model with probit links.

Before introducing the identifiability conditions for each of the specific mod-

els, it is worth mentioning a few identities on the items’ first, second, and kth

moments implied by the general probit item factor model in (3.1), as well as their

relationships with the thresholds and tetrachoric correlations (Pearson (1900))

under the probit model. Unlike linear models, we do not directly observe the
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mean and covariance matrix implied by the linear component (i.e., dj + aTj ηj)

under the probit model. However, the threshold and tetrachoric correlations can

be identified (Kendall and Stuart (1958)) and estimated using various approx-

imation methods (e.g., Castellan (1966); Olsson (1979)). In the following, we

explain how the tetrachoric correlations relate to the identifiability problem.

Let ξ denote a standard normal random variable. Note that, at the popula-

tion level (i.e., for a randomly chosen η ∼MVN(0,Σ)), the marginal probability

of observing a response of “1” on item j is given by

P (Yj = 1) = EηP (Yj = 1|η) = EηEεj [1{εj ≤ dj + aTj η}|η] = P (εj ≤ dj + aTj η)

= P
(
dj +

√
aTj Σaj + 1ξ ≥ 0

)
= 1− Φ

(
− dj√

aTj Σaj + 1

)
. (3.2)

In addition, the probability that the responses to items j1 and j2 are both “1” is

P (Yj1 = 1, Yj2 = 1) = EηP (Yj1 = 1, Yj2 = 1|η)

= P (εj1 ≤ dj1 + aTj1η, εj2 ≤ dj2 + aTj2η) (3.3)

= P
(
dj1 +

√
aTj1Σaj1 + 1ξj1 ≥ 0, dj2 +

√
aTj2Σaj2 + 1ξj2 ≥ 0

)
= Φ2

(
− dj1√

aTj1Σaj1 + 1
,− dj2√

aTj2Σaj2 + 1
,

aTj1Σaj2√
aTj1Σaj1 + 1

√
aTj2Σaj2 + 1

)
,

where Φ2(a, b, ρ) = E(X1 ≥ a,X2 ≥ b), X1, X2 ∼ N(0, 1) and corr(X1, X2) =

ρ. Here, the a, b, and ρ are commonly referred to as the thresholds and the

tetrachoric correlation under the probit framework. The probability of responding

“1” simultaneously on k items (j1, . . . , jk) is given by

P (Yj1 = 1, . . . , Yjk = 1) = EηP (Yj1 = 1, . . . Yjk = 1|η)

= P (εj1 ≤ dj1 + aTj1η, . . . , εjk ≤ djk + aTjkη)

= P
(
dj1 +

√
aTj1Σaj1 + 1ξj1 ≥ 0, . . . , djk +

√
aTjkΣajk + 1ξjk ≥ 0

)
= Φk

(
− dj1√

aTj1Σaj1 + 1
, . . . ,− dj2√

aTj2Σaj2 + 1
, Cρ

)
, (3.4)

with tetrachoric correlation matrix Cρ[j1, j2] = aTj1Σaj2/
√

aTj1Σaj1 +1
√

aTj2Σaj2 +1

and Cρ[j, j] = 1. Here, Φk(a1, . . . , ak, Cρ) = E(X1 ≥ a1, Xk ≥ ak), X1, . . . , Xk ∼
N(0, 1) and corr(Xk1 , Xk2) = Cρ[k1, k2].
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In the following, we show that threshold and tetrachoric correlations provide

full information on probit binary item responses.

Proposition 2. Two sets of parameters define the same model if and only if

their thresholds and tetrachoric correlations are equal; that is,

dj√
aTj Σaj + 1

=
d
′

j√
(a
′

j)
TΣ′a

′

j + 1
∀j,

and

aTj1Σaj2√
aTj1Σaj1 + 1

√
aTj2Σaj2 + 1

=
(a
′

j1
)TΣ

′
a
′

j2√
(a
′

j1
)TΣ′a

′

j1
+ 1
√

(a
′

j2
)TΣ′a

′

j2
+ 1

∀j1 6= j2.

