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This online supplement examines the more general definitions and theorems of sufficient cause interactions for

ordinal and categorical outcomes. The main paper examined ordinal outcomes with three levels, whereas in

the online supplement we consider ordinal outcomes with an arbitrary number of levels. Additionally, global

conditions for different forms of sufficient cause interactions are presented here. The connection to polytopes

to detect different forms of interdependence is explicated at the very end. We also provide the Theorems that

proof of the generalized results as well as associated proofs that are presented in the main section.

S1 Proofs

S1.1 Appendix 2: Proofs

The proofs of theorems and corollaries in the main text are collected here. The proof

of Theorem 4.1in the main paper collected in Section S4: Appendix 1B, given the need

of more general notation. Theorem 4.1 is provided again as Theorem S4.5 in Section

S4: Appendix 1B.

Proof of Theorem 2.1. Mirroring the proof of Theorem 1 in VanderWeele and Robins

(2008), construct AL
0 , . . . , A

L
8 according to the following 16 rules: (1) If Y L

x1x2
(ω) = 1

for all {x1, x2} ∈ {0, 1},2 let AL
0 (ω) = 1 and AL

i (ω) = 0 for all i /∈ 0. (2) If Y L
00(ω) = 0

and Y L
11(ω) = Y L

10(ω) = Y L
01(ω) = 1, let AL

1 (ω) = AL
3 (ω) = 1 and AL

i (ω) = 0 for

i /∈ {1, 3}. (3) If Y L
10(ω) = 0, and Y L

00(ω) = Y L
01(ω) = Y L

11(ω) = 1, let AL
i (ω) = 1 for

i ∈ {2, 3} and AL
i (ω) = 0 for i /∈ {2, 3}. (4) If Y L

00(ω) = Y L
10(ω) = 0 and Y L

01(ω) =

Y L
11(ω) = 1, let AL

3 (ω) = 1 and AL
i (ω) = 0 for i /∈ {3}. (5) If Y L

01(ω) = 0 and

Y L
00(ω) = Y L

10(ω) = Y L
11(ω) = 1, let AL

i (ω) = 1 for i ∈ {1, 4} and AL
i (ω) = 0 for i /∈ {1, 4}.

(6) If Y L
00(ω) = Y L

01(ω) = 0 and Y L
10(ω) = Y L

11(ω) = 1, let AL
1 (ω) = 1 and AL

i (ω) = 0.

(7) If Y L
01(ω) = Y L

10(ω) = 0 and Y L
00(ω) = Y L

11(ω) = 1,let AL
i (ω) = 1 for i ∈ {5, 8} and

AL
i (ω) = 0 for i /∈ {5, 8}. (8) If Y L

11(ω) = 1 and Y L
00(ω) = Y L

01(ω) = Y L
10(ω) = 0, let
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AL
5 (ω) = 1 and AL

i (ω) = 0 for i /∈ {5}. (9) If Y L
11(ω) = 0 and Y L

00(ω) = Y L
10(ω) =

Y L
01(ω) = 1, let AL

i (ω) = 1 for i ∈ {2, 4} and AL
i (ω) = 0 for i /∈ {2, 4}. (10) If

Y L
00(ω) = Y L

11(ω) = 0 and Y L
01(ω) = Y L

10(ω) = 1, let Ai(ω) = 1 for i ∈ {6, 7} and

AL
i (ω) = 0 for i /∈ {6, 7}. (11) If Y L

10(ω) = Y L
11(ω) = 0 and Y L

00(ω) = Y L
01(ω) = 1,

let AL
i (ω) = 1 for i ∈ {2} and AL

i (ω) /∈ {2}. (12) If Y L
11(ω) = Y L

10(ω) = Y L
00(ω) = 0

and Y L
01(ω) = 1, let AL

i (ω) = 1 for i ∈ {6} and AL
i (ω) = 0 for i /∈ {6}. (13) If

Y L
01(ω) = Y L

11(ω) = 0 and Y L
00(ω) = Y L

10(ω) = 1, let AL
i (ω) = 1 for i ∈ {4} and AL

i (ω) = 0

for i /∈ {4}. (14) If Y L
00(ω) = Y L

01(ω) = Y L
11(ω) = 0 and Y L

10(ω) = 1, let AL
i (ω) = 1

for i ∈ {7} and AL
i (ω) = 0 for i /∈ {7}. (15) If Y L

01(ω) = Y L
10(ω) = Y L

11(ω) = 0 and

Y L
00(ω) = 1, let AL

i (ω) = 1 for i ∈ {8} and AL
i (ω) = 0 for i /∈ {8}. (16) If Y L

x1x2
(ω) = 0

for all {x1, x2} ∈ {0, 1}2, let AL
i (ω) = 0.

Proof of Theorem 2.2. We mirror the proof in (VanderWeele and Robins, 2008). We

first prove the converse. Suppose X1X2 do not display a minimal sufficient cause inter-

action for a specified outcome Y L. Consequently, there exists a non-redundant minimal

sufficient cause representation in which equations 2.1 and 2.2 hold and AL
5 (ω) = 0 for

all ω ∈ Ω. Consider an individual ω, for whom Y L
10(ω) = Y L

01(ω) = 0, by construction of

AL
i (ω), we have that AL

0 (ω) = AL
1 (ω) = AL

2 (ω) = AL
3 (ω) = AL

4 (ω) = AL
6 (ω) = AL

7 (ω) =

0. Therefore, for such an individual we have, Y L
11(ω)=AL

8 (1 − 1)(1 − 1) = 0. Conse-

quently, there cannot be an individual for whom Y L
11(ω) = 1 and Y L

10(ω) = Y L
01(ω) = 0

and X1X2 do not display a minimal sufficient cause interaction for specified outcome

Y L.

For the opposite direction, consider the situation where X1X2 does display minimal

sufficient cause interaction for a ternary outcome under specified outcome Y L. For

every sufficient cause representation for Y L there exists a conjunction such that X1X2

is contained within it. Using the sufficient cause representation that was constructed in

Theorem 2.1, we have an individual ω such that AL
5 (ω) 6= 0 if an only if the individual

has one of two possible potential outcomes (1) Y L
01(ω) = Y L

10(ω) = 0 and Y L
00(ω) =

Y L
11(ω) = 1 or (2) Y L

10(ω) = Y L
01(ω) = Y L

00(ω) = 0 and Y L
11(ω) = 1. In either situation,

Y L
10(ω) = Y L

01(ω) = 0 and Y L
11(ω) = 1.

Proof of Theorem 2.3. We prove this result by contradiction. Suppose for outcome

under specified condition L ∈ {A,B,C,D,E, F}, we have that X1X2 does not exhibit

sufficient cause interaction. Theorem 2.2 then implies that there is no individual ω ∈ Ω
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for whom Y L
11(ω.) = 1 and Y L

10(ω) = Y L
01(ω) = 0. This is equivalent to stating that for

all ω ∈ Ω, we have that Y L
11(ω) − Y L

10(ω) − Y L
01(ω) ≤ 0. Therefore, taking expectations

on both sides we have E(Y L
11(ω)− Y L

10(ω)− Y L
01(ω) | V = v) ≤ 0.

E(Y L | X1 = 1, X2 = 1, V = v)− E(Y L | X1 = 1, X2 = 0, V = v)

−E(Y L | X1 = 0, X2 = 1, V = v)

= E(Y L
11(ω) | X1 = 1, X2 = 1, V = v)− E(Y L

10(ω) | X1 = 1, X2 = 0, V = v)

−E(Y L
01(ω) | X1 = 0, X2 = 1, V = v)

= E(Y L
11(ω) | V = v)− E(Y L

10(ω) | V = v)− E(Y L
01(ω) | V = v)

= E(Y L
11(ω)− Y L

10(ω)− Y L
01(ω) | V = v) ≤ 0.

The first equality stems from the consistency assumption and the second equality stems

from the no unmeasured confounding assumption Y L
x1x2
q {X1, X2} | V. This completes

our proof.

Proof of Theorem 2.4. Suppose X1and X2 do not display synergism for outcome Y B.

Then, by Theorem 2.3, we have for all ω ∈ Ω, Y B
11 (ω)− Y B

10 (ω)− Y B
01 (ω) ≤ 0. Consider

two different cases. Case 1: if Y00(ω) = 0, then Y B
00 (ω) = 0 and adding this to Y B

11 (ω)−
Y B

10 (ω)−Y B
01 (ω) ≤ 0, we have Y B

11 (ω)−Y B
10 (ω)−Y B

01 (ω)+Y B
00 (ω) ≤ 0. Case 2: say Y00(ω) =

1 or Y00(ω) = 2, then in either case Y B
00 (ω) = 1 and by our monotonicity constraints

Y B
11 (ω) = Y B

01 (ω) = Y B
10 (ω) = 1, and as a result Y B

11 (ω)− Y B
10 (ω)− Y B

01 (ω) + Y B
00 (ω) ≤ 0.

So, in both cases, we have that if X1and X2 do not display synergism for outcome Y B,

then Y B
11 (ω) − Y B

10 (ω) − Y B
01 (ω) + Y B

00 (ω) ≤ 0. Taking expectations on both sides and

following the logic present in the proof of Theorem 2.3, we complete our proof.

Proof of Theorem 2.5. Similar to the proof of Theorem 2.4, and therefore omitted.

Proof of Theorem 2.6. Suppose X1 and X2 do not display synergism for outcome Y A.

Then, by Theorem 2.2, we have for all ω ∈ Ω, Y A
11(ω) − Y A

10(ω) − Y A
01(ω) ≤ 0. Taking

expectations of both sides of this inequality and following logic present in the the

proof of Theorem 2.3, we have the condition pA11v − pA10v − pA01v ≤ 0. For the first

inequality. Consider three different cases. Case 1: Suppose Y11(ω) = 1, then Y A
11(ω) = 1,

Y01(ω) ∈ {0, 1}, Y10(ω) ∈ {0, 1}, and Y00(ω) ∈ {0, 1}. (Subcase a): If Y00(ω) = 1, then

Y A
00(ω) = 1, and Y10(ω) = Y01(ω) = 1 to satisfy the monotonicity constraints. This

implies that Y C
00(ω) = Y C

01(ω) = 0. This means that Y A
11(ω)−Y A

10(ω)−Y A
01(ω)+Y A

00(ω)+
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Y C
00(ω)− Y C

01(ω) ≤ 0. (Subcase b): If Y00(ω) = 0, then Y A
00(ω) = Y C

00(ω) = 0, and either

or both Y A
01(ω) = 1 or Y A

01(ω) = 1 as X1 and X2 do not display synergism for Y A.

