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Abstract: Sparse learning is central to high-dimensional data analysis, and vari-

ous methods have been developed. Ideally, a sparse learning method should be

methodologically flexible, computationally efficient, and provide a theoretical guar-

antee. However, most existing methods need to compromise some of these proper-

ties in order to attain the others. We develop a three-step sparse learning method,

involving a kernel-based estimation of the regression function and its gradient func-

tions, as well as a hard thresholding. Its key advantages are that it includes no

explicit model assumption, admits general predictor effects, allows efficient compu-

tation, and attains desirable asymptotic sparsistency. The proposed method can

be adapted to any reproducing kernel Hilbert space (RKHS) with different kernel

functions, and its computational cost is only linear in the data dimension. The

asymptotic sparsistency of the proposed method is established for general RKHS

under mild conditions. The results of numerical experiments show that the pro-

posed method compares favorably with its competitors in both simulated and real

examples.

Key words and phrases: Gradient learning, hard thresholding, nonparametric sparse

learning, ridge regression, RKHS.

1. Introduction

Sparse learning has attracted much interest from both researchers and prac-

titioners, owing to the availability of large numbers of variables in many real

applications. In such scenarios, identifying the truly informative variables for

the objective of analysis has become a key part of facilitating statistical model-

ing and analysis. Ideally, a sparse learning method should be flexible, efficient,

and provide a theoretical guarantee. Specifically, the method should not assume

restrictive model assumptions, making it applicable to data with complex struc-

tures. In addition, its implementation should be computationally efficient, and

should take advantage of high performance computing platforms. Furthermore,
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it should provide a theoretical guarantee on its asymptotic consistency in identi-

fying the truly informative variables.

In the literature, many sparse learning methods have been developed in regu-

larization frameworks that assume a certain working model set. Linear models are

the most popular working model sets, where the sparse learning task simplifies to

identifying nonzero coefficients. Under the linear model assumption, the regular-

ization framework consists of a least squares loss function for the linear model, as

well as a sparsity-inducing regularization term. Various regularization terms have

been considered, including the least absolute shrinkage and selection operator

(Lasso; Tibshirani (1996)), smoothly clipped absolute deviation (SCAD; Fan and

Li (2001)), adaptive Lasso (Zou (2006)), minimax concave penalty (MCP; Zhang

(2010)), truncated l1-penalty (TLP; Shen, Pan and Zhu (2012)), and l0-penalty

(Shen et al. (2013)), among others. These methods have also been extended to the

nonparametric models to relax the linear model assumption. For example, under

the additive model assumption, a number of sparse learning methods have been

developed (Shively, Kohn, and Wood (1999); Huang, Horowitz and Wei (2010)),

where each component function depends on one variable only. Furthermore, a

component selection and smoothing operator method (COSSO; Lin and Zhang

(2006)) has been proposed to allow higher-order interaction components in the

additive model. However, the higher-order additive models need to enumerate all

interaction components, which may be of an exponential order of the number of

variables. These nonparametric sparse learning methods, although more flexible

than the linear model, still require explicit working model sets.

More recently, attempts have been made to develop nonparametric sparse

learning methods to circumvent the dependency on restrictive model assumptions.

In particular, sparse learning is formulated in a dimension reduction framework in

Li, Zha and Chiaromonte (2005) and Bondell and Li (2009) by searching for the

sparse basis of the central dimension reduction space. Fukumizu and Leng (2014)

developed a gradient-based dimension-reduction method that can be extended to

nonparametric sparse learning. A novel measurement-error-model-based sparse

learning method is developed in Stefanski, Wu and White (2014) and Wu and

Stefanski (2015) for nonparametric kernel regression models. In addition, gradi-

ent learning methods (Rosasco et al. (2013); Yang, Lv and Wang (2016)) have

been proposed to conduct sparse learning in a flexible reproducing kernel Hilbert

space (RKHS) (Wahba (1998)). Furthermore, a flexible knock-off filter framework

(Barber and Candës (2015)) and a recursive feature elimination method using a

kernel ridge regression have been proposed (Dasgupta, Goldberg and Kosorok

(2019)) that show substantial advantages over most existing methods. However,
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their lack of selection consistency and computational efficiency remain as obsta-

cles. Interestingly, most existing gradient-based methods (Rosasco et al. (2013);

Yang, Lv and Wang (2016)) aim to directly estimate the gradient functions in a

regularization framework using some well-designed penalty terms, and thus may

not be applicable for analyzing high-dimensional data, owing to their expensive

computational cost.

Another popular line of research on high-dimensional data is that on variable

screening, which screens out uninformative variables by examining the marginal

relationship between the response and each variable. The marginal relationship

can be measured by various criteria, including the Pearson’s correlation (Fan

and Lv (2008)), the empirical functional norm (Fan, Feng and Song (2011)), the

distance correlation (Szekely, Rizzo and Bakirov (2007)), and a quantile-adaptive

procedure (He, Wang and Hong (2013)). These methods are all computationally

very efficient and attain the sure screening property, meaning that all the truly

informative variables are retained after screening, with probability tending to one.

This is a desirable property, yet slightly weaker than the asymptotic consistency in

sparse learning. Another potential weakness of the marginal screening methods

is that they may ignore those marginally unimportant, but jointly important

variables (He, Wang and Hong (2013)). To remedy this limitation, recent works

(Hao and Zhang (2014); Wang and Leng (2016)) have conducted sure screening

for variables with interaction effects.

We propose an efficient kernel-based sparse learning method that is method-

ologically flexible, computationally efficient, and able to achieve asymptotic con-

sistency without requiring any explicit model assumptions. The method consists

of three simple steps that include a kernel-based estimation of the regression

function and its gradient functions, as well as a hard thresholding. It first fits a

kernel ridge regression model in a flexible RKHS to obtain an estimated regres-

sion function. Then, it estimates the gradient functions along each variable by

taking advantage of the derivative reproducing property (Zhou (2007)). Finally,

it hard-thresholds the empirical norm of each gradient function to identify the

truly informative variables. This method is flexible in that it can be adapted

to any RKHS with different kernel functions to accommodate prior information

about the true regression function. The proposed method also enables an efficient

estimation of the gradient functions in two steps using the derivative property of

the RKHS, which significantly reduces the computational cost and allows for a

diverging dimension. The computational cost is only linear in the data dimen-

sion. Thus, it is computationally efficient when analyzing data sets with large

dimensions. For example, the simulated examples with p = 100,000 variables
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can be analyzed efficiently on a standard multi-core PC. More importantly, the

asymptotic consistency can be established for the proposed method without re-

quiring any explicit model assumptions. It is clear that the proposed method

has advantages over the existing methods, because it achieves methodological

flexibility, numerical efficiency, and asymptotic consistency. To the best of our

knowledge, this method is the first to achieve these three desirable properties at

the same time.

The rest of the paper is organized as follows. In Section 2, we present the pro-

posed general kernel-based sparse learning method and its computational scheme.

In Section 3, the asymptotic consistency of the proposed method is established.