It follows from the above proposition that checking the identifiability of pro-

bit bifactor models reduces to checking whether the probit threshold and tetra-

choric correlations admit only one set of parameters. In other words, the probit

bifactor models can be identified if (dj ,aj) can be identified based on the thresh-

olds (i.e., dj/(a
T
j Σaj + 1)1/2,∀j) and the pairwise tetrachoric correlations (i.e.,

(aTj1Σaj2)/
(
(aTj1Σaj1 + 1)(aTj2Σaj2 + 1)

)1/2
,∀j1 6= j2). The theoretical results on

the sufficient conditions turned out to be very similar to those under the linear

bifactor model and its extensions.

3.1. Standard bifactor model

Adopting the same notation as for the linear bifactor model, under the probit

bifactor model, the probability of a response of “1” on item j ∈ {1, . . . , J} in

testlet gj is given by

P (Yj = 1|η0, η1, . . . , ηG) = Φ

(
dj + a0η0 +

G∑
g=1

ajgηg

)
= Φ

(
dj + a0η0 + ajgjηgj

)
,

(3.5)

where, similarly to the linear case, ajg = 0 for all g 6= gj , and η = (η0, η1, . . . , ηG)T

∼ MVN(0,Σ), with Σ = I(1+G)×(1+G). With A and d denoting the loading

matrix and the vector of intercepts, respectively, the parameter space of the probit

standard bifactor model is given by P = {(A,d) | first nonzero element in every

column of A is positive}. Based on this, the probit bifactor model identifiability

is defined as follows.

Definition 4. We say a probit bifactor model is identifiable at (A,d) if for any

other set of parameters (A
′
,d
′
) that defines the same probability distribution, it
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must hold that

(A,d) = (A
′
,d
′
). (3.6)

Adopting the same definitions as those of sets H1,H2, and Qg in section 2.1.

Theorem 6 provides the sufficient and necessary conditions for the identifiability

of dichotomous bifactor models with a probit link.

Theorem 6. Under a standard bifactor model with a probit link, the model pa-

rameter is identifiable if and only if it satisfies one of the follow conditions:

P1 |H1| ≥ 3; |Qg| ≥ 3, for all g = 1, . . . , G.

P2 |H1| = 2; H2 is nonempty; |Qg| ≥ 3 for g = 1, . . . , G.

The interpretations of P1 and P2 remain the same as for the linear bifactor

model in Section 2.1. In the Supplementary Material, a few examples are provided

to illustrate how the identifiability of the probit bifactor model can be checked.

3.2. Extended bifactor model

With the same item response function as the standard bifactor model, the

probit extended bifactor model relaxes the assumption of Σ = I(1+G)×(1+G) by

allowing correlations among η1, . . . , ηG. Hence, the covariance matrix for η,

Σ, takes the form of Σ =

(
1 0T

0T ΣG

)
, with ΣG positive definite, with diago-

nal entries of one and no further restriction on the off-diagonal entries. Un-

der the probit extended bifactor model, the parameter space is given by P =

{(A,d,ΣG) | first nonzero element in every column of A is positive,diag(ΣG) =

1,ΣG positive definite.}. The probit extended bifactor model identifiability is de-

fined as follows.

Definition 5. We say a probit extended bifactor model is identifiable at (A,d,ΣG)

if, for any other set of parameters (A
′
,d
′
,Σ
′

G) that define the same probability

distribution,

(A,d,ΣG) = (A
′
,d
′
,Σ
′

G) (3.7)

must hold.

Again, it can be shown that the sufficient conditions and the necessary condi-

tions for the linear extended bifactor model still hold when the responses become

binary.

Theorem 7. Under the probit extended bifactor model, the model parameters are

identifiable if one of the following requirements are satisfied:



2324 FANG ET AL.

E1S |Qg| ≥ 3, for all g = 1, . . . , G; |H3| ≥ 3.

E2S |Qg| ≥ 3, for all g = 1, . . . , G; |H3| = 2; |H2| ≥ 1.

Theorem 8. Under the extended bifactor model with a probit link, the model

parameters are identifiable only if both conditions below are satisfied:

E1N |Qg| ≥ 2, for all g = 1, . . . , G; and |Qg| ≥ 3 for g : ΣG[g,−g] = 0.