Therefore Y A
11(ω)−Y A

10(ω)−Y A
01(ω) +Y A

00(ω) +Y C
00(ω)−Y C

01(ω) ≤ 0. Case 2: Y11(ω) = 0,

then Y01(ω) = Y10(ω) = Y00(ω) = 0 to satisfy monotonicity constraints. Therefore,

Y A
11(ω) = Y A

10(ω) = Y A
01(ω) = Y A

00(ω) = Y C
00(ω) = Y C

01(ω) = 0, and consequently Y A
11(ω)−

Y A
10(ω)−Y A

01(ω)+Y A
00(ω)+Y C

00(ω)−Y C
01(ω) ≤ 0. Case 3: Y11(ω) = 2, (Sub case a): Suppose

Y00(ω) = 2, then Y11(ω) = Y10(ω) = Y01(ω) = Y00(ω) = 2 to satisfy the monotonicity

constraints. This implies that Y A
11(ω) = Y A

10(ω) = Y A
01(ω) = Y A

00(ω) = 0, Y C
00(ω) =

Y C
01(ω) = 0, and Y A

11(ω) − Y A
10(ω) − Y A

01(ω) + Y A
00(ω) + Y C

00(ω) − Y C
01(ω) ≤ 0. (Subcase

b): Suppose Y00(ω) = 1, then to satisfy monotonicity constraints, Y01(ω) ∈ {1, 2} and

Y10(ω) ∈ {1, 2}. This implies that either Y C
01(ω) = 1 or Y A

01(ω) = 1. This means that

Y A
11(ω)− Y A

10(ω)− Y A
01(ω) + Y A

00(ω) + Y C
00(ω)− Y C

01(ω) ≤ 0. Taking expectations on both

sides and following the same logic present in the proof of Theorem 2.3, we have the

condition, pA11v − pA10v − pA01v + pA00v + pC00v − pC10v ≤ 0. To prove the second inequality, a

similar proof is trivially constructed.

Proof of Corollary 2.1. We have that

2 · pA11v − pA10v − pA01v + pA00v > 1, ⇐⇒
pA11v − pD11v − pC11v − pA10v − pA01v + pA00v > 0 ⇐⇒

pA11v − pA10v − pA01v + pA00v − pC11v > pD11v =⇒
pA11v − pA10v − pA01v + pA00v + pC00v − pC01v > 0

The last line stems from the positive monotonic effect of X1 and X2 on pC11v ≥ pC01v.

Theorem 2.6 establishes that this a sufficient condition to show that X1 and X2 display

synergism for outcome Y A = I(Y = 1).

From Corollary 2.1, we have that

2 · P (Y = 1 | X1 = 1, X2 = 1, V = v)

−P (Y = 1 | X1 = 1, X2 = 0, V = v)− P (Y = 1 | X1 = 0, X2 = 1, V = v)

+P (Y = 1 | X1 = 0, X2 = 0, V = v) > 1,

implies that X1 and X2 exhibits synergism for outcome Y A = I(Y = 1). We note that
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2∑
i=0

P (Y = i | X1 = 1, X2 = 1, V = v) = 1. Substituting this summation into the

inequality, and moving terms from the right hand side to the left hand side, it is trivial

to show that conditions (2.4.1)-(2.4.3) are equivalent to one another.

Proof of Theorem 4.2. The contrast

P (Y ∈ ya | X1 = 1, X2 = 1)− P (Y ∈ ya | X1 = 1, X2 = 0)

− P (Y ∈ ya | X1 = 0, X2 = 1) .

is equal to

P (Y11 ∈ ya)− P (Y10 ∈ ya)− P (Y01 ∈ ya) ,

under Yx1x2 qX1X2. Applying the law of total probability, we have

P (Y11 ∈ ya)− P (Y10 ∈ ya)− P (Y01 ∈ ya)

= P (Y11 ∈ ya, Y10 ∈ ya, Y01 ∈ ya) + P (Y11 ∈ ya, Y10 /∈ ya, Y01 ∈ ya)

+ P (Y11 ∈ ya, Y10 ∈ ya, Y01 /∈ ya) + P (Y11 ∈ ya, Y10 /∈ ya, Y01 /∈ ya)

− {P (Y11 ∈ ya, Y10 ∈ ya, Y01 ∈ ya) + P (Y11 /∈ ya, Y10 ∈ ya, Y01 ∈ ya)

+ P (Y11 ∈ ya, Y10 ∈ ya, Y01 /∈ ya) + P (Y11 /∈ ya, Y10 ∈ ya, Y01 /∈ ya)}
− {P (Y11 ∈ ya, Y10 ∈ ya, Y01 ∈ ya) + P (Y11 /∈ ya, Y10 ∈ ya, Y01 ∈ ya)

+P (Y11 ∈ ya, Y10 /∈ ya, Y01 ∈ ya) + P (Y11 /∈ ya, Y10 /∈ ya, Y01 ∈ ya)} .

Simplifying this equality, we have

P (Y ∈ ya | X1 = 1, X2 = 1)− P (Y ∈ ya | X1 = 1, X2 = 0)

− P (Y ∈ ya | X1 = 0, X2 = 1)

is equal to

P (Y11 ∈ ya, Y10 /∈ ya, Y01 /∈ ya)− P (Y11 /∈ ya, Y10 ∈ ya, Y01 /∈ ya)

− P (Y11 ∈ ya, Y10 ∈ ya, Y01 ∈ ya)− P (Y11 /∈ ya, Y10 /∈ ya, Y01 ∈ ya) .
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Proof of Theorem 4.3. The contrast

P (Y ∈ yc | X1 = 1, X2 = 1)− P (Y ∈ yc | X1 = 1, X2 = 0)

− P (Y ∈ yc | X1 = 0, X2 = 1) + P (Y ∈ yc | X1 = 0, X2 = 0)

is equal to P (Y11 ∈ yc)− P (Y10 ∈ yc)− P (Y01 ∈ yc) + P (Y00 ∈ yc) , under Yx1x2 q
X1X2. Applying the law of total probability, we have the following results:

P (Y11 ∈ yc)

= P (Y11 ∈ yc, Y10 ∈ yc, Y01 ∈ yc, Y00 ∈ yc) + P (Y11 ∈ yc, Y10 ∈ yc, Y01 ∈ yc, Y00 /∈ yc)

+ P (Y11 ∈ yc, Y10 /∈ yc, Y01 ∈ yc, Y00 ∈ yc) + P (Y11 ∈ yc, Y10 /∈ yc, Y01 ∈ yc, Y00 /∈ yc)

+ P (Y11 ∈ yc, Y10 ∈ yc, Y01 /∈ yc, Y00 ∈ yc) + P (Y11 ∈ yc, Y10 ∈ yc, Y01 /∈ yc, Y00 /∈ yc)

+ P (Y11 ∈ yc, Y10 /∈ yc, Y01 /∈ yc, Y00 ∈ yc) + P (Y11 ∈ yc, Y10 /∈ yc, Y01 /∈ yc, Y00 /∈ yc) ,

and similar equalities after applying the theorem of total probability are available

for P (Y10 ∈ yc) , P (Y01 ∈ yc) and P (Y00 ∈ yc) .

Simplifying this equality, we have

P (Y ∈ yc | X1 = 1, X2 = 1)− P (Y ∈ yc | X1 = 1, X2 = 0)

− P (Y ∈ yc | X1 = 0, X2 = 1) + P (Y ∈ yc | X1 = 0, X2 = 0)

is equal to

2P (Y11 ∈ yc, Y10 /∈ yc, Y01 /∈ yc, Y00 ∈ yc) + P (Y11 ∈ yc, Y10 /∈ yc, Y01 /∈ yc, Y00 /∈ yc)

− P (Y11 /∈ yc, Y10 ∈ yc, Y01 ∈ yc, Y00 /∈ yc)− P (Y11 /∈ yc, Y10 ∈ yc, Y01 /∈ yc, Y00 /∈ yc)

− P (Y11 ∈ yc, Y10 ∈ yc, Y01 ∈ yc, Y00 /∈ yc)− P (Y11 /∈ yc, Y10 ∈ yc, Y01 ∈ yc, Y00 ∈ yc)

− P (Y11 /∈ yc, Y10 ∈ yc, Y01 ∈ yc, Y00 /∈ yc)− P (Y11 /∈ yc, Y10 /∈ yc, Y01 ∈ yc, Y00 /∈ yc)

+ P (Y11 ∈ yc, Y10 ∈ yc, Y01 /∈ yc, Y00 ∈ yc) + P (Y11 ∈ yc, Y10 /∈ yc, Y01 ∈ yc, Y00 ∈ yc)

+ P (Y11 /∈ yc, Y10 /∈ yc, Y01 /∈ yc, Y00 ∈ yc) .

When X1 and X2 have positive monotonic effects on Y ∈ yc, the contrast

P (Y ∈ yc | X1 = 1, X2 = 1)− P (Y ∈ yc | X1 = 1, X2 = 0)

− P (Y ∈ yc | X1 = 0, X2 = 1)− P (Y ∈ yc | X1 = 0, X2 = 0)

is equal to P (Y11 ∈ yc, Y10 /∈ yc, Y01 /∈ yc, Y00 /∈ yc) .
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S2 Continuous Sufficient Cause Interaction

These results can be further generalized for outcomes on Rn. For this section, we allow

(Y11, Y10, Y01, Y00) to have a distribution function P (Y11 ∈ y11, Y10 ∈ y10, Y01 ∈ y01, Y00 ∈
y00), where y11, y10, y01, y00 are all subsets of R. We first provide a generalized notion

of positive monotonicity for continuous outcomes that will be used in the subsequent

theorems.

Definition S2.1 (Generalized Positive Monotonicity). We say that X1 has a positive

monotonic effect on Y ∈ yc for any fixed yc ⊂ R if there is no individual ω ∈ Ω such

that Yx1x2(ω) /∈ yc and Yx3x2(ω) ∈ yc for all x1 > x3 for any fixed x2. Similarly, we

say that X2 has a positive monotonic effect on Y ∈ yc for some yc ⊂ R if there is no

individual ω ∈ Ω such that Yx1x2(ω) /∈ yc and Yx1x3(ω) ∈ yc for all x2 > x3 for any fixed

x1. If X1 and X2 each individually have a positive monotonic effect on Y ∈ yc for any

fixed yc ⊂ R then we say that X1 and X2 have positive monotonic effects on Y ∈ yc.

Theorem S2.1. Suppose Yx1x2 qX1X2. Here, ya is any subset of R. The contrast

P (Y ∈ ya | X1 = 1, X2 = 1)− P (Y ∈ ya | X1 = 1, X2 = 0)

− P (Y ∈ ya | X1 = 0, X2 = 1)

is equal to

P (Y11 ∈ ya, Y10 /∈ ya, Y01 /∈ ya)− P (Y11 /∈ ya, Y10 ∈ ya, Y01 /∈ ya)

− P (Y11 ∈ ya, Y10 ∈ ya, Y01 ∈ ya)− P (Y11 /∈ ya, Y10 /∈ ya, Y01 ∈ ya) .