Two theoretical examples are provided in Section 4. In Section 5, the proposed

method is extended to select truly informative interaction terms. Section 6 con-

tains numerical experiments on the simulated and real examples, and Section 7

concludes the paper. All necessary lemmas and technical proofs are provided in

the Appendix and in the online Supplementary Materials.

2. Proposed Method

2.1. Regression in an RKHS

Suppose a random sample Zn = {(xi, yi)}ni=1 comprises independent copies of

Z = (x, y), drawn from some unknown distribution ρx,y, with x = (x1, . . . , xp)T ∈
X supported on a compact metric space and y ∈ R. Consider a general regression

setting,

y = f∗(x) + ε,

where ε is a random error, with E(ε|x) = 0 and Var(ε|x) = σ2. Thus f∗(x) =∫
ydρy|x, with ρy|x denoting the conditional distribution of y, given x. We further

assume that f∗ ∈ HK , where HK is an RKHS induced by some prespecified

kernel function K(·, ·). For each x ∈ X , denote Kx = K(x, ·) ∈ HK , and the

reproducing property of the RKHS implies that 〈f,Kx〉K = f(x), for any f ∈ HK ,

where 〈·, ·〉K is the inner product in HK .

The RKHS enjoys a number of desirable properties that make it partic-

ularly suitable for general nonparametric models, including its approximation

ability, functional complexity, and derivative reproducing property. Specifically,

many popular kernels, including the Gaussian and Laplace kernels, are univer-

sal (Steinwart and Christmann (2008)), meaning that the RKHS each induces is

dense in the continuous function space under the infinity norm. This universal

approximation property ensures that the kernel-based methods yield nonparamet-
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ric estimates with a small approximation error when estimating any continuous

target function. On the other hand, to characterize the statistical properties of

nonparametric models, the notion of functional complexity in an empirical pro-

cess is widely employed in theoretical analyses. This includes various covering

numbers, the VC dimension, and Rademacher complexity (Bartlett and Mendel-

son (2002)). The RKHS has a very interesting and surprising property that for

a unit ball B1 of the RKHS, its Rademacher complexity (Bartlett and Mendel-

son (2002)) can be bounded as Rn(B1) ≤ 2n−1/2(E(K(X,X)))1/2, where Rn(·)
denotes the global Rademacher complexity. In other words, the functional com-

plexity of the bounded ball in the RKHS is less affected by the dimension of the

variables. Thus a small variance estimator can be obtained, without sacrificing

the approximation ability of the nonparametric estimation, using kernel-based

methods. In addition, in the literature on nonparametric statistics, estimating

the gradient function of the target function is, in general, difficult. However, the

derivative of any function in a smooth RKHS also has the reproducing property,

implying that kernel-based methods have simultaneous convergence behavior in

both the function and its gradient function, with the same rate of convergence

under the sup norm.

2.2. Gradient-based sparse learning

In sparse modeling, it is generally believed that f∗(x) depends only on a

small number of variables, while others are uninformative. Unlike model-based

settings, sparse learning for a general regression model is challenging, owing to

the lack of explicit regression parameters. Here, we measure the importance

of variables in a regression function by examining the corresponding gradient

functions. It is crucial to observe that if a variable xl is deemed uninformative,

the corresponding gradient function

g∗l (x) =
∂f∗(x)

∂xl

should be exactly zero, almost surely. Thus, the true active set can be defined as

A∗ = {l : ‖g∗l ‖
2
2 > 0},

where ‖g∗l ‖22 =
∫

(g∗l (x))2 dρx with the marginal distribution ρx.

The proposed general sparse learning method is presented in Algorithm 1.

We now describe each step in Algorithm 1 on greater detail. To obtain f̂ in
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Algorithm 1 General sparse learning method.

Step 1: Obtain an estimate f̂ in a smooth RKHS based on the given sample Zn;
Step 2: Compute ĝl(x) = ∂f̂(x)/∂xl for l = 1, . . . , p;
Step 3: Identify the informative variables by checking the norm of each ĝl.

Step 1, we employ the kernel ridge regression model,

f̂(x) = argmin
f∈HK

1

n

n∑
i=1

(yi − f(xi))
2 + λn‖f‖2K , (2.1)

where the first term, denoted as En(f), is an empirical version of E(f) = E(y −
f(x))2, and ‖f‖K = 〈f, f〉1/2K is the associated RKHS-norm of f ∈ HK . By the

representer theorem (Wahba (1998)), the minimizer of (2.1) must have the form

f̂(x) =

n∑
i=1

α̂iK(xi,x) = α̂T
Kn(x),

where α̂ = (α̂1, . . . , α̂n)T and Kn(x) = (K(x1,x), . . . ,K(xn,x))T . Then, the

optimization task in (2.1) can be solved analytically, with

α̂ =
(
K

2 + nλnK
)+

Ky, (2.2)

where K =
(
K(xi,xj)

)n
i,j=1

, and + denotes the Moore–Penrose generalized in-

verse of a matrix. When K is invertible, (2.2) simplifies to α̂ = (K + nλn I)
−1 y.

Next, to obtain ĝl in Step 2, it follows from Lemma 1 that for any f ∈ HK ,

gl(x) =
∂f(x)

∂xl
= 〈f, ∂lKx〉K ≤ ‖∂lKx‖K‖f‖K ,

where ∂lKx = ∂K(x, ·)/∂xl. This implies that the gradient function of any

f ∈ HK can be bounded by its K-norm, up to some constant. In other words,

if we want to estimate g∗l (x) within a smooth RKHS, it suffices to estimate f∗

itself, without loss of information. Consequently, if f̂ is obtained in Step 1,

g∗l (x) can be estimated as ĝl(x) = α̂T∂lKn(x), for each l, where ∂lKn(x) =

(∂lKx(x1), . . . , ∂lKx(xn))T .

In Step 3, it is difficult to evaluate ‖ĝl‖22 directly, because ρx is usually

unknown in practice. We then adopt the empirical norm of ĝl as a practical

measure,

‖ĝl‖2n =
1

n

n∑
i=1

(
ĝl(xi)

)2
=

1

n

n∑
i=1

(
α̂T∂lKn(xi)

)2
.
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The estimated active set can be set as Âvn = {l : ‖ĝl‖2n > vn}, for some prespec-

ified vn. Our method can clearly be regarded as a nonparametric joint screening

method that can correctly identify all truly informative variables acting on the re-

sponse with a general effect, including those that are marginally noninformative,

but jointly informative.

The proposed method presented in Algorithm 1 is general in that it can be

adapted to any smooth RKHS with different kernel functions, where the choice

of the kernel function depends on prior knowledge about f∗. For instance, if f∗

is known in advance to be a linear or polynomial function, the RKHS induced by

the linear or polynomial kernel can be used. If no prior information about f∗ is

available, the RKHS induced by the Gaussian kernel can be used, which is known

to be universal in the sense that any continuous function can be well approximated

by some function in the induced RKHS under the infinity norm (Steinwart and

Christmann (2008)). In practice, unless some reliable prior information about

f∗ is known, it is recommended to consider the RKHS induced by the Gaussian

kernel owing to its capacity and flexibility.