E2N |H3| ≥ 2.

Here, the definitions of the sets Qg,H3, and H2 and the interpretations of

the conditions remain the same as those for the linear extended bifactor model

in section 2.2.

3.3. Two-tier model

A two-tier probit model with J items, L main factors, and G testlets has the

following item response function for a particular item j in testlet gj :

P (Yj = 1|η) = Φ

(
dj +

L∑
l=1

ajlηl +

L+G∑
g=L+1

ajgηg

)
= Φ

(
dj +

L∑
l=1

ajlηl + ajgjηgj

)
,

(3.8)

where ajg = 0,∀g 6= gj . As in the linear two-tier model, the latent traits η

= (η1,η2), where η1 = (η1, . . . , ηL)T and η2 = (ηL+1, . . . , ηL+G)T , are assumed

to follow a multivariate normal distribution with mean 0 and covariance matrix

Σ, which takes the form of

(
ΣL 0T

0T IG×G

)
, with ΣL positive definite, with diagonal

elements of one and off-diagonal elements between −1 and 1. Hence, the param-

eter space for the probit two-tier model is given by P = {(A,d,ΣL) first nonzero

element in every column of A is positive,diag(ΣL) = 1,ΣL positive definite},
and the probit two-tier model identifiability is defined as follows.

Definition 6. A probit two-tier model is identifiable at (A,d,ΣL) if there is

another set of parameters (A
′
,d
′
,Σ
′

L) such that I(A) = I(A
′
) and they define the

same distribution, then it must hold that (A,d,ΣL) = (A
′
,d
′
,Σ
′

L).

Below, we provide a set of sufficient conditions for the identifiability of the

probit two-tier model.

Theorem 9. Under the probit two-tier model, suppose the true parameter satis-

fies Condition C1 and one of Conditions T1-T3. Then, the parameter is identi-

fiable:
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T1S |H4| ≥ 3, A[BH4
, 1 : L] contains an identity, where BH4

is the set of items

that make up the testlets in H4.

T2S |H4| ≥ 2, |H5| ≥ 1, A[BH4
, 1 : L] contains an identity.

T3S A[:,1:L] contains an identity, and there exists a partition of testlets {1, . . . , G}
= G1 ∪ G2, such that (a) ĀG1 has full column rank, and (b) A[BG2 , 1 : L]

has full column rank.

Here, the definitions of the sets (Hs) and the interpretations of the conditions

remain as they were for the linear two-tier model in section 2.3.

4. Remarks

4.1. Orthogonality between primary and testlet dimensions

Discussions on the identification restriction for bifactor models can be found

in Rijmen (2009), where it is pointed out that three types of identification re-

strictions are required:

• G+ 1 restrictions for fixing the origins of general and testlet effects.

• G+ 1 restrictions for fixing the scales of general and testlet effects.

• G restrictions for dealing with the rotation issue.

By translating the restrictions into mathematical expressions, the above three

conditions are equivalent to

η ∼ N(0,Σ), Σ =

(
1 0T

0 ΣG

)
, (4.1)

with ΣG[g, g] = 1, for all g ∈ {1, . . . , G}. However, they do not provide a rigorous

proof of why we need the third type of restriction. Below, we provide Theorem

10 to answer this question. Consider the parameter space

P = {(A,d,ΣG,ρ,λ) | diag(Σ) = 1,Σ is positive definite}, (4.2)

where Σ =

(
1 ρT

ρ ΣG

)
.

Theorem 10. The bifactor model is not identifiable at any (A, d,ΣG,ρ,λ)) ∈ P,

as defined in (4.2).
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The implication of Theorem 10 is that there is no identifiable model in P, as

defined in (4.2), that is, when the orthogonality restriction between the primary

and the testlet dimensions is dropped. This explains why the identification results

can only be extended to correlated testlet dimensions.

4.2. Extensions

The results here can be extended to more general settings:

• The normality assumptions in the linear bifactor model can be removed.