Proof of Theorem S2.1. The contrast

P (Y ∈ ya | X1 = 1, X2 = 1)− P (Y ∈ ya | X1 = 1, X2 = 0)

− P (Y ∈ ya | X1 = 0, X2 = 1)

is equal to P (Y11 ∈ ya) − P (Y10 ∈ ya) − P (Y01 ∈ ya) , under Yx1x2 q X1X2. Applying
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the law of total probability, we have

P (Y11 ∈ ya)− P (Y10 ∈ ya)− P (Y01 ∈ ya)

= P (Y11 ∈ ya, Y10 ∈ ya, Y01 ∈ ya) + P (Y11 ∈ ya, Y10 /∈ ya, Y01 ∈ ya)

+ P (Y11 ∈ ya, Y10 ∈ ya, Y01 /∈ ya) + P (Y11 ∈ ya, Y10 /∈ ya, Y01 /∈ ya)

− {P (Y11 ∈ ya, Y10 ∈ ya, Y01 ∈ ya) + P (Y11 /∈ ya, Y10 ∈ ya, Y01 ∈ ya)

+P (Y11 ∈ ya, Y10 ∈ ya, Y01 /∈ ya) + P (Y11 /∈ ya, Y10 ∈ ya, Y01 /∈ ya)}
− {P (Y11 ∈ ya, Y10 ∈ ya, Y01 ∈ ya) + P (Y11 /∈ ya, Y10 ∈ ya, Y01 ∈ ya)

+ P (Y11 ∈ ya, Y10 /∈ ya, Y01 ∈ ya) + P (Y11 /∈ ya, Y10 /∈ ya, Y01 ∈ ya)} .

Simplifying this equality, we have

P (Y ∈ ya | X1 = 1, X2 = 1)− P (Y ∈ ya | X1 = 1, X2 = 0)

− P (Y ∈ ya | X1 = 0, X2 = 1)

is equal to

P (Y11 ∈ ya, Y10 /∈ ya, Y01 /∈ ya)− P (Y11 /∈ ya, Y10 ∈ ya, Y01 /∈ ya)

− P (Y11 ∈ ya, Y10 ∈ ya, Y01 ∈ ya)− P (Y11 /∈ ya, Y10 /∈ ya, Y01 ∈ ya) .

Theorem S2.2. Suppose Yx1x2qX1X2 and suppose X1 and X2 have positive monotonic

effects on Y ∈ yc. For any yc that is a subset of R, the contrast

P (Y ∈ yc | X1 = 1, X2 = 1)− P (Y ∈ yc | X1 = 1, X2 = 0)

− P (Y ∈ yc | X1 = 0, X2 = 1) + P (Y ∈ yc | X1 = 0, X2 = 0)

is equal to P (Y11 ∈ yc, Y10 /∈ yc, Y01 /∈ yc, Y00 /∈ yc) .

Proof of Theorem S2.2. The contrast

P (Y ∈ yc | X1 = 1, X2 = 1)− P (Y ∈ yc | X1 = 1, X2 = 0)

− P (Y ∈ yc | X1 = 0, X2 = 1) + P (Y ∈ yc | X1 = 0, X2 = 0)
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is equal to P (Y11 ∈ yc)− P (Y10 ∈ yc)− P (Y01 ∈ yc) + P (Y00 ∈ yc) , under Yx1x2 q
X1X2. Applying the law of total probability, we have the following results:

P (Y11 ∈ yc)

= P (Y11 ∈ yc, Y10 ∈ yc, Y01 ∈ yc, Y00 ∈ yc) + P (Y11 ∈ yc, Y10 ∈ yc, Y01 ∈ yc, Y00 /∈ yc)

+ P (Y11 ∈ yc, Y10 /∈ yc, Y01 ∈ yc, Y00 ∈ yc) + P (Y11 ∈ yc, Y10 /∈ yc, Y01 ∈ yc, Y00 /∈ yc)

+ P (Y11 ∈ yc, Y10 ∈ yc, Y01 /∈ yc, Y00 ∈ yc) + P (Y11 ∈ yc, Y10 ∈ yc, Y01 /∈ yc, Y00 /∈ yc)

+ P (Y11 ∈ yc, Y10 /∈ yc, Y01 /∈ yc, Y00 ∈ yc) + P (Y11 ∈ yc, Y10 /∈ yc, Y01 /∈ yc, Y00 /∈ yc) ,

and similar equalities after applying the theorem of total probability are available

for P (Y10 ∈ yc) , P (Y01 ∈ yc) and P (Y00 ∈ yc) .

Simplifying this equality, we have

P (Y ∈ yc | X1 = 1, X2 = 1)− P (Y ∈ yc | X1 = 1, X2 = 0)

− P (Y ∈ yc | X1 = 0, X2 = 1) + P (Y ∈ yc | X1 = 0, X2 = 0)

is equal to

2P (Y11 ∈ yc, Y10 /∈ yc, Y01 /∈ yc, Y00 ∈ yc) + P (Y11 ∈ yc, Y10 /∈ yc, Y01 /∈ yc, Y00 /∈ yc)

− P (Y11 /∈ yc, Y10 ∈ yc, Y01 ∈ yc, Y00 /∈ yc)− P (Y11 /∈ yc, Y10 ∈ yc, Y01 /∈ yc, Y00 /∈ yc)

− P (Y11 ∈ yc, Y10 ∈ yc, Y01 ∈ yc, Y00 /∈ yc)− P (Y11 /∈ yc, Y10 ∈ yc, Y01 ∈ yc, Y00 ∈ yc)

− P (Y11 /∈ yc, Y10 ∈ yc, Y01 ∈ yc, Y00 /∈ yc)− P (Y11 /∈ yc, Y10 /∈ yc, Y01 ∈ yc, Y00 /∈ yc)

+ P (Y11 ∈ yc, Y10 ∈ yc, Y01 /∈ yc, Y00 ∈ yc) + P (Y11 ∈ yc, Y10 /∈ yc, Y01 ∈ yc, Y00 ∈ yc)

+ P (Y11 /∈ yc, Y10 /∈ yc, Y01 /∈ yc, Y00 ∈ yc) .

When X1 and X2 have positive monotonic effects on Y ∈ yc, the contrast

P (Y ∈ yc | X1 = 1, X2 = 1)− P (Y ∈ yc | X1 = 1, X2 = 0)

− P (Y ∈ yc | X1 = 0, X2 = 1)− P (Y ∈ yc | X1 = 0, X2 = 0)

is equal to P (Y11 ∈ yc, Y10 /∈ yc, Y01 /∈ yc, Y00 /∈ yc) .
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S3 Global Interaction Tests for an Ordinal Outcome with Three

Levels

The notation here follows the main text. Previous sections examined how to test for

the presence of sufficient cause interaction for an ordinal outcome under one speci-

fied condition. Theorems 2.3-2.6 in the main text used counterfactual conditions to

derive empirical conditions for such sufficient cause interaction for ordinal outcomes,

which generalizes the results of VanderWeele and Robins (2008). Here, we attempt to

examine what occurs if we test for the presence of sufficient cause interaction for an

ordinal outcome at different specified conditions simultaneously. We first examine the

case where we have positive monotonicity constraints on both X1 and X2, and then we

present the situation where there are no monotonicity constraints.

Earlier, in Theorem 2.1 in the main text, we had provided a sufficient cause repre-

sentation for an outcome under a specified condition. We had specifically examined the

situation, where one is testing the presence of only one type of sufficient cause interac-

tion at a specified condition. Now, one might be interested in testing if there evidence

for sufficient cause interaction for at least one of the specified conditions of the outcome.

For example, we might be interested if our study population displays X1X2 sufficient

cause interaction for the outcome ZA = I(Z = 1), ZC = I(Z = 2), or ZD = I(Z = 0).

One could simply test the different conditions separately. We first provide the case

where one assumes that X1 and X2 both have positive monotonic effects on Z, and

then examine the case when we relax the monotonicity assumption.

Theorem S3.1. Global Tests for Sufficient Cause Interaction for an outcome under

multiple specified conditions under monotonic constraints Suppose X1 and X2 both have

positive monotonic effects on ordinal outcome Z, and that Zx1x2 q {X1, X2} | V. If for
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some value v ∈ V we have that at least one of the following inequalities is satisfied

pA11v − pA10v − pA01v + pA00v + pC00 − pC01 > 0, (S3.1)

pA11v − pA10v − pA01v > 0 (S3.2)

pA11v − pA10v − pA01v + pA00v + pC00 − pC01 > 0 (S3.3)

pB11v − pB10v − pB01v + pB00v > 0 (S3.4)

pC11v − pC10 − pC01 + pC00 > 0, (S3.5)

then X1 and X2 display synergism for at least one of the following outcomes ZA =

I(Z = 1), ZB = I(Z ≥ 1), or ZC = I(Z = 2).

Proof. If any of inequalities S3.1, S3.2, S3.3, S3.4, or S3.5 are met than by Theorems

2.2-2.6 in the main text there is X1 and X2 synergism for the respective outcome under

specified condition. This completes our proof.

Theorem S3.2. Global Tests for Sufficient Cause Interaction for an outcome under

multiple specified considtions Suppose that Zx1x2q{X1, X2} | V. If for some value v ∈ V,

we have at least one of the following inequalities is satisfied

pD11 − pD01 − pD10 > 0 (S3.6)

pD11 − pD10 − pD01 < −1 (S3.7)

pA11v − pA10v − pA01v > 0 (S3.8)

pA11v − pA10v − pA01v < −1 (S3.9)

pB11v − pB10v − pB01v > 0 (S3.10)

pB11v − pB10v − pB01v < −1 (S3.11)

pC11v − pC10 − pC01 > 0 (S3.12)

pC11v − pC10 − pC01 < −1 (S3.13)

then X1 and X2 display synergism for at least one of the following outcomes ZA =

I(Z = 1), ZB = I(Z ≥ 1), ZC = I(Z = 2), or ZD = I(Z = 0).

Proof. If any of the odd inequalities are met then by Theorem 2.2-2.6 in the main paper

there is X1 and X2 synergism for the respective outcome under specified condition. If

any of the even inequalities is met, then this implies that at least one of the odd

inequalities is also met. Applying Theorems 2.2-2.6, we again have that X1 and X2
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display synergism for at least one of the outcomes ZA = I(Z = 1), ZB = I(Z ≥ 1),

ZC = I(Z = 2), or ZD = I(Z = 0).

S4 Appendix 1B

The notation here departs from the main text to cover ordinal outcomes with n levels.

Theorem 4.1 is provided again as Theorem S4.5.

Notation: Y is an ordinal variable that takes values Y ∈ {0, . . . , n} = Y. We denote

singleton value y, which can take a value within the interval 0 < y ≤ n. We also denote

S to be a particular subset of values of Y : S can be any subset of {1, . . . , n − 1} and

S must be an arithmetic sequence with common difference of one. We also use the

shorthand notation pLx1x2
to denote E(Y L | X1 = x1, X2 = x2) and pLx1x2v

to denote

E(Y L | X1 = x1, X2 = x2, V = v).

The potential outcome or counterfactual value of an individual ω had X1 been set

to x1 and X2 been set to x2 is denoted Yx1,x2(ω); more generally, we write the po-

tential outcome Yx1,...,xs(ω) of Y for individual ω if for j = 1, . . . , s each putative

cause Xj ∈ {X1, . . . , Xs} were set xj. An indicator function denoted Y S = I(Y ∈ S)

or Y y = I(Y ≥ y) is used to denote a new random variables constructed from Y

which takes value 1 if S ⊂ Y or singleton y > Y respectively, 0 otherwise. Poten-

tial outcome versions of Y S or Y y are defined as Y S
x1,...,xs

(ω) = I(Yx1,...,xs(ω) ∈ S) or

Y y
x1,...,xs

(ω) = I(Yx1,...,xs(ω) = y). Also, denote Y S+
x1,...,xs

(ω) = I(Yx1,...,xs(ω) > max(S)).