Remark 1. The proposed method is computationally efficient, with a computa-

tional cost of about O(n3 + n2p). The complexity O(n3) comes from inverting

an n × n matrix in (2.2), and the complexity O(n2p) comes from calculating

‖ĝl‖2n, for l = 1, . . . , p. This complexity is particularly attractive in the large-p-

small-n scenario, where the computational complexity becomes linear in p, and

parallelization can be employed to further speed up the computation. In other

scenarios with large n, the O(n3) complexity can be too demanding. Improve-

ments are available to alleviate the computational burden using some low-rank

approximation, such as the random sketch method in Yang, Pilanci and Wain-

wright (2017). Its computational complexity can be reduced to O(m3), where

m � n is the sketch dimension determined in Yang, Pilanci and Wainwright

(2017). More importantly, the random sketch method has been proved to be fast

and minimax optimal when fitting the kernel ridge regression.

Remark 2. The estimated regression function f̂ is merely an intermediate step

for estimating the gradient functions. It provides is a consistent estimate, but

converges to the true regression function f∗ at some rather slow rate, owing to the

inclusion of the noise variables. We also want to emphasize that the data are only

used once to estimate the representer coefficients α̂ in (2.2). Then the estimated

gradient function ĝl can be estimated directly using the derivative reproducing

property of the RKHS, by Lemma 1.



2130 HE, WANG AND LV

2.3. Tuning

The proposed method presented in Algorithm 1 consists of two tuning pa-

rameters, the ridge parameter λn and the thresholding parameter vn. Based

on our limited numerical experience, the proposed method performs well and is

stable when the ridge parameter λn is sufficiently small in various scenarios. A

similar observation on the choice of the ridge parameter is made in Wang and

Leng (2016). Therefore, we set λn = 0.001, and focus on the choice of vn in the

simulated experiments.

To optimize the selection performance of the proposed method, we employ

the stability-based criterion (Sun, Wang and Fang (2013)) to select the value

of vn. Its key idea is to measure the stability of sparse learning by randomly

splitting the training sample into two parts, and comparing the disagreement

between the two estimated active sets. Specifically, given a thresholding value

vn, we randomly split the training sample Zn into two parts, Zn1 and Zn2 . Then,

the proposed method is applied to Zn1 and Zn2 to obtain the estimated active

sets, Â1,vn and Â2,vn , respectively. The disagreement between Â1,vn and Â2,vn is

measured using Cohen’s kappa coefficient

κ(Â1,vn , Â2,vn) =
Pr(a)− Pr(e)

1− Pr(e)
,

where Pr(a) = (n11 + n22)/p and Pr(e) = ((n11 + n12)(n11 + n21))/p
2 + ((n12 +

n22)(n21 + n22))/p
2, with n11 = |Â1,vn ∩ Â2,vn |, n12 = |Â1,vn ∩ ÂC2,vn |, n21 =

|ÂC1,vn ∩ Â2,vn |, n22 = |ÂC1,vn ∩ Â
C
2,vn |, and | · | denoting the set cardinality.

The procedure is repeated B times, and the estimated sparse learning sta-

bility is measured as

ŝ(Ψvn) =
1

B

B∑
b=1

κ(Âb1,vn , Â
b
2,vn).

Finally, the thresholding parameter v̂n is set as v̂n=max{vn : ŝ(Ψvn)/maxvn ŝ(Ψvn)

≥ q}, where q ∈ (0, 1) is some given percentage. In the simulated experiments, we

set q = 0.95, as suggested in Sun, Wang and Fang (2013), and the performance

of the resultant tuning criterion appears to be satisfactory.

3. Asymptotic Sparsistency

Now, we establish the asymptotic consistency of the proposed method. First,

we introduce an integral operator LK : L2(X , ρx)→ L2(X , ρx), given by
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LK(f)(x) =

∫
K(x,u)f(u)dρx(u),

for any f ∈ L2(X , ρx) = {f :
∫
f2(x)dρx < ∞}. Note that if the corresponding

RKHS is separable, by the spectral theorem, we have

LKf =
∑
j

µj〈f, ej〉2ej ,

where {ej} is an orthonormal basis of L2(X , ρx), µj is the eigenvalue of the

integral operator LK , and 〈·, ·〉2 is the inner product in L2(X , ρx). By Mercer’s

theorem, under some regularity conditions, the eigen-expansion of the kernel

function is K(·, ·) =
∑

j≥1 µjej(·)ej(·). Therefore, the RKHS-norm of any f ∈ HK
can be written as

‖f‖2K =
∑
j≥1

〈f, ej〉22
µj

,

which implies that the decay rate of µj fully characterizes the complexity of

the RKHS, and is closely related to various entropy numbers (Steinwart and

Christmann (2008)).

We denote the cardinality of the true active set A∗ as |A∗| = p0, and both

p0 and p are allowed to diverge with n. The following technical assumptions are

made.

Assumption 1. Suppose that f∗ is in the range of the rth power of LK , denoted

as LrK , for some positive constant r ∈ (1/2, 1].

Assumption 2. There exist some constants κ1 and κ2, such that supx∈X ‖Kx‖K
≤ κ1 and supx∈X ‖∂lKx‖K ≤ κ2, for any l = 1, . . . , p.

Assumption 3. The distribution of ε has a q-exponential tail, with some func-

tion q(·); that is, there exists some constant c1 > 0, such that P (|ε| > t) ≤
c1 exp{−q(t)}, for any t > 0.

In Assumption 1, the operator LK on L2(X , ρx) is self-adjoint and semi-

positive definite, and thus its fractional operator LrK is well defined. Furthermore,

the range of LrK is contained in HK if r ≥ 1/2 (Smale and Zhou (2007)). Thus

Assumption 1 implies that there exists some function h ∈ L2(X , ρx) such that

f∗ = LrKh =
∑

j µ
r
j〈h, ej〉2ej ∈ HK , ensuring strong estimation consistency under

the RKHS-norm. Similar assumptions are imposed in Mendelson and Neeman

(2010). Assumption 2 assumes the boundedness of the kernel function and its

gradient functions, and is satisfied by many popular kernels, including the Gaus-

sian kernel and the Sobolev kernel (Smale and Zhou (2007); Rosasco et al. (2013);
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Yang, Lv and Wang (2016)) with the compact support condition. Note that the

compact support condition is commonly used in the machine learning literature

(Mendelson and Neeman (2010); Rosasco et al. (2013); Dasgupta, Goldberg and

Kosorok (2019); Lv et al. (2018)) for mathematical simplicity. However, it may

be relaxed by allowing the support to expand with the sample size, which leads to

some additional treatment in the asymptotic analysis. Assumption 3 character-

izes the tail behaviour of the error distribution, which relaxes the commonly used

bound in the machine learning literature (Smale and Zhou (2007); Rosasco et al.

(2013); Lv et al. (2018)). It is general and satisfied by a variety of distributions

(Wang and Leng (2016); Zhang, Liu and Wu (2016)). For example, if ε follows a

sub-Gaussian distribution or any bounded distribution, Assumption 3 is satisfied

with q(t) = O(t2); if ε follows a sub-exponential distribution, Assumption 3 is

satisfied with q(t) = O(min{t/C, t2/C2}), for some constant C.