That is, we do not require ηg ∼ N(0, 1) and εj ∼ N(0, λj), but instead

assume Var(ηg) = 1 and Var(εj) = λj . By checking the first and second

moments, it is not hard to see that the sufficient conditions in the previous

theorems still guarantee identification.

• For the ordinal probit model, each Yj takes values in {1, . . . ,Kj} (Kj ≥ 2)

and follows the probability distribution

P (Yj > k | η) = Φ(d
(k)
j + aTj η), (4.3)

for k = 1, . . . ,Kj − 1, with d
(1)
j ≥ d

(2)
j ≥ · · · ≥ d

(Kj−1)
j . Under the same set

of sufficient conditions, we can easily obtain the identifiability results.

4.3. Connections

Under the linear bifactor model setting, the sufficient condition in Theorem

4 given by Anderson and Rubin (1956) can be simplified, in the sense that there

are at least three items in each testlet, i.e. |Qg| ≥ 3, for all g. (Suppose there

exists a testlet with at most two items. Then, it is impossible to find two disjoint

submatrices of A with full column rank after deleting an item within that testlet.)

It can also be checked that this sufficient condition is satisfied by E1S and E2S

in our Theorem 2.

For general linear factor models, two- and three-indicator rules are two sets

of simple sufficient identifiability conditions; see Bollen (1989):

• Two-indicator rules: (1) each latent factor is related to three items; (2) each

row of A has one and only one nonzero element; (3) the latent factors are

uncorrelated; and (4) εs are uncorrelated.

• Three-indicator rules: (1) each latent factor is related to two items; (2) each

row of A has one and only one nonzero element; (3) there are no elements

in Σ; and (4) εs are uncorrelated.
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Although two- and three-indicator rules seem similar to the conditions in

Theorems 1 and 2, they cannot be applied to bifactor/two-tier models. By nature,

it is impossible to assume each row of A has one and only one nonzero element,

because each item has at least two latent dimensions (general factors and testlet-

specific factor). Fortunately, three items are enough to identify the testlet effects.

Owing to the model structure, the general factor can also be identified when there

is a sufficient number of testlets.

5. Discussion

This study addresses the fundamental issue of the dentifiability of a bifactor

model and its extensions, under both a linear model with continuous indicators

and a probit model with dichotomous responses. The identifiability (or noniden-

tifiability) of a model can be determined using easily checkable conditions. In

particular, conditions P1 and P2 establish the minimum requirements that can

ensure the identifiability of the standard bifactor model. For the extended bifactor

model with correlated subdimensions, a set of necessary conditions (E1N,E2N)

and a set of sufficent conditions (E1S − E3S) for parameter identifiability are

proposed. Sufficient conditions for two-tier model identifiability are presented in

C0 (or C1 for the probit model) and T1S − T3S. Theoretical results explain

the under-identification phenomena observed in existing literature. Simulation

studies demonstrated the effects on parameter estimation when the identifiabil-

ity conditions were or were not met. From a practical viewpoint, these checkable

identifiability conditions can guide test developers through the design and evalu-

ation of bifactor-type assessments.

Note that although both probit and logistic models can be applied for binary

outcomes, the current identifiability results for probit models do not directly

apply to item bifactor analysis with logistic parameterization, as seen in De-

Mars (2006), Cai (2010), and Jeon, Rijmen and Rabe-Hesketh (2013). When a

normal distribution is assumed for the latent traits, random-effect logistic item

factor models involve a convolution of Gaussian and logistic random variables.

Hence, this class of models does not imply the same first and second moments

for the item responses as those in the probit case. Future research may look into

the identifiability conditions for bifactor-type models with a logit link, perhaps

adopting similar approaches to those in San Mart́ın, Rolin and Castro (2013) for

two-parameter logistic item response models. The current bifactor model identifi-

cation findings may also be extended to higher-order factor models Yung, Thissen

and McLeod (1999), under which latent factors are assumed to exhibit a hier-
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archical structure, with higher-order latent factors governing secondary, specific

factors.

Supplementary Materials

The online Supplementary Material contains the simulation studies, illustra-

tive examples, and technical proofs of the main theoretical results.
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