Definition S4.1 (Sufficient cause for a specified outcome). We say that putative binary

causes X1, . . . , Xn are called sufficient causes for Y L where L ∈ {S}, if for all values of

x1, . . . , xn ∈ Xn such that x1 · · ·xn = 1 we have that Y L
x1···xn

(ω) = 1 for all ω ∈ Ω.

Definition S4.2 (Minimal sufficient cause for a specified outcome). We say that puta-

tive binary causes X1, . . . , Xn form a minimal sufficient cause for Y L where L ∈ {S}, if

X1, . . . , Xn are a sufficient causes for Y L and no proper subset of {X1, . . . , Xn} is also

a sufficient cause for Y L.

Definition S4.3 (Determinative sufficient causes for a specified outcome). A set of

sufficient causes ML
1 , . . . ,M

L
n each of which are composed of a product of binary causes

for an outcome under a specified condition Y L, where L ∈ {S}, is defined to be deter-
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minative for Y L if for all ω ∈ Ω, Y L
x1···xs

(ω) = 1 if and only if ML
1 ∨ML

2 ∨ . . .∨ML
n = 1.

Definition S4.4 (Non-redundant sufficient causes for a specified outcome). A set of

determinative sufficient causes ML
1 , . . . ,M

L
n for Y L, where L ∈ {S, y}, is called a non-

redundant determinative set of minimal sufficient causes if there is no proper subset of

ML
1 , . . . ,M

L
n that is also a determinative set of minimal sufficient causes for Y L.

Theorem S4.1. Sufficient cause representation for a specified outcome For putative

binary causes X1 and X2 of outcome under specified condition Y L, where L ∈ {S}, we

say that there exists binary variables

A0(ω), A1(ω), A2(ω), A3(ω), A4(ω), A5(ω), A6(ω), A7(ω), A8(ω),

which are functions of the counterfactuals {Y L
11(ω), Y L

10(ω), Y L
01(ω), Y L

00(ω)} such that

Y L = A0∨A1X1∨A2X̄1∨A3X2∨A4X̄2∨A5X1X2∨A6X̄1X2∨A7X1X̄2∨A8X̄1X̄2, (S4.1)

and such that

Y L
x1x2

= A0 ∨ A1x1 ∨ A2(1− x1) ∨ A3x2 ∨ A4(1− x2) ∨ A5x1x2

∨A6(1− x1)x2 ∨ A7x1(1− x2) ∨ A8(1− x1)(1− x2) (S4.2)

Proof. Mirroring the proof of Theorem 1 in VanderWeele and Robins (2008), construct

A0, . . . , A8 according to the following 16 rules: (1) If Y L
x1x2

(ω) = 1 for all {x1, x2} ∈
{0, 1},2 let A0(ω) = 1 and Ai(ω) = 0 for all i /∈ 0. (2) If Y L

00(ω) = 0 and Y L
11(ω) =

Y L
10(ω) = Y L

01(ω) = 1, let A1(ω) = A3(ω) = 1 and Ai(ω) = 0 for i /∈ {1, 3}. (3) If

Y L
10(ω) = 0, and Y L

00(ω) = Y L
01(ω) = Y L

11(ω) = 1, let Ai(ω) = 1 for i ∈ {2, 3} and Ai(ω) =

0 for i /∈ {2, 3}. (4) If Y L
00(ω) = Y L

10(ω) = 0 and Y L
01(ω) = Y L

11(ω) = 1, let A3(ω) = 1

and Ai(ω) = 0 for i /∈ {3}. (5) If Y L
01(ω) = 0 and Y L

00(ω) = Y L
10(ω) = Y L

11(ω) = 1, let

Ai(ω) = 1 for i ∈ {1, 4} and Ai(ω) = 0 for i /∈ {1, 4}. (6) If Y L
00(ω) = Y L

01(ω) = 0 and

Y L
10(ω) = Y L

11(ω) = 1, let A1(ω) = 1 and Ai(ω) = 0. (7) If Y L
01(ω) = Y L

10(ω) = 0 and

Y L
00(ω) = Y L

11(ω) = 1,let Ai(ω) = 1 for i ∈ {5, 8} and Ai(ω) = 0 for i /∈ {5, 8}. (8) If

Y L
11(ω) = 1 and Y L

00(ω) = Y L
01(ω) = Y L

10(ω) = 0, let A5(ω) = 1 and Ai(ω) = 0 for i /∈ {5}.
(9) If Y L

11(ω) = 0 and Y L
00(ω) = Y L

10(ω) = Y L
01(ω) = 1, let Ai(ω) = 1 for i ∈ {2, 4} and

Ai(ω) = 0 for i /∈ {2, 4}. (10) If Y L
00(ω) = Y L

11(ω) = 0 and Y L
01(ω) = Y L

10(ω) = 1, let

Ai(ω) = 1 for i ∈ {6, 7} and Ai(ω) = 0 for i /∈ {6, 7}. (11) If Y L
10(ω) = Y L

11(ω) = 0

and Y L
00(ω) = Y L

01(ω) = 1, let Ai(ω) = 1 for i ∈ {2} and Ai(ω) /∈ {2}. (12) If Y L
11(ω) =
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Y L
10(ω) = Y L

00(ω) = 0 and Y01(ω) = 1, let Ai(ω) = 1 for i ∈ {6} and Ai(ω) = 0 for

i /∈ {6}. (13) If Y L
01(ω) = Y L

11(ω) = 0 and Y L
00(ω) = Y L

10(ω) = 1, let Ai(ω) = 1 for i ∈ {4}
and Ai(ω) = 0 for i /∈ {4}. (14) If Y L

00(ω) = Y L
01(ω) = Y L

11(ω) = 0 and Y L
10(ω) = 1, let

Ai(ω) = 1 for i /∈ {7} and Ai(ω) = 0 for i /∈ {7}. (15) If Y L
01(ω) = Y L

10(ω) = Y L
11(ω) = 0

and Y L
00(ω) = 1, let Ai(ω) = 1 for i ∈ {8} and Ai(ω) = 0 for i /∈ {8}. (16) If Y L

x1x2
(ω) = 0

for all {x1, x2} ∈ {0, 1}2, let Ai(ω) = 0.

Sufficient cause interaction for ordinal outcomes

Theorem S4.2. Suppose L ∈ {S, y}. There exists an individual ω ∈ Ω for whom

Y L
11(ω) = 1 and Y L

10(ω) = Y L
01(ω) = 0 if and only if the conjunction X1X2 exhibits

sufficient cause interaction for an outcome under specified condition: Y L.

Proof. Similar to Theorem 2.2 in main article therefore omitted.

Theorem S4.3. Suppose V is a set of variables that are enough to control for the

confounding of the variables of X1 and X2 on Y L, where L ∈ {S, y}, ie such that

Y L
x1x2
q {X1, X2} | V. We can say that X1X2 exhibit sufficient cause interaction if for

some value v of V, the following inequality holds:

0 < E(Y L | X1 = 1, X2 = 1, V = v)− E(Y L | X1 = 0, X2 = 1, V = v)

−E(Y L | X1 = 0, X2 = 0, V = v)

Proof. We prove this result by contradiction. Suppose for outcome under specified

condition L ∈ {S, y}, we have that X1X2 does not exhibit sufficient cause interaction.

Theorem S4.2 then implies that there is no individual ω ∈ Ω for whom Y L
11(ω.) = 1 and

Y L
10(ω) = Y L

01(ω) = 0. This is equivalent to stating that for all ω ∈ Ω, we have that

Y L
11(ω) − Y L

10(ω) − Y L
01(ω) ≤ 0. Therefore, taking expectations on both sides we have
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E(Y L
11(ω)− Y L

10(ω)− Y L
01(ω)) ≤ 0.

E(Y L | X1 = 1, X2 = 1, V = v)− E(Y L | X1 = 1, X2 = 0, V = v)

−E(Y L | X1 = 0, X2 = 1, V = v)

= E(Y L
11 | X1 = 1, X2 = 1, V = v)− E(Y L

10 | X1 = 1, X2 = 0, V = v)

−E(Y L
01 | X1 = 0, X2 = 1, V = v)

= E(Y L
11 | V = v)− E(Y L

10 | V = v)− E(Y L
01 | V = v)

= E(Y L
11(ω)− Y L

10(ω)− Y L
01(ω)) ≤ 0.

The first equality stems from the consistency assumption and the second equality stems

from the no unseen confounding assumption Y L
x1x2
q {X1, X2} | V. This completes our

proof.

Theorem S4.4. Suppose X1 and X2 both have positive monotonic effects on ordinal

variable Y, and that Y y
x1x2
q {X1, X2} | V. If for some value v ∈ V, we have

py11v − py10v − py01v + py00v > 0,

Proof. Suppose X1and X2 do not display synergism for outcome Y y. Then, by Theorem

S4.2, we have for all ω ∈ Ω, Y B
11 (ω)−Y B

10 (ω)−Y B
01 (ω) ≤ 0. Consider two different cases.

Case 1: if Y00(ω) < y, then Y y
00(ω) = 0 and adding this to Y B

11 (ω)−Y B
10 (ω)−Y B

01 (ω) ≤ 0,

we have Y B
11 (ω)−Y B

10 (ω)−Y B
01 (ω)+Y B

00 (ω) ≤ 0. Case 2: say Y y
00(ω) ≥ y then Y y

00(ω) = 1

and by our monotonicity constraints Y y
11(ω) = Y y

01(ω) = Y y
10(ω) = 1, and as a result

Y y
11(ω)−Y y

10(ω)−Y y
01(ω)+Y y

00(ω) ≤ 0. So, in both cases, we have that if X1and X2 do not

display synergism for outcome Y y, then Y y
11(ω)− Y y

10(ω)− Y y
01(ω) + Y y

00(ω) ≤ 0. Taking

expectations on both sides and following the logic present in the proof of Theorem 3.3,

we complete our proof.

Theorem S4.5. Suppose X1 and X2 both have positive monotonic effects on ordinal

variable Y, and that Y S
x1x2
q {X1, X2} | V. If for some value v ∈ V, we have

pS11v − pS10v − pS01v + pS00v + pS+
00 − pS+

01 > 0, or

pS11v − pS10v − pS01v + pS00v + pS+
00 − pS+

01 > 0, or

pS11v − pS10v − pS01v > 0

then X1 and X2 display synergism for outcome Y S = I(Y ∈ S).
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Proof. Suppose X1and X2 do not display synergism for outcome Y S. Then, by Theorem

S4.2, we have for all ω ∈ Ω, Y S
11(ω)− Y S

10(ω)− Y S
01(ω) ≤ 0. Taking expectations of both

sides of this inequality and following logic present in the the proof of Theorem S4.3, we

have the condition pS11v − pS10v − pS01v ≤ 0.