Theorem 1. Suppose Assumptions 1–3 are satisfied. Then, with probability at

least 1− δn/2, there holds∥∥f̂ − f∗∥∥
K

≤ 2 log
8

δn

(
3κ1λ

−1
n n−1/2

(
κ1‖f∗‖K + q−1

(
log

4c1n

δn

))
+ λr−1/2n ‖L−rK f∗‖2

)
.

(3.1)

Additionally, let λn = n−1/(2r+1). Then, with probability at least 1 − δn, there

holds

max
1≤l≤p

∣∣‖ĝl‖2n − ‖g∗l ‖22∣∣
≤ bn,1 max

{
κ1‖f∗‖K , q−1

(
log

4c1n

δn

)}
log

(
8p

δn

)
n−(2r−1)/(2(2r+1)), (3.2)

where bn,1 = 4 max{κ22, κ22‖f∗‖K , ‖f∗‖2K}max{3κ1, 2
√

2κ22, ‖L
−r
K f∗‖2} and q−1(·)

denotes the inverse function of q(·).

Theorem 1 establishes the convergence rate of the difference between the

estimated regression function and the true regression function in terms of the

RKHS-norm. Note that similar results have been established in the learning

theory literature (Smale and Zhou (2005, 2007)). However, these results assume

that the response is uniformly bounded above, which can be too restrictive in

practice. Theorem 1 relaxes the restrictive boundness condition by characterizing

the tail behaviour of the error term. Theorem 1 also shows that ‖ĝl‖2n converges

to ‖g∗l ‖
2
2 with high probability, which is crucial to establishing the asymptotic
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sparsistency. Note that bn,1 is spelled out precisely for the subsequent analysis of

the asymptotic sparsistency and its dependency on f∗. Note that the convergence

result still holds, even when p diverges with n. In addition, the quantities ‖f∗‖2K
and ‖L−rK f∗‖2 in (3.1) and (3.2) may depend on p0 through f∗, and thus may also

diverge with n. However, such dependencies are, in general, difficult to quantify

explicitly in a fully general case (Fukumizu and Leng (2014)).

Remark 3. The rate of convergence in Theorem 1 can be strengthened to ob-

tain an optimal strong convergence rate in a minimax sense, as in Fischer and

Steinwart (2020). However, it requires that the random error ε follows a sub-

Gaussian distribution, and that the decay rate of the eigenvalues of LK has an

upper bound of polynomial order; that is, µj ≤ Cj−1/τ , for some positive con-

stant C and τ ∈ (0, 1). Then, the rate of convergence in (3.2) can be further

improved.

Assumption 4. There exists some positive constant ξ1 < (2r − 1)/(2(2r + 1)),

such that minl∈A∗ ‖g∗l ‖
2
2 > bn,1 max{κ1‖f∗‖K , q−1(log 4c1n/δn)}n−ξ1 log p.

Assumption 4 requires that the true gradient function contains sufficient

information about the truly informative variables. Unlike most nonparametric

models, we measure the significance of each gradient function to distinguish the

informative and uninformative variables without any explicit model specification.

Note that the required minimal signal strength in Assumption 4 is much tighter

than that in many nonparametric sparse learning methods (Huang, Horowitz

and Wei (2010); Yang, Lv and Wang (2016)), which often require the signal to

be bounded away from zero.

Now, we establish the asymptotic sparsistency of the proposed sparse learning

method.

Theorem 2. Suppose the assumptions of Theorem 1 and Assumption 4 are sat-

isfied. Let vn = bn,1/2 max{κ1‖f∗‖K , q−1(log 4c1n/δn)}n−ξ1 log p. Then, we have

P
(
Âvn = A∗

)
→ 1, as n→∞.

Theorem 2 shows that the selected active set can exactly recover the true

active set with probability tending to one. This result is particularly interesting,

given that it is established for any RKHS with different kernel functions. A direct

application of the proposed method and Theorem 2 is to conduct nonparametric

sparse learning with sparsistency (Szekely, Rizzo and Bakirov (2007); He, Wang

and Hong (2013); Yang, Lv and Wang (2016)). If no prior knowledge about the

true regression function is available, the proposed method can be applied with
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an RKHS associated with the Gaussian kernel. Asymptotic sparsistency can be

established following Theorem 2, provided that f∗ is contained in the RKHS

associated with the Gaussian kernel. This RKHS is fairly large because the

Gaussian kernel is known to be universal in the sense that any continuous function

can be well approximated by some function in the induced RKHS under the

infinity norm (Steinwart and Christmann (2008)). The above theoretical results

can be refined further when f∗ belongs to a specific RKHS. Some theoretical

examples are provided in Section 4.

4. Theoretical Examples

This section provides theoretical examples to illustrate the proposed method

with the linear and quadratic kernels. Moreover, we discuss possible treatments

to improve the theoretical results, with some additional technical assumptions.

4.1. Linear kernel

Variable selection for linear models is of great interest in the statistical litera-

ture, owing to its simplicity and interpretability. In particular, the true regression

function is assumed to be a linear function, f∗(x) = β0 + xT β∗, and the true

active set is defined as A∗ = {l : β∗l 6= 0}. We also centralize the response and

each variable, so that β0 can be discarded from the linear model, for simplicity.

We now apply the general results in Section 3 to establish the sparsistency of

the proposed algorithm under the linear model. We first scale the original data

as ỹ = p
−1/2
n y and x̃ = p

−1/2
n x, and let HK be the RKHS induced by the scaled

linear kernel K(x̃, ũ) = x̃T ũ = p−1n xT u. Then, the true regression function can

be rewritten as f∗(x̃) = x̃Tβ∗. With the scaled data, the ridge regression formula

in (2.1) becomes

β̂ = argmin
β

1

n

n∑
i=1

(ỹi − βT x̃i)
2 + p−1n λn‖β‖2. (4.1)

By the representer theorem, the solution of (4.1) is

β̂ = X
T
(
XX

T + nλnIn
)−1y, (4.2)

where X = (x1, . . . ,xn)T and y = (y1, . . . , yn)T . This is equivalent to the stan-

dard formula for the ridge regression β̂ =
(
XTX + nλn In

)−1
XTy, according to

the Sherman–Morrison–Woodbury formula (Wang and Leng (2016)). If we let

λn = 0, the estimate in (4.2) is the same as the HOLP estimate in Wang and

Leng (2016). In other words, the HOLP method can be regarded as a special
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case of our proposed algorithm, with the RKHS induced by the linear kernel.

Corollary 1 is a direct application of Theorem 1 under the linear kernel.

Corollary 1. Suppose that Assumption S1 in the Supplementary Material holds.

Let λn = O(p
1/3
n n−(1+τ1)/3(log n)2/3). Then, for any δn ≥ 4(σ2+‖β∗‖22)(log n)−2,

there exists some positive constant c3 such that, with probability at least 1 − δn,

there holds

‖β̂ − β∗‖ ≤ c3 log

(
4

δn

)
p1/6n n−(1−2τ1)/6(log n)1/3.

Additionally, suppose that Assumption S2 in the Supplementary Material holds.

If we let vn = (s1/2)p
1/6
n n−(1−2τ1)/6(log n)ξ2, then we have

P
(
Âvn = A∗

)
→ 1, as n→∞,

where s1 and ξ2 are provided in Assumption S2.