Denote S− to be the set of numbers in Y that are all less than the least number in S,

and denote S+ to be the set of numbers in Y that are greater than the largest number

in S. Denote si ∈ S, s−i ∈ S−, and s+
i ∈ S+ for i ∈ {1, . . . , 8}. Consider three different

cases to prove the other inequality: pS11v−pS10v−pS01v+pS00v+pS+
00v−pS+

01 > 0. Case 1: Sup-

pose Y00(ω) is equal to a− ∈ S−. Then Y S
00(ω) = 0, Y S+

00 (ω) = 0,Y01(ω) ∈ {s−1 , s1, s
+
1 },

Y10(ω) ∈ {s−2 , s2, s
+
2 }, and Y11(ω) ∈ {s−3 , s3, s

+
3 }. (Sub-case a): If Y11(ω) = s3, then

either Y10(ω) ∈ S or Y01(ω) ∈ S because X1 and X2 do not display synergism for

Y S and therefore Y S
11(ω) − Y S

10(ω) − Y S
01(ω) + Y S

00 + Y S+
00 − Y S+

01 (ω) ≤ 0. (Sub-case b):

If Y11(ω) ∈ S+, then Y S
11(ω) = 0, and we still have the inequality Y S

11(ω) − Y S
10(ω) −

Y S
01(ω) + Y S

00 + Y S+
00 − Y S+

01 (ω) ≤ 0. Case 2: if Y00(ω) ∈ S, then Y11(ω) ∈ {s4, s
+
4 },

Y01(ω) ∈ {s5, s
+
5 }, Y10 ∈ {s6, s

+
6 }. Regardless of which Y11(ω), Y10(ω), Y01(ω) we pick sat-

isfying the monotonicity constraints and ensuring that we do not have X1 and X2 do not

display synergism for Y S, we have that Y S
11(ω)−Y S

10(ω)−Y S
01(ω)+Y S

00 +Y S+
00 −Y S+

01 (ω) ≤
0. Case 3: if Y00(ω) ∈ S+, then Y S

00(ω) = Y S
11(ω) = Y S

01(ω) = Y S
10(ω) = 0, and

Y S
11(ω) − Y S

10(ω) − Y S
01(ω) + Y S

00 + Y S+
00 − Y S+

01 (ω) ≤ 0. Taking expectations on both

sides and following the same logic present in the proof of Theorem S4.3, we complete

our proof. To prove the first inequality. The result follows flowing the same logic as

presented above.
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S5 Connection to Polytopes

Following Ramsahai (2013), polytopes can be used to detect different interdependence

patterns for ordinal and categorical outcome. With deterministic counterfactuals or

potential outcomes, one defines the set of vertices associated with the counterfactuals

are of interest. Let Ψr denote the total set of response types associated with the vector

Y(ω) = (Y11(ω), Y10(ω), Y01(ω), Y00(ω)). In the case of ordinal Y that takes values in

Y ∈ {0, 1, 2}, Ψr has 81 rows representing the different response types associated with

this vector of length four Y(ω). For an ordinal Y that can take values in Y ∈ {0, . . . , n},
the Ψr has (n + 1)4 rows, representing the total number of response types. After con-

sulting scientific collaborators, write down the interdependence patterns of interest.

For example, the response patterns Y11(ω) = 2, Y10(ω) ∈ {0, 1}, Y01(ω) ∈ {0, 1}, and

Y00(ω) ∈ {0, 1} might be of interest. To construct the associated polytope to detect

these response types consider the following procedure: (1) list all the potential outcomes

that are possible Y(ω)=(Y11(ω), Y10(ω), Y01(ω), Y00(ω)), which is denoted Ψr; (2) con-

struct a new list through dichotomizing each vector Y(ω) at each of the outcome levels

of the ordinal outcome, e.g. let Yy(ω) = (I(Y11(ω) = y), I(Y10(ω) = y), I(Y01(ω) =

y), I(Y00(ω) = y)), where y ∈ Y ; (3) define the full set of response types as Ψ, where

each row is equal to (Y0(ω),Y1(ω), . . . ,Yn(ω)); here Ψ will still have (n + 1)4 rows,

but will now have 4(n + 1) columns; (4) remove the rows associated with the response

types of interest, and denote this new set of vertices Ψp.

Computational software, such as rcdd, can be used to compute the half-space rep-

resentation of the polytope associated with Ψp. The half-space representation H(Ψp)

can be used to construct empirical conditions to detect the interdependence of interest.

First construct the polytope associated with the monotonicity constraints denoted Ψm,

and use the half space representation H(Ψm) see which empirical conditions are asso-

ciated solely with the monotonicity constraints. Then, construct the relevant polytope

Ψp that removes vertices that do not follow the monotonic constraints and the interde-

pendence patterns of interest. Then check which empirical conditions associated with

the half-space representation of the polytope H(Ψp) are not present in the half-space

representation of the polytope associated with the monotonicity constraints H(Ψm).

Use the empirical conditions that are only associated with H(Ψp) and not H(Ψm) to

construct empirical tests of the interdependence patterns of interest.
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Departing from previous notation slightly, let p
{S}
x1,x2 = P (Y ∈ S | x1, x2) for some

set S ∈ {0, 1, 2}, x1 ∈ {0, 1} and x2 ∈ {0, 1}. Here, we consider one example. Sup-

pose Y ∈ {0, 1, 2}. As before suppose scientific collaborators were interested in knowing

whether an individual in the population displayed at least one of the following re-

sponse patterns: Y11(ω) = 2, Y10(ω) ∈ {0, 1}, Y01(ω) ∈ {0, 1}, and Y00(ω) ∈ {0, 1}.
If p

{2}
11v − p

{2}
10v − p

{2}
01v − p

{2}
00v > 0 assuming no confounding, we have that there ex-

ists and individual who displays one of the following response profile: Y11(ω) = 2,

Y10(ω) ∈ {0, 1}, Y01(ω) ∈ {0, 1}, and Y00(ω) ∈ {0, 1}. Under monotonic constraints, if

p
{2}
11v − p

{2}
10v − p

{2}
01v + p

{2}
00v > 0 assuming no confounding, we have that there exists and

individual who displays the following response profile: Y11(ω) = 2, Y10(ω) ∈ {0, 1},
Y01(ω) ∈ {0, 1}, and Y00(ω) ∈ {0, 1}.

Consider a second example, suppose we are interested in the response type Y11(ω) =

2, Y10(ω) = 1, Y01(ω) = 1 and Y00(ω) = 1. Then assuming no confounding, if p
{2}
11v+p

{1}
10v+

p
{1}
01v + p

{1}
00v > 3, then we have that there exists an individual who displays the following

response profile: Y11(ω) = 2, Y10(ω) = 1, Y01(ω) = 1 and Y00(ω) = 1. If we are willing to

assume monotonicity constraints, then if p
{2}
11v + p

{0}
11v− p

{2}
10v− p

{2}
01v + p

{2}
00v− p

{2}
00v > 0, then

there exists and individual with response profile Y11(ω) = 2, Y10(ω) = 1, Y01(ω) = 1 and

Y00(ω) = 1.

The connection to polytopes can also be used to construct partial converses to

detecting sufficient cause interaction. If one believed that everyone in the population

displayed the response type Y11(ω) = 2, Y10(ω) = 1, Y01(ω) = 1 and Y00(ω) = 1 in our

population, then a valid null hypothesis is that H0 : p
{2}
11 = p

{1}
10 = p

{1}
01 = p

{1}
00 = 1 vs

H1 : at least one of the qualities does not hold true to detect an individual that did not

display Y11(ω) = 2, Y10(ω) = 1, Y01(ω) = 1 and Y00(ω) = 1.

S6 Generalized Stochastic Counterfactuals and Continuous Out-

comes

As before, we allow (Y11, Y10, Y01, Y00) to have a distribution function P (Y11 ∈ y11, Y10 ∈
y10, Y01 ∈ y01, Y00 ∈ y00), where y11, y10, y01, y00 are all subsets of R.

Here, our results are derived with the randomization assumption Yx1x2 q X1X2.
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Similar results are easy to derive with the no unobserved confounding assumption

Yx1x2 q X1X2 | V. Out of space constraints, we choose to present results only using

the randomization assumption Yx1x2 qX1X2.

Definition S6.1. Generalized Positive Monotonicity We say that X1 has a positive

monotonic effect on Y ∈ yc for any fixed yc ⊂ R if there is no individual ω ∈ Ω such

that Yx1x2(ω) /∈ yc and Yx3x2(ω) ∈ yc for all x1 > x3 for any fixed x2. Similarly, we

say that X2 has a positive monotonic effect on Y ∈ yc for some yc ⊂ R if there is no

individual ω ∈ Ω such that Yx1x2(ω) /∈ yc and Yx1x3(ω) ∈ yc for all x2 > x3 for any fixed

x1. If X1 and X2 each individually have a positive monotonic effect on Y ∈ yc for any

yc ⊂ R then we say that x1 and x2 have positive monotonic effects on Y ∈ yc.

Theorem S6.1. Suppose Yx1x2 qX1X2. Here, ya is any subset of R. The contrast

P (Y ∈ ya | X1 = 1, X2 = 1)− P (Y ∈ ya | X1 = 1, X2 = 0)

− P (Y ∈ ya | X1 = 0, X2 = 1)

is equal to

P (Y11 ∈ ya, Y10 /∈ ya, Y01 /∈ ya)− P (Y11 /∈ ya, Y10 ∈ ya, Y01 /∈ ya)

− P (Y11 ∈ ya, Y10 ∈ ya, Y01 ∈ ya)− P (Y11 /∈ ya, Y10 /∈ ya, Y01 ∈ ya) ,

as well as

P (Y11 ∈ ya, Y10 /∈ ya, Y01 /∈ ya, Y00 ∈ ya) + P (Y11 ∈ ya, Y10 /∈ ya, Y01 /∈ ya, Y00 /∈ ya)

− P (Y11 /∈ ya, Y10 ∈ ya, Y01 /∈ ya, Y00 ∈ ya)− P (Y11 /∈ ya, Y10 ∈ ya, Y01 /∈ ya, Y00 /∈ ya)

− P (Y11 ∈ ya, Y10 ∈ ya, Y01 ∈ ya, Y00 ∈ ya)− P (Y11 ∈ ya, Y10 ∈ ya, Y01 ∈ ya, Y00 /∈ ya)

− P (Y11 /∈ ya, Y10 /∈ ya, Y01 ∈ ya, Y00 ∈ ya)− P (Y11 /∈ ya, Y10 /∈ ya, Y01 ∈ ya, Y00 /∈ ya) .

Consequently, if

P (Y ∈ ya | X1 = 1, X2 = 1)− P (Y ∈ ya | X1 = 1, X2 = 0)

− P (Y ∈ ya | X1 = 0, X2 = 1) > 0,

then there must exist an individual ω ∈ Ω such that Y11(ω) ∈ ya, Y10(ω) /∈ ya, and

Y01(ω) /∈ ya.
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Theorem S6.2. Suppose Yx1x2qX1X2, and X1 and X2 have positive monotonic effects

on Y ∈ yc, where yc that is a subset of R. The contrast

P (Y ∈ yc | X1 = 1, X2 = 1)− P (Y ∈ yc | X1 = 1, X2 = 0)

− P (Y ∈ yc | X1 = 0, X2 = 1) + P (Y ∈ yc | X1 = 0, X2 = 0)

is equal to

P (Y11 ∈ yc, Y10 /∈ yc, Y01 /∈ yc, Y00 /∈ yc) ,

and consequently when

P (Y ∈ yc | X1 = 1, X2 = 1)− P (Y ∈ yc | X1 = 1, X2 = 0)

− P (Y ∈ yc | X1 = 0, X2 = 1) + P (Y ∈ yc | X1 = 0, X2 = 0) > 0,

then there must exist an individual ω ∈ Ω such that Y11(ω) ∈ yc, Y10(ω) /∈ yc, Y01(ω) /∈
yc, and Y00(ω) 6∈ yc.

Theorem S6.3. Suppose Yx1x2 q X1X2. Suppose X1 and X2 have positive monotonic

effects on Y ∈ yc, where yc is any subset of R. Let ya ⊂ R, yb ⊂ R, yc ⊂ R, where

max ya < min yb and max yb < min yc, and ya ∪ yb ∪ yc = R, ya ∩ yb = ∅, yb ∩ yc = ∅,

yb ∩ yc = ∅, and ya ∩ yb ∩ yc = ∅. The contrast

P (Y ∈ yb | X1 = 1, X2 = 1)− P (Y ∈ yb | X1 = 1, X2 = 0)

− P (Y ∈ yb | X1 = 0, X2 = 1) + P (Y ∈ yb | X1 = 0, X2 = 0)

+ P (Y ∈ yc | X1 = 0, X2 = 0)− P (Y ∈ yc | X1 = 1, X2 = 0)

is equal to
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P (Y11 ∈ yb, Y10 ∈ ya, Y01 ∈ ya, Y00 ∈ ya)− P (Y11 ∈ yc, Y10 ∈ yb, Y01 ∈ ya, Y00 ∈ ya)

− P (Y11 ∈ yc, Y10 ∈ yb, Y01 ∈ yb, Y00 ∈ ya)− P (Y11 ∈ yc, Y10 ∈ yb, Y01 ∈ yc, Y00 ∈ ya)

− P (Y11 ∈ yc, Y10 ∈ ya, Y01 ∈ yb, Y00 ∈ ya)− P (Y11 ∈ yb, Y10 ∈ yb, Y01 ∈ yb, Y00 ∈ ya)

− P (Y11 ∈ yc, Y10 ∈ yb, Y01 ∈ yb, Y00 ∈ ya)− P (Y11 ∈ yc, Y10 ∈ yc, Y01 ∈ yb, Y00 ∈ ya)

− P (Y11 ∈ yc, Y10 ∈ yb, Y01 ∈ yb, Y00 ∈ yb)− P (Y11 ∈ yc, Y10 ∈ yc, Y01 ∈ ya, Y00 ∈ ya)

− P (Y11 ∈ yc, Y10 ∈ yc, Y01 ∈ yb, Y00 ∈ ya)− P (Y11 ∈ yc, Y10 ∈ yc, Y01 ∈ yc, Y00 ∈ ya)

− P (Y11 ∈ yc, Y10 ∈ yc, Y01 ∈ yb, Y00 ∈ yb)− P (Y11 ∈ ya, Y10 ∈ yc, Y01 ∈ yc, Y00 ∈ yb)

− P (Y11 ∈ ya, Y10 ∈ yc, Y01 ∈ yb, Y00 ∈ yc) .

Consequently, when the above monotonicity conditions hold and

P (Y ∈ yb | X1 = 1, X2 = 1)− P (Y ∈ yb | X1 = 1, X2 = 0)

− P (Y ∈ yb | X1 = 0, X2 = 1) + P (Y ∈ yb | X1 = 0, X2 = 0)

+ P (Y ∈ yc | X1 = 0, X2 = 0)− P (Y ∈ yc | X1 = 1, X2 = 0) > 0

then there must exist an individual ω ∈ Ω such that Y11(ω) ∈ ya, Y10(ω) /∈ ya, Y01(ω) /∈
ya, and Y00(ω) 6∈ ya.

Similarly, the contrast

P (Y ∈ yb | X1 = 1, X2 = 1)− P (Y ∈ yb | X1 = 1, X2 = 0)

− P (Y ∈ yb | X1 = 0, X2 = 1) + P (Y ∈ yb | X1 = 0, X2 = 0)

+ P (Y ∈ yc | X1 = 0, X2 = 0)− P (Y ∈ yc | X1 = 0, X2 = 1)

is equal to
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P (Y11 ∈ yb, Y10 ∈ ya, Y01 ∈ ya, Y00 ∈ ya)− P (Y11 ∈ yc, Y10 ∈ ya, Y01 ∈ yb, Y00 ∈ ya)

− P (Y11 ∈ yc, Y10 ∈ yb, Y01 ∈ yb, Y00 ∈ ya)− P (Y11 ∈ yc, Y10 ∈ yc, Y01 ∈ yb, Y00 ∈ ya)

− P (Y11 ∈ yc, Y10 ∈ yb, Y01 ∈ ya, Y00 ∈ ya)− P (Y11 ∈ yb, Y10 ∈ yb, Y01 ∈ yb, Y00 ∈ ya)

− P (Y11 ∈ yc, Y10 ∈ yb, Y01 ∈ yb, Y00 ∈ ya)− P (Y11 ∈ yc, Y10 ∈ yb, Y01 ∈ yc, Y00 ∈ ya)

− P (Y11 ∈ yc, Y10 ∈ yb, Y01 ∈ yb, Y00 ∈ yb)− P (Y11 ∈ yc, Y10 ∈ ya, Y01 ∈ yc, Y00 ∈ ya)

− P (Y11 ∈ yc, Y10 ∈ ya, Y01 ∈ yc, Y00 ∈ ya)− P (Y11 ∈ yc, Y10 ∈ yc, Y01 ∈ yc, Y00 ∈ ya)

− P (Y11 ∈ yc, Y10 ∈ yb, Y01 ∈ yc, Y00 ∈ yb)− P (Y11 ∈ ya, Y10 ∈ yc, Y01 ∈ yc, Y00 ∈ yb) .

− P (Y11 ∈ ya, Y10 ∈ yb, Y01 ∈ yc, Y00 ∈ yc) ,

when both X1 and X2 have positive monotonic effects on Y ∈ yc.

Proof of Theorem S6.1. The contrast

P (Y ∈ ya | X1 = 1, X2 = 1)− P (Y ∈ ya | X1 = 1, X2 = 0)

− P (Y ∈ ya | X1 = 0, X2 = 1) .

is equal to

P (Y11 ∈ ya)− P (Y10 ∈ ya)− P (Y01 ∈ ya) ,

under Yx1x2 qX1X2. Applying the law of total probability, we have

P (Y11 ∈ ya)− P (Y10 ∈ ya)− P (Y01 ∈ ya)

= P (Y11 ∈ ya, Y10 ∈ ya, Y01 ∈ ya) + P (Y11 ∈ ya, Y10 /∈ ya, Y01 ∈ ya)

+ P (Y11 ∈ ya, Y10 ∈ ya, Y01 /∈ ya) + P (Y11 ∈ ya, Y10 /∈ ya, Y01 /∈ ya)

− {P (Y11 ∈ ya, Y10 ∈ ya, Y01 ∈ ya) + P (Y11 /∈ ya, Y10 ∈ ya, Y01 ∈ ya)

+ P (Y11 ∈ ya, Y10 ∈ ya, Y01 /∈ ya) + P (Y11 /∈ ya, Y10 ∈ ya, Y01 /∈ ya)}
− {P (Y11 ∈ ya, Y10 ∈ ya, Y01 ∈ ya) + P (Y11 /∈ ya, Y10 ∈ ya, Y01 ∈ ya)

+P (Y11 ∈ ya, Y10 /∈ ya, Y01 ∈ ya) + P (Y11 /∈ ya, Y10 /∈ ya, Y01 ∈ ya)} .

Simplifying this equality, we have

P (Y ∈ ya | X1 = 1, X2 = 1)− P (Y ∈ ya | X1 = 1, X2 = 0)

− P (Y ∈ ya | X1 = 0, X2 = 1)
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is equal to

P (Y11 ∈ ya, Y10 /∈ ya, Y01 /∈ ya)− P (Y11 /∈ ya, Y10 ∈ ya, Y01 /∈ ya)

− P (Y11 ∈ ya, Y10 ∈ ya, Y01 ∈ ya)− P (Y11 /∈ ya, Y10 /∈ ya, Y01 ∈ ya) .

Proof of Theorem S6.2. The contrast

P (Y ∈ yc | X1 = 1, X2 = 1)− P (Y ∈ yc | X1 = 1, X2 = 0)

− P (Y ∈ yc | X1 = 0, X2 = 1) + P (Y ∈ yc | X1 = 0, X2 = 0)

is equal to

P (Y11 ∈ yc)− P (Y10 ∈ yc)− P (Y01 ∈ yc) + P (Y00 ∈ yc)

under Yx1x2qX1X2. Applying the law of total probability, we have the following results:

P (Y11 ∈ yc)

= P (Y11 ∈ yc, Y10 ∈ yc, Y01 ∈ yc, Y00 ∈ yc) + P (Y11 ∈ yc, Y10 ∈ yc, Y01 ∈ yc, Y00 /∈ yc)

+ P (Y11 ∈ yc, Y10 /∈ yc, Y01 ∈ yc, Y00 ∈ yc) + P (Y11 ∈ yc, Y10 /∈ yc, Y01 ∈ yc, Y00 /∈ yc)

+ P (Y11 ∈ yc, Y10 ∈ yc, Y01 /∈ yc, Y00 ∈ yc) + P (Y11 ∈ yc, Y10 ∈ yc, Y01 /∈ yc, Y00 /∈ yc)

+ P (Y11 ∈ yc, Y10 /∈ yc, Y01 /∈ yc, Y00 ∈ yc) + P (Y11 ∈ yc, Y10 /∈ yc, Y01 /∈ yc, Y00 /∈ yc) ,

P (Y10 ∈ yc)

= P (Y11 ∈ yc, Y10 ∈ yc, Y01 ∈ yc, Y00 ∈ yc) + P (Y11 ∈ yc, Y10 ∈ yc, Y01 ∈ yc, Y00 /∈ yc)

+ P (Y11 /∈ yc, Y10 ∈ yc, Y01 ∈ yc, Y00 ∈ yc) + P (Y11 /∈ yc, Y10 ∈ yc, Y01 ∈ yc, Y00 /∈ yc)

+ P (Y11 ∈ yc, Y10 ∈ yc, Y01 /∈ yc, Y00 ∈ yc) + P (Y11 ∈ yc, Y10 ∈ yc, Y01 /∈ yc, Y00 /∈ yc)

+ P (Y11 /∈ yc, Y10 ∈ yc, Y01 /∈ yc, Y00 ∈ yc) + P (Y11 /∈ yc, Y10 ∈ yc, Y01 /∈ yc, Y00 /∈ yc) ,
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P (Y01 ∈ yc)