Note that Corollary 1 holds when pn diverges at order

o(min{n1−2τ1(log n)−6ξ2 , n1+τ1(log n)−2}).

In particular, when τ1 is sufficiently small, pn can diverge at the polynomial rate

o(n). This result is comparable with that of Shao and Deng (2013) under the

finite second moment error assumption. The strong convergence rate obtained in

Corollary 1 is also comparable with that in Theorem 2 of Shao and Deng (2013),

and a similar result holds for the required minimal signal strength.

Remark 4. Note that the proposed algorithm requires f∗ ∈ HK . Thus ‖β∗‖
needs to be bounded, which implies that p0 should be fixed in the linear case.

Interestingly, if we take λn = 0 and all of the technical assumptions stated in

Wang and Leng (2016) are met, including that x follows a spherically symmetric

distribution and that the noise ε has a q-exponential tail, we can directly apply the

theoretical results of the HOLP method to establish a similar selection consistency

in Corollary 1. As a direct consequence, pn and p0 are allowed to diverge at some

exponential and polynomial rate of n, respectively.

4.2. Quadratic kernel

Variable selection for quadratic models is of great interest in the statis-

tical literature (Hao and Zhang (2014); Kong et al. (2017); She, Wang and

Jiang (2018)), where the true regression function is assumed to be f∗(x) =

β0 +
∑pn

l=1 β
∗
l x

l +
∑

l≤k γ
∗
lkx

lxk, where γ∗lk represents the true interaction coef-

ficients, and γ∗lk 6= 0 implies that xl and xk have an interaction effect. The true
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active set is defined as

A∗ =

{
l : |β∗l |+

pn∑
k=1

|γ∗lk| > 0

}
,

which contains variables contributing to f∗ through either the main factors or

the interaction terms. For simplicity, we denote

x = (1,
√

2x1, . . . ,
√

2xpn , x
2
1,
√

2x1x2, . . . ,
√

2x1xpn , x
2
2,
√

2x2x3, . . . ., x
2
pn)T

and θ∗ = (β∗0 ,β
∗T ,γ∗T )T , with β∗ = (β∗1 , . . . , β

∗
pn)T /

√
2 and

γ∗ =

(
γ∗11,

γ∗12√
2
, . . . , γ∗22,

γ∗23√
2
, . . . ,

γ∗(pn−1)pn√
2

, γ∗pnpn

)
.

Then, we scale the original data as y̌ = p−1n y and x̌ = p−1n x, and let HK be the

RKHS induced by a scaled quadratic kernel K(x,u) = (1 + xT u)2/p2n = x̌T ǔ.

The true regression model can be rewritten as f∗(x̌) = x̌Tθ∗. Note that the

quadratic model can be transformed into a linear form. Then the established

results in Section 4.1 can be applied directly. Specifically, with the scaled data,

the ridge regression formula in (2.1) becomes

θ̂ = argmin
θ

1

n

n∑
i=1

(y̌i − θT x̌i)
2 + p−2n λn‖θ‖2. (4.3)

Then, the estimated active set is defined as Âvn =
{
l : |β̂l| +

∑pn
k=1 |γ̂lk| > vn

}
,

with some prespecified thresholding value vn.

With a slight modification to the proof of Corollary 1, we obtain the following

convergence results for the scaled quadratic kernel.

Corollary 2. Suppose that Assumption S3 in the Supplementary Material holds.

Let λn = O(p
2/3
n n−(1+τ2)/3(log n)2/3). Then, for any δn ≥ 4(σ2 +‖θ∗‖22)(log n)−2,

there exists some positive constant c4 such that, with probability at least 1 −
δn,there holds

‖θ̂ − θ∗‖ ≤ c4 log

(
4

δn

)
p1/3n n−(1−2τ2)/6(log n)1/3.

Additionally, suppose that Assumption S4 in the Supplementary Material holds.

If we let vn = (s2/2)p
1/3
n n−(1−2τ2)/6(log n)ξ3, then we have

P
(
Âvn = A∗

)
→ 1, as n→∞,
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where s2 and ξ3 are provided in Assumption S4.

Note that the treatment in this subsection can be extended further to include

the polynomial regression model of degree d by using the scaled polynomial kernel

K(x,u) = (1 + xT u)d/pdn. Similar theoretical results can be established for the

proposed algorithm with the scaled polynomial kernel.

5. An extension: Interaction selection

We now extend the proposed method to identify the truly informative inter-

action effects. In the literature, a number of attempts have been made to identify

the true interaction effects in parametric and nonparametric regression models

(Lin and Zhang (2006); Choi, Li and Zhu (2010); Radchenko and James (2010);

Hao and Zhang (2014); Hao, Feng and Zhang (2018)). However, most existing

methods require some prespecified working models, and some are computation-

ally demanding. For example, the COSSO method (Lin and Zhang (2006)) and

the SpIn method (Radchenko and James (2010)) assume a second-order addi-

tive structure, and need to enumerate O(p2) two-way interaction terms in the

model, making their methods feasible only when p is relatively small. In con-

trast, our method can be extended directly, and provides an efficient alternative

for interaction selection without requiring an explicit model assumption.

Following the idea in Section 2, the true interaction effects can be defined as

those with a nonzero second-order gradient function g∗lk(x) = ∂2f∗(x)/∂xl∂xk.

Specifically, given the true active set A∗, we denote

A∗2 =
{
l ∈ A∗ : ‖g∗lk‖2 > 0, for some k ∈ A∗

}
,

which contains the variables that contribute to the interaction effects in f∗. Fur-

thermore, let A∗1 = A∗ \ A∗2, which contains the variables that contribute to the

main effects of f∗ only.

Therefore, the main goal of interaction selection is to correctly estimate both

A∗1 and A∗2. First, let K(·, ·) be a fourth-order differentiable kernel function.

Then, it follows from Lemma 1 that, for any f ∈ HK ,

glk(x) =
∂2f(x)

∂xl∂xk
= 〈f, ∂lkKx〉K ≤ ‖∂lkKx‖K‖f‖K ,

where ∂lkKx = ∂2K(x, ·)/(∂xl∂xk). Then, given f̂ from (2.1), its second-order

gradient function is

ĝlk(x) =
∂2f̂(x)

∂xl∂xk
= α̂T∂lkKn(x),
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where ∂lkKn(x) = ∂2Kn(x)/(∂xl∂xk). Its empirical norm is ‖ĝlk‖2n = (1/n)
∑n

i=1

(ĝlk(xi))
2. With some predefined thresholding value vintn , the estimated A∗1 and

A∗2 are set as

Â2 =
{
l ∈ Â : ‖ĝlk‖2n > vintn , for some k ∈ Â

}
and Â1 = Â \ Â2,

respectively. The following technical assumption establishes the interaction se-

lection consistency for the proposed method.

Assumption 5. There exists some constant κ3, such that supx∈X ‖∂lkKx‖K ≤
κ3, for any l and k.

Assumption 5 can be regarded as an extension of Assumption 2 by requiring

the boundedness of the second-order gradients of Kx.