= P (Y11 ∈ yc, Y10 ∈ yc, Y01 ∈ yc, Y00 ∈ yc) + P (Y11 ∈ yc, Y10 ∈ yc, Y01 ∈ yc, Y00 /∈ yc)

+ P (Y11 /∈ yc, Y10 ∈ yc, Y01 ∈ yc, Y00 ∈ yc) + P (Y11 /∈ yc, Y10 ∈ yc, Y01 ∈ yc, Y00 /∈ yc)

+ P (Y11 ∈ yc, Y10 /∈ yc, Y01 ∈ yc, Y00 ∈ yc) + P (Y11 ∈ yc, Y10 /∈ yc, Y01 ∈ yc, Y00 /∈ yc)

+ P (Y11 /∈ yc, Y10 /∈ yc, Y01 ∈ yc, Y00 ∈ yc) + P (Y11 /∈ yc, Y10 /∈ yc, Y01 ∈ yc, Y00 /∈ yc) ,

P (Y00 ∈ yc)

= P (Y11 ∈ yc, Y10 ∈ yc, Y01 ∈ yc, Y00 ∈ yc) + P (Y11 ∈ yc, Y10 ∈ yc, Y01 /∈ yc, Y00 ∈ yc)

+ P (Y11 /∈ yc, Y10 ∈ yc, Y01 ∈ yc, Y00 ∈ yc) + P (Y11 /∈ yc, Y10 ∈ yc, Y01 /∈ yc, Y00 ∈ yc)

+ P (Y11 ∈ yc, Y10 /∈ yc, Y01 ∈ yc, Y00 ∈ yc) + P (Y11 ∈ yc, Y10 /∈ yc, Y01 /∈ yc, Y00 ∈ yc)

+ P (Y11 /∈ yc, Y10 /∈ yc, Y01 ∈ yc, Y00 ∈ yc) + P (Y11 /∈ yc, Y10 /∈ yc, Y01 /∈ yc, Y00 ∈ yc) .

Simplifying this equality, we have

P (Y ∈ yc | X1 = 1, X2 = 1)− P (Y ∈ yc | X1 = 1, X2 = 0)

− P (Y ∈ yc | X1 = 0, X2 = 1) + P (Y ∈ yc | X1 = 0, X2 = 0)

is equal to

2P (Y11 ∈ yc, Y10 /∈ yc, Y01 /∈ yc, Y00 ∈ yc) + P (Y11 ∈ yc, Y10 /∈ yc, Y01 /∈ yc, Y00 /∈ yc)

− P (Y11 /∈ yc, Y10 ∈ yc, Y01 ∈ yc, Y00 /∈ yc)− P (Y11 /∈ yc, Y10 ∈ yc, Y01 /∈ yc, Y00 /∈ yc)

− P (Y11 ∈ yc, Y10 ∈ yc, Y01 ∈ yc, Y00 /∈ yc)− P (Y11 /∈ yc, Y10 ∈ yc, Y01 ∈ yc, Y00 ∈ yc)

− P (Y11 /∈ yc, Y10 ∈ yc, Y01 ∈ yc, Y00 /∈ yc)− P (Y11 /∈ yc, Y10 /∈ yc, Y01 ∈ yc, Y00 /∈ yc)

+ P (Y11 ∈ yc, Y10 ∈ yc, Y01 /∈ yc, Y00 ∈ yc) + P (Y11 ∈ yc, Y10 /∈ yc, Y01 ∈ yc, Y00 ∈ yc)

+ P (Y11 /∈ yc, Y10 /∈ yc, Y01 /∈ yc, Y00 ∈ yc) .

When X1 and X2 both have positive monotonic effects on Y ∈ yc, the contrast

P (Y ∈ yc | X1 = 1, X2 = 1)− P (Y ∈ yc | X1 = 1, X2 = 0)

− P (Y ∈ yc | X1 = 0, X2 = 1) + P (Y ∈ yc | X1 = 0, X2 = 0)
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is equal to

P (Y11 ∈ yc, Y10 /∈ yc, Y01 /∈ yc, Y00 /∈ yc) .

As a sensitivity analysis of the monotonic condition the expression

P (Y ∈ yc | X1 = 1, X2 = 1)− P (Y ∈ yc | X1 = 1, X2 = 0)

− P (Y ∈ yc | X1 = 0, X2 = 1) + P (Y ∈ yc | X1 = 0, X2 = 0)

− c,

where

c = 2P (Y11 ∈ yc, Y10 /∈ yc, Y01 /∈ yc, Y00 ∈ yc) + P (Y11 ∈ yc, Y10 ∈ yc, Y01 /∈ yc, Y00 ∈ yc)

+ P (Y11 ∈ yc, Y10 /∈ yc, Y01 ∈ yc, Y00 ∈ yc) + P (Y11 /∈ yc, Y10 /∈ yc, Y01 /∈ yc, Y00 ∈ yc)

− P (Y11 /∈ yc, Y10 ∈ ya, Y01 ∈ ya, Y00 /∈ ya) + P (Y11 /∈ yc, Y10 ∈ yc, Y01 /∈ yc, Y00 /∈ yc)

− P (Y11 ∈ yc, Y10 ∈ yc, Y01 ∈ yc, Y00 /∈ yc)− P (Y11 /∈ yc, Y10 ∈ yc, Y01 ∈ v, Y00 ∈ yc)

− P (Y11 /∈ yc, Y10 ∈ yc, Y01 ∈ yc, Y00 /∈ yc)− P (Y11 /∈ yc, Y10 /∈ yc, Y01 ∈ yc, Y00 /∈ yc)

is equal to

P (Y11 ∈ yc, Y10 /∈ yc, Y01 /∈ yc, Y00 /∈ yc) .

Proof of Theorem S6.3. The contrast

P (Y ∈ yb | X1 = 1, X2 = 1)− P (Y ∈ yb | X1 = 1, X2 = 0)

− P (Y ∈ yb | X1 = 0, X2 = 1) + P (Y ∈ yb | X1 = 0, X2 = 0)

+ P (Y ∈ yc | X1 = 0, X2 = 0)− P (Y ∈ yc | X1 = 1, X2 = 0)

is equal to

P (Y11 ∈ yb)− P (Y10 ∈ yb)− P (Y01 ∈ yb) + P (Y00 ∈ yb) + P (Y00 ∈ yc)− P (Y10 ∈ yc)
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under Yx1x2qX1X2. Applying the law of total probability, we have the following results:

P (Y10 ∈ yb) =
∑

(y11,y01,y00)∈{(ya,yb,yc)3}

P (Y11 ∈ y11, Y10 ∈ yb, Y01 ∈ y01, Y00 ∈ y00)

P (Y01 ∈ yb) =
∑

(y11,y10,y00)∈{(ya,yb,yc)3}

P (Y11 ∈ y11, Y10 ∈ y10, Y01 ∈ yb, Y00 ∈ y00)

P (Y00 ∈ yb) =
∑

(y11,y10,y01)∈{(ya,yb,yc)3}

P (Y11 ∈ y11, Y10 ∈ y10, Y01 ∈ yb, Y00 ∈ yb)

P (Y00 ∈ yc) =
∑

(y11,y10,y01)∈{(ya,yb,yc)3}

P (Y11 ∈ y11, Y10 ∈ y10, Y01 ∈ yb, Y00 ∈ yc)

P (Y10 ∈ yc) =
∑

(y11,y01,y00)∈{(ya,yb,yc)3}

P (Y11 ∈ y11, Y10 ∈ yc, Y01 ∈ y01, Y00 ∈ y00)

As an example, of this cartesian product notation, we have

P (Y11 ∈ yb) =
∑

(y10,y01,y00)∈{(ya,yb,yc)3}

P (Y11 ∈ yb, Y10 ∈ y10, Y01 ∈ y01, Y00 ∈ y00)

is equivalent to writing
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P (Y11 ∈ yb)

= P (Y11 ∈ yb, Y10 ∈ ya, Y01 ∈ ya, Y00 ∈ ya) + P (Y11 ∈ yb, Y10 ∈ yb, Y01 ∈ ya, Y00 ∈ ya)

+ P (Y11 ∈ yb, Y10 ∈ yc, Y01 ∈ ya, Y00 ∈ ya) + P (Y11 ∈ yb, Y10 ∈ ya, Y01 ∈ yb, Y00 ∈ ya)

+ P (Y11 ∈ yb, Y10 ∈ yb, Y01 ∈ yb, Y00 ∈ ya) + P (Y11 ∈ yb, Y10 ∈ yc, Y01 ∈ yb, Y00 ∈ ya)

+ P (Y11 ∈ yb, Y10 ∈ ya, Y01 ∈ yc, Y00 ∈ ya) + P (Y11 ∈ yb, Y10 ∈ yb, Y01 ∈ yc, Y00 ∈ ya)

+ P (Y11 ∈ yb, Y10 ∈ yc, Y01 ∈ yc, Y00 ∈ ya) + P (Y11 ∈ yb, Y10 ∈ ya, Y01 ∈ ya, Y00 ∈ yb)

+ P (Y11 ∈ yb, Y10 ∈ yb, Y01 ∈ ya, Y00 ∈ yb) + P (Y11 ∈ yb, Y10 ∈ yc, Y01 ∈ ya, Y00 ∈ yb)

+ P (Y11 ∈ yb, Y10 ∈ ya, Y01 ∈ yb, Y00 ∈ yb) + P (Y11 ∈ yb, Y10 ∈ yb, Y01 ∈ yb, Y00 ∈ yb)

+ P (Y11 ∈ yb, Y10 ∈ yc, Y01 ∈ yb, Y00 ∈ yb) + P (Y11 ∈ yb, Y10 ∈ ya, Y01 ∈ yc, Y00 ∈ yb)

+ P (Y11 ∈ yb, Y10 ∈ yb, Y01 ∈ yc, Y00 ∈ yb) + P (Y11 ∈ yb, Y10 ∈ yc, Y01 ∈ yc, Y00 ∈ yb)

+ P (Y11 ∈ yb, Y10 ∈ ya, Y01 ∈ ya, Y00 ∈ yc) + P (Y11 ∈ yb, Y10 ∈ yb, Y01 ∈ ya, Y00 ∈ yc)

+ P (Y11 ∈ yb, Y10 ∈ yc, Y01 ∈ ya, Y00 ∈ yc) + P (Y11 ∈ yb, Y10 ∈ ya, Y01 ∈ yb, Y00 ∈ yc)

+ P (Y11 ∈ yb, Y10 ∈ yb, Y01 ∈ yb, Y00 ∈ yc) + P (Y11 ∈ yb, Y10 ∈ yc, Y01 ∈ yb, Y00 ∈ yc)

+ P (Y11 ∈ yb, Y10 ∈ ya, Y01 ∈ yc, Y00 ∈ yc) + P (Y11 ∈ yb, Y10 ∈ yb, Y01 ∈ yc, Y00 ∈ yc)

+ P (Y11 ∈ yb, Y10 ∈ yc, Y01 ∈ yc, Y00 ∈ yc) .