Theorem 3. Suppose the assumptions of Theorem 2 and Assumption 5 hold. Let

P (Â 6= A∗) = ∆n. Then, with probability at least 1− δn −∆n, there holds

max
l,k∈Â

∣∣‖ĝlk‖2n − ‖g∗lk‖22∣∣
≤ bn,2 max

{
κ1‖f∗‖K , q−1

(
log

4c1n

δn

)}
log

(
8p20
δn

)
n−(2r−1)/(2(2r+1)),

where bn,2 = 4 max{κ23, ‖f∗‖2K , κ23‖f∗‖K}max{3κ1, 2
√

2κ23, ‖L
−r
K f∗‖2}.

Theorem 3 shows that ‖ĝlk‖2n converges to ‖g∗lk‖
2
2 with high probability, which

is crucial to establishing the interaction selection consistency.

Assumption 6. There exists some positive constant ξ4 < (2r − 1)/(2(2r + 1)),

such that minl,k∈A∗2 ‖g
∗
lk‖22 > bn,2 max{κ1‖f∗‖K , q−1(log 4c1n/δn)}n−ξ4 log p0.

Assumption 6 can be regarded as an extension of Assumption 3 requiring

the true second-order gradient functions to have sufficient information about the

interaction effects.

Theorem 4. Suppose the assumptions of Theorem 3 and Assumption 6 hold. By

taking vintn = (bn,2/2) max{κ1‖f∗‖K , q−1(log 4c1n/δn)}n−ξ4 log p0, we have

P
(
Â2 = A∗2, Â1 = A∗1

)
→ 1, as n→∞.

Theorem 4 shows that the proposed interaction selection method exactly

detects the interaction structure with probability tending to one. Note that

this result is established without requiring the strong heredity assumption,

which is often assumed in existing parametric interaction selection methods
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(Choi, Li and Zhu (2010); Hao and Zhang (2014)). It is also clear that the pro-

posed method can be extended to detect higher-order interaction effects, which

is of particular interest in real applications (Ritchie et al. (2001)).

6. Numerical Experiments

In this section, we examine the numerical performance of the proposed method

and compare it with that of several existing methods, including distance corre-

lation learning (Szekely, Rizzo and Bakirov (2007)) and the quantile-adaptive

screening (He, Wang and Hong (2013)). As these two methods are designed

for screening only, we truncate them using some thresholding values to conduct

sparse learning. For simplicity, we denote these three methods as GM, DC-t,

and QaSIS-t, respectively. Note that the computational cost of most existing

gradient-based methods (Rosasco et al. (2013); Yang, Lv and Wang (2016)) can

be very expensive. Thus they are not included in the numerical comparison with

large dimension.

In all simulation examples, no prior knowledge about the true regression

function is assumed, and the Gaussian kernel K(u,v) = exp
(
−‖u−v ‖2/2σ2n

)
is

used to induce the RKHS, where σn is set as the median of all pairwise distances

in the training sample. For the proposed method, we set the ridge parameter

λn = 0.001 in all simulated examples, and use the stability criterion in Section

2.3 to conduct a grid search for the optimal thresholding parameter vn, where

the grid is set as {10−3+0.1s : s = 0, . . . , 60}.

6.1. Simulated examples

Two simulated examples are examined under various scenarios.

Example 1. We first generate xi = (xi1, . . . , xip)
T , with xij = (Wij + ηUi)/(1 +

η), where Wij and Ui are drawn independently from U(−0.5, 0.5). The response

yi is generated as yi = f(xi) + εi, where f∗(xi) = 6f1(xi1) + 4f2(xi2)f3(xi3) +

6f4(xi4) + 5f5(xi5), with f1(u) = u, f2(u) = 2u + 1, f3(u) = 2u − 1, f4(u) =

0.1 sin(πu)+0.2 cos(πu)+0.3(sin(πu))2+0.4(cos(πu))3+0.5(sin(πu))3, and f5(u) =

sin(πu)/(2−sin(πu)), and εi is drawn independently drawn from N(0, 1). Clearly,

the first five variables are truly informative.

Example 2. The generating scheme is similar to that in Example 1, except that

Wij and Ui are drawn independently from U(0, 1) and f∗(x) = 20x1x2x3 + 5x24 +

5x5. The first five variables are truly informative.

For each example, we consider scenarios with (n, p) = (400, 500), (400, 1000),

(500, 10000), (500, 50000), and (500, 100000). For each scenario, η = 0 and 1
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Table 1. The averaged SNR of the simulated examples under different scenarios.

(n, η) (400, 0) (400, 1) (500, 0) (500, 1)

Example 1 5.00 3.87 5.06 3.87

Example 2 3.58 4.23 3.55 4.20

are examined. When η = 0, the variables are completely independent, whereas

when η = 1, a correlation structure is added to the variables. Each scenario is

replicated 50 times. The average signal-to-noise ratios (SNRs) of the simulated

examples are summarized in Table 1. The average performance measures are

summarized in Tables 2 and 3, where Size is the average number of selected

informative variables, TP is the number of truly informative variables selected,

FP is the number of truly uninformative variables selected, and C, U, and O are

the times of correct fitting, under-fitting, and over-fitting, respectively.

Clearly, the SNRs of the simulated examples are comparable to those in

Lin and Zhang (2006); Huang, Horowitz and Wei (2010). GM outperforms the

other methods in both examples. In Example 1, GM is able to identify all of

the truly informative variables in most replications. However, the other two

methods tend to miss some truly informative variables, probably because of the

interaction effect between x2 and x3. In Example 2, with a three-way interaction

term involved in f∗(x), GM is still able to identify all of the truly informative

variables with high accuracy, but the other two methods tend to underfit by

missing some truly informative variables in the interaction term. Note too that

GM tends to overselect the variables in some cases, which is usually less severe

than under-selecting truly informative variables.

Note that if we do not threshold DC and QaSIS, they tend to overfit in

almost every replication, because both screening methods tend to keep a sub-

stantial number of uninformative variables to attain the sure screening property.

Furthermore, when the correlation structure with η = 1 is considered, identify-

ing the truly informative variables becomes more difficult, and both DC-t and

QaSIS-t become unstable. However, GM still outperforms these two competitors,

and exactly identifies all of the truly informative variables in most replications.

6.2. Supermarket data set

We now apply the proposed method to the supermarket data set of Wang

(2009). The data set is collected from a major supermarket located in northern

China, and consists of daily sales records of p = 6,398 products on n = 464 days.

In this data set, the response is the number of customers on each day, and the
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Table 2. The averaged performance measures of various methods in Example 1.

(n, p, η) Method Size TP FP C U O

(400, 500, 0) GM 5.00 5.00 0.00 50 0 0

QaSIS-t 4.28 4.28 0.00 22 28 0

DC-t 4.80 4.80 0.00 40 10 0

(400, 1000, 0) GM 4.98 4.98 0.00 49 1 0

QaSIS-t 4.32 4.32 0.00 21 29 0

DC-t 4.78 4.78 0.00 39 11 0

(500, 10000, 0) GM 5.00 5.00 0.00 50 0 0

QaSIS-t 4.28 4.28 0.00 24 26 0

DC-t 4.68 4.68 0.00 36 0 14

(500, 50000, 0) GM 5.06 4.98 0.08 45 1 4

QaSIS-t 4.08 4.08 0.00 18 32 0

DC-t 4.48 4.48 0.00 28 22 0

(500, 100000, 0) GM 5.18 5.00 0.18 43 0 7

QaSIS-t 3.98 3.98 0.00 8 42 0

DC-t 4.52 4.52 0.00 28 22 0

(400, 500, 1) GM 4.98 4.98 0.00 49 1 0

QaSIS-t 2.80 2.72 0.08 0 50 0

DC-t 2.94 2.94 0.00 0 50 0

(400, 1000, 1) GM 4.96 4.96 0.00 48 2 0

QaSIS-t 2.34 2.26 0.08 0 50 0

DC-t 2.96 2.96 0.00 0 50 0

(500, 10000, 1) GM 4.94 4.94 0.00 47 3 0

QaSIS-t 2.38 2.28 0.10 0 50 0

DC-t 3.08 3.08 0.00 0 50 0

(500, 50000, 1) GM 4.96 4.92 0.04 44 4 2

QaSIS-t 2.42 2.36 0.08 0 50 0

DC-t 2.94 2.94 0.00 0 50 0

(500, 100000, 1) GM 4.94 4.92 0.02 46 3 1

QaSIS-t 10.26 2.46 7.80 0 50 0

DC-t 3.12 3.12 0.00 0 50 0

variables are the daily sales volumes of each product. Our primary interest is

to identify those products with sale volumes that are related to the number of

customers. Then, we design sale strategies based on those products. The data set

is pre-processed so that both the response and the predictors have a zero mean

and unit variance.

In addition to GM, DC-t, and QaSIS-t, we include comparisons with SCAD

(Fan and Li (2001)) and MCP (Zhang (2010)). Because the truly informative

variables are unknown for the supermarket data set, we report the prediction

performance of each method. Specifically, the data set is split randomly into two
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Table 3. The averaged performance measures of various methods in Example 2.

(n, p, η) Method Size TP FP C U O
(400, 500, 0) GM 5.00 5.00 0.00 50 0 0

QaSIS-t 4.26 4.26 0.00 22 28 0
DC-t 4.92 4.92 0.00 48 2 0

(400, 1000, 0) GM 5.14 5.00 0.14 44 0 6
QaSIS-t 4.04 4.04 0.00 20 30 0

DC-t 4.96 4.96 0.00 48 2 0
(500, 10000, 0) GM 5.10 5.00 0.10 45 0 5

QaSIS-t 3.82 3.82 0.00 13 37 0
DC-t 4.92 4.92 0.00 46 4 0

(500, 50000, 0) GM 5.40 5.00 0.40 37 0 13
QaSIS-t 3.04 3.04 0.00 8 42 0

DC-t 4.66 4.66 0.00 38 12 0
(500, 100000, 0) GM 5.32 5.00 0.32 41 0 9

QaSIS-t 3.02 3.02 0.00 5 45 0
DC-t 4.66 4.66 0.00 34 16 0

(400, 500, 1) GM 5.00 4.98 0.02 48 1 1
QaSIS-t 5.78 2.90 2.88 3 38 9

DC-t 31.30 4.00 27.30 1 0 49
(400, 1000, 1) GM 5.10 5.00 0.10 45 0 5

QaSIS-t 7.78 2.22 5.56 1 42 7
DC-t 38.74 5.00 33.74 2 0 48

(500, 10000, 1) GM 5.10 4.96 0.14 42 2 6
QaSIS-t 12.94 2.08 10.86 0 45 5

DC-t 74.98 5.00 69.98 0 0 50
(500, 50000, 1) GM 5.16 4.98 0.18 43 1 6

QaSIS-t 32.52 2.08 30.44 0 42 8
DC-t 79.62 5.00 74.62 0 1 49

(500, 100000, 1) GM 5.10 4.96 0.14 44 2 4
QaSIS-t 42.32 2.54 39.78 0 44 6

DC-t 79.94 4.88 75.06 0 6 44

parts, with 164 observations for testing, and the remainder used for training. We

first apply each method to the full data set to select the informative variables.

Then, we refit a kernel ridge regression model for the nonparametric methods and

a linear ridge regression for the parametric methods using the variables selected

from the training set. The prediction performance of each ridge regression model

is measured on the testing set. The procedure is replicated 1,000 times, and the

number of selected variables, average prediction errors, and out-of-sample R2 are

summarized in Table 4.

As Table 4 shows, GM selects 10 variables, DC-t and QaSIS-t select seven

variables, and the SCAD and MCP select 59 and 28 variables, respectively. The
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Table 4. The number of selected variables and the corresponding averaged prediction
errors by various methods in the supermarket data set.

Dataset Method Size Testing error (Std) Out of sample R2

GM 10 0.1369 (0.0005) 0.8631
QaSIS-t 7 0.1674 (0.0006) 0.8326

DC-t 7 0.1713 (0.0006) 0.8287
SCAD 59 0.1872 (0.0006) 0.8128
MCP 28 0.2040 (0.0006) 0.7960

average prediction error of GM is smaller than that of the other four methods.

This implies that DC-t and QaSIS-t may miss some truly informative variables,

thus reducing their prediction accuracy, and that the SCAD and MCP may in-

clude too many noise variables. Specifically, of the 10 variables selected by GM,

X14, X18, X42, X56, and X75 are missed by both DC-t and QaSIS-t. Scatter plots

of the response against these five variables are presented in Figure 1.

It is evident that the response and these variables show some clear relation-

ship, which supports the advantage of GM in identifying the truly informative

variables.

7. Conclusion

We have proposed a novel gradient-based sparse learning method that simul-

taneously enjoys methodological flexibility, numerical efficiency, and asymptotic

consistency. It provides a novel and promising way to conduct sparse learning for

nonparametric models. The proposed method is simple and efficient in that the

kernel ridge regression has an analytic solution, and the estimated gradient func-

tions can be computed directly using the derivative reproducing property (Zhou

(2007)). It can be scaled easily to analyze data sets with huge dimensions. The

theoretical results are established without requiring restrictive model assump-

tions, which justifies the robustness of the proposed method to the underlying

data distribution.

One interesting direction for future work is to consider a more general sce-

nario with f∗ out of the specified RKHS HK , such as a non-differentiable f∗. One

possible remedial route is to consider the true active set A∗ = {l : Dl(f
∗) > 0},

where Dl(f
∗) = maxx−l

∣∣maxxl f∗(xl,x−l)−minxl f∗(xl,x−l)
∣∣ > 0 measures the

largest possible change of f(x) along xl, and x−l denotes all variables except

for xl. Then, the equivalence between Dl(f
∗) and the gradients of some inter-

mediate function f0 ∈ HK can be examined to bridge the gap between f∗ and

HK . We would also like to extend the proposed method to deal with mixed-type
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Figure 1. Scatter plots of the response against a number of selected variables by the GM
in the supermarket data set. The solid lines are the fitted curve by local smoothing, and
the dashed lines are the fitted means, plus or minus one standard deviatio

predictors, and Dl(f
∗) can be used to measure the significance of each variable.