Simplifying this equality, we have

P (Y ∈ yb | X1 = 1, X2 = 1)− P (Y ∈ yb | X1 = 1, X2 = 0)

− P (Y ∈ yb | X1 = 0, X2 = 1) + P (Y ∈ yb | X1 = 0, X2 = 0)

+ P (Y ∈ yc | X1 = 0, X2 = 0)− P (Y ∈ yc | X1 = 1, X2 = 0)



28 Jaffer M. Zaidi and Tyler J. VanderWeele

is equal to

P (Y11 ∈ yb, Y10 ∈ ya, Y01 ∈ ya, Y00 ∈ ya) + P (Y11 ∈ yb, Y10 ∈ ya, Y01 ∈ yc, Y00 ∈ ya)

+ P (Y11 ∈ yb, Y10 ∈ ya, Y01 ∈ ya, Y00 ∈ yb) + P (Y11 ∈ yb, Y10 ∈ ya, Y01 ∈ yc, Y00 ∈ yb)

+ P (Y11 ∈ yb, Y10 ∈ ya, Y01 ∈ ya, Y00 ∈ yc) + P (Y11 ∈ yb, Y10 ∈ ya, Y01 ∈ yc, Y00 ∈ yc)

− P (Y11 ∈ ya, Y10 ∈ yb, Y01 ∈ ya, Y00 ∈ ya)− P (Y11 ∈ yc, Y10 ∈ yb, Y01 ∈ ya, Y00 ∈ ya)

− P (Y11 ∈ ya, Y10 ∈ yb, Y01 ∈ yb, Y00 ∈ ya)− P (Y11 ∈ yc, Y10 ∈ yb, Y01 ∈ yb, Y00 ∈ ya)

− P (Y11 ∈ ya, Y10 ∈ yb, Y01 ∈ yc, Y00 ∈ ya)− P (Y11 ∈ yc, Y10 ∈ yb, Y01 ∈ yc, Y00 ∈ ya)

− P (Y11 ∈ ya, Y10 ∈ ya, Y01 ∈ yb, Y00 ∈ ya)− P (Y11 ∈ yc, Y10 ∈ ya, Y01 ∈ yb, Y00 ∈ ya)

− P (Y11 ∈ ya, Y10 ∈ yb, Y01 ∈ yb, Y00 ∈ ya)− P (Y11 ∈ yb, Y10 ∈ yb, Y01 ∈ yb, Y00 ∈ ya)

− P (Y11 ∈ yc, Y10 ∈ yb, Y01 ∈ yb, Y00 ∈ ya)− P (Y11 ∈ ya, Y10 ∈ yc, Y01 ∈ yb, Y00 ∈ ya)

− P (Y11 ∈ yc, Y10 ∈ yc, Y01 ∈ yb, Y00 ∈ ya)− P (Y11 ∈ ya, Y10 ∈ yb, Y01 ∈ yb, Y00 ∈ yb)

− P (Y11 ∈ yc, Y10 ∈ yb, Y01 ∈ yb, Y00 ∈ yb)− P (Y11 ∈ ya, Y10 ∈ yb, Y01 ∈ yb, Y00 ∈ yc)

− P (Y11 ∈ yc, Y10 ∈ yb, Y01 ∈ yb, Y00 ∈ yc) + P (Y11 ∈ ya, Y10 ∈ ya, Y01 ∈ ya, Y00 ∈ yb)

+ P (Y11 ∈ yb, Y10 ∈ ya, Y01 ∈ ya, Y00 ∈ yb) + P (Y11 ∈ yc, Y10 ∈ ya, Y01 ∈ ya, Y00 ∈ yb)

+ P (Y11 ∈ yb, Y10 ∈ yb, Y01 ∈ ya, Y00 ∈ yb) + P (Y11 ∈ yb, Y10 ∈ yc, Y01 ∈ ya, Y00 ∈ yb)

+ P (Y11 ∈ yb, Y10 ∈ ya, Y01 ∈ yb, Y00 ∈ yb) + P (Y11 ∈ ya, Y10 ∈ ya, Y01 ∈ yc, Y00 ∈ yb)

+ P (Y11 ∈ yb, Y10 ∈ ya, Y01 ∈ yc, Y00 ∈ yb) + P (Y11 ∈ yc, Y10 ∈ ya, Y01 ∈ yc, Y00 ∈ yb)

+ P (Y11 ∈ yb, Y10 ∈ yb, Y01 ∈ yc, Y00 ∈ yb) + P (Y11 ∈ ya, Y10 ∈ yc, Y01 ∈ yc, Y00 ∈ yb)

+ P (Y11 ∈ yb, Y10 ∈ yc, Y01 ∈ yc, Y00 ∈ yb) + P (Y11 ∈ ya, Y10 ∈ ya, Y01 ∈ ya, Y00 ∈ yc)

+ P (Y11 ∈ yb, Y10 ∈ ya, Y01 ∈ ya, Y00 ∈ yc) + P (Y11 ∈ yc, Y10 ∈ ya, Y01 ∈ ya, Y00 ∈ yc)

+ P (Y11 ∈ yb, Y10 ∈ yb, Y01 ∈ ya, Y00 ∈ yc) + P (Y11 ∈ yb, Y10 ∈ yc, Y01 ∈ ya, Y00 ∈ yc)

+ P (Y11 ∈ yb, Y10 ∈ ya, Y01 ∈ yb, Y00 ∈ yc) + P (Y11 ∈ ya, Y10 ∈ ya, Y01 ∈ yc, Y00 ∈ yc)

+ P (Y11 ∈ yb, Y10 ∈ ya, Y01 ∈ yc, Y00 ∈ yc) + P (Y11 ∈ yc, Y10 ∈ ya, Y01 ∈ yc, Y00 ∈ yc)

+ P (Y11 ∈ yb, Y10 ∈ yb, Y01 ∈ yc, Y00 ∈ yc) + P (Y11 ∈ yb, Y10 ∈ yc, Y01 ∈ yc, Y00 ∈ yc)

− P (Y11 ∈ ya, Y10 ∈ yc, Y01 ∈ ya, Y00 ∈ ya)− P (Y11 ∈ yc, Y10 ∈ yc, Y01 ∈ ya, Y00 ∈ ya)

− P (Y11 ∈ ya, Y10 ∈ yc, Y01 ∈ yb, Y00 ∈ ya)− P (Y11 ∈ yb, Y10 ∈ yc, Y01 ∈ yb, Y00 ∈ ya)

− P (Y11 ∈ yc, Y10 ∈ yc, Y01 ∈ yb, Y00 ∈ ya)− P (Y11 ∈ ya, Y10 ∈ yc, Y01 ∈ yc, Y00 ∈ ya)

− P (Y11 ∈ yc, Y10 ∈ yc, Y01 ∈ yc, Y00 ∈ ya)− P (Y11 ∈ ya, Y10 ∈ yc, Y01 ∈ yb, Y00 ∈ yb)

− P (Y11 ∈ yc, Y10 ∈ yc, Y01 ∈ yb, Y00 ∈ yb)− P (Y11 ∈ ya, Y10 ∈ yc, Y01 ∈ yc, Y00 ∈ yb)

− P (Y11 ∈ ya, Y10 ∈ yc, Y01 ∈ yb, Y00 ∈ yc)− P (Y11 ∈ yc, Y10 ∈ yc, Y01 ∈ yb, Y00 ∈ yc) .
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When both X1 and X2 have positive monotonic effects on Y ∈ yc, the contrast

P (Y ∈ yb | X1 = 1, X2 = 1)− P (Y ∈ yb | X1 = 1, X2 = 0)

− P (Y ∈ yb | X1 = 0, X2 = 1) + P (Y ∈ yb | X1 = 0, X2 = 0)

+ P (Y ∈ yc | X1 = 0, X2 = 0)− P (Y ∈ yc | X1 = 1, X2 = 0)

is equal to

P (Y11 ∈ yb, Y10 ∈ ya, Y01 ∈ ya, Y00 ∈ ya)− P (Y11 ∈ yc, Y10 ∈ yb, Y01 ∈ ya, Y00 ∈ ya)

− P (Y11 ∈ yc, Y10 ∈ yb, Y01 ∈ yb, Y00 ∈ ya)− P (Y11 ∈ yc, Y10 ∈ yb, Y01 ∈ yc, Y00 ∈ ya)

− P (Y11 ∈ yc, Y10 ∈ ya, Y01 ∈ yb, Y00 ∈ ya)− P (Y11 ∈ yb, Y10 ∈ yb, Y01 ∈ yb, Y00 ∈ ya)

− P (Y11 ∈ yc, Y10 ∈ yb, Y01 ∈ yb, Y00 ∈ ya)− P (Y11 ∈ yc, Y10 ∈ yc, Y01 ∈ yb, Y00 ∈ ya)

− P (Y11 ∈ yc, Y10 ∈ yb, Y01 ∈ yb, Y00 ∈ yb)− P (Y11 ∈ yc, Y10 ∈ yc, Y01 ∈ ya, Y00 ∈ ya)

− P (Y11 ∈ yc, Y10 ∈ yc, Y01 ∈ yb, Y00 ∈ ya)− P (Y11 ∈ yc, Y10 ∈ yc, Y01 ∈ yc, Y00 ∈ ya)

− P (Y11 ∈ yc, Y10 ∈ yc, Y01 ∈ yb, Y00 ∈ yb)− P (Y11 ∈ ya, Y10 ∈ yc, Y01 ∈ yc, Y00 ∈ yb) .

− P (Y11 ∈ ya, Y10 ∈ yc, Y01 ∈ yb, Y00 ∈ yc) .

Therefore,

P (Y ∈ yb | X1 = 1, X2 = 1)− P (Y ∈ yb | X1 = 1, X2 = 0)

− P (Y ∈ yb | X1 = 0, X2 = 1) + P (Y ∈ yb | X1 = 0, X2 = 0)

+ P (Y ∈ yc | X1 = 0, X2 = 0)− P (Y ∈ yc | X1 = 1, X2 = 0)

is a lower bound on

P (Y11 ∈ yb, Y10 ∈ ya, Y01 ∈ ya, Y00 ∈ ya) .

For the second result, interchange the roles of Y01 and Y10.

S6.1 Appendix 3: Inference

The log-likelihood for an ordinal outcome with two binary exposures is

l(p) =
∑

(x1,x2)∈{0,1}2
nA
x1x2

log(pAx1x2
) +

∑
(x1,x2)∈{0,1}2

nC
x1x2

log(pCx1x2
)

+
∑

(x1,x2)∈{0,1}2
nD
x1x2

log(pDx1x2
)
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where p = (pA11, p
A
10, p

A
01, p

A
00, p

C
11, p

C
10, p

C
01, p

C
00, p

D
11, p

D
10, p

D
01, p

D
00), and nL

x1x2
=

∑n
i=1 I(X1i =

x1, X2i = x2, Yi ∈ L). Here, Yi denotes the outcome for the ith individual. Similarly, X1i

denotes individual i’s X1 exposure status, and X2i denotes individual i’s X2 exposure

status. The likelihood ratio statistic is T = max{2(supp∈(0,1)12\p0
l(p)−supp∈p0

l(p)), 0}.
Finally, p0 denotes the null space that is defined by the relevant inequality constraints.
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