Supplementary Material

Proofs of Theorems 3 and 4, some necessary lemmas and their proofs, and a

verification of the theoretical examples are provided in the online Supplementary

Material.
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Appendix

Appendix: technical proof

Proof of Theorem 1. For simplicity, we denote two events

C1 =

{
Zn : ‖f̂ − f∗‖K

≥ 2 log
8

δn

(
3κ1

n1/2λn

(
κ1‖f∗‖K + q−1

(
log

2c1n

δn

))
+ λr−1/2n ‖L−rK f∗‖2

)}
,

C2 =

{
Zn : max

i=1,...,n
|yi| > κ1‖f∗‖K + q−1

(
log

2c1n

δn

)}
and Cc2 denotes the complement of C2. Then P (C1) can be decomposed as

P (C1) = P (C1 ∩ C2) + P (C1 ∩ Cc2) ≤ P (C2) + P (C1 | Cc2) = P1 + P2.

For P1, by Assumption 3, we have

P
(

max
i=1,...,n

|εi| ≥ t
)

= P (∪ni=1|εi| ≥ t) ≤ nP (|εi| ≥ t) ≤ c1n exp{−q(t)}. (A.1)

By Assumption 1 and (A.1), for any δn ∈ (0, 1), with probability at least 1−δn/4,

there holds

max
i=1,...,n

|yi| ≤ κ1‖f∗‖K + max
i=1,...,n

|εi| ≤ κ1‖f∗‖K + q−1
(

log
4c1n

δn

)
,

implying that P (C2) ≤ δn/4.

For P2, note that

‖f̂ − f∗‖K ≤ ‖f̂ − f̃‖K + ‖f̃ − f∗‖K .

We first bound ‖f̃ − f∗‖K following the similar treatment as in Smale and Zhou

(2005). Suppose {µi, ei}i≥1 are the normalized eigenpairs of the integral operator
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LK : L2(X , ρx)→ L2(X , ρx), we have

L
1/2
K ei =

∑
j≥1

µ
1/2
j 〈ei, ej〉2ej = µ

1/2
i ei ∈ HK ,

and

‖µ1/2i ei‖K =

(∑
j≥1

〈µ1/2i ei, ej〉22
µj

)1/2

= 〈ei, ei〉2 = 1,

when µi > 0. Thus by Assumption 1, there exists some function h =
∑

i≥1〈h,
ei〉2ei ∈ L2(X , ρx) such that f∗ = LrKh =

∑
i≥1 µ

r
i 〈h, ei〉2ei ∈ HK . Directly

calculation yields to

f̃ − f∗ =
(
LK + λnI

)−1
LKf

∗ − f∗ =
(
LK + λnI

)−1(− λnf∗)
= −

∑
i≥1

λn
λn + µi

µri 〈h, ei〉2ei.

Therefore, the RKHS-norm of f̃ − f∗ can be bounded as

∥∥f̃ − f∗∥∥2
K

=
∑

i≥1

(
λn

λn + µi
µ
r−1/2
i 〈h, ei〉2

)2

‖µ1/2i ei‖2K

=
∑

i≥1

(
λn

λn + µi
µ
r−1/2
i 〈h, ei〉2

)2

= λ2r−1n

∑
i≥1

(
λn

λn + µi

)3−2r( µi
λn + µi

)2r−1
〈h, ei〉22

≤ λ2r−1n

∑
i≥1
〈h, ei〉22 = λ2r−1n ‖h‖22 = λ2r−1n ‖L−rK f∗‖22. (A.2)

It then follows from Proposition 1 in the supplemental material that

P2 ≤ P
(
‖f̂ − f̃‖K ≥ log

8

δn

6κ1

λnn1/2

(
κ1‖f∗‖K + q−1

(
log

4c1n

δn

))
| Cc2
)
≤ δn

4
.

Combining the upper bounds of P1 and P2 yields that P (C1) ≤ δn/4+δn/4 ≤
δn/2. Thus, with probability at least 1− δn/2, there holds

‖f̂−f∗‖K ≤ 2 log
8

δn

(
3κ1

n1/2λn

(
κ1‖f∗‖K + q−1

(
log

4c1n

δn

))
+ λr−1/2n ‖L−rK f∗‖2

)
.

Now we turn to establish the weak convergence rate of ĝl in estimating g∗l .

We first introduce some notations. Define the sample operators for gradients

D̂l : HK → Rn and their adjoint operators D̂∗l : Rn → HK as
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(D̂lf)i =
〈
f, ∂lKxi

〉K and D̂∗l c =
1

n

n∑
i=1

∂lKxi
ci,

respectively. And the integral operators for gradients Dl : HK → L2(ρx,X ) and

D∗l : L2(ρx,X )→ HK are defined as

Dlf = 〈f, ∂lKx〉K and D∗l f =

∫
∂lKxf(x)dρx.

Note that Dl and D̂l are the Hilbert-Schimdt operators by Propositions 12 and

13 of Rosasco et al. (2013), then we have

D∗lDlf =

∫
∂lKxgl(x)dρx and D̂∗l D̂lf =

1

n

n∑
i=1

∂lKxi
gl(xi).

Furthermore, we denote HS(K) as a Hilbert space with all the Hilbert-Schmidt

operators on HK , which endows with a norm ‖ · ‖HS such that ‖T‖K ≤ ‖T‖HS
for any T ∈ HS(K).

With these operators, simple algebra yields that∣∣‖ĝl‖2n − ‖g∗l ‖22∣∣
=
∣∣∣ 1
n

n∑
i=1

(ĝl(xi))
2 −

∫
(g∗l (x))2 dρx

∣∣∣
=
∣∣∣ 1
n

n∑
i=1

ĝl(xi)
〈
f̂ , ∂lKxi

〉
K
−
∫
g∗l (x) 〈f∗, ∂lKx〉K dρx

∣∣∣
=
∣∣∣〈f̂ , 1

n

n∑
i=1

ĝl(xi)∂lKxi

〉
K
−
〈
f∗,

∫
g∗l (x)∂lKxdρx

〉
K

∣∣∣
=
∣∣∣〈f̂ − f∗, D̂∗l D̂lf̂

〉
K

+
〈
f∗, D̂∗l D̂l(f̂ − f∗)

〉
K

+
〈
f∗, (D̂∗l D̂l −D∗lDl)f

∗〉
K

∣∣∣
=
∣∣∣〈f̂ − f∗, D̂∗l D̂l(f̂ − f∗)

〉
K

+
〈
D̂∗l D̂lf

∗, f̂ − f∗
〉
K

+〈
f∗, D̂∗l D̂l(f̂ − f∗)

〉
K

+
〈
f∗, (D̂∗l D̂l −D∗lDl)f

∗〉
K

∣∣∣
≤ ‖f̂ − f∗‖2K‖D̂∗l D̂l‖HS + 2‖f̂ − f∗‖K‖f∗‖K‖D̂∗l D̂l‖HS +

‖D̂∗l D̂l −D∗lDl‖HS‖f∗‖2K ,

where the last inequality follows from the Cauthy-Schwartz inequality. It then

suffices to bound the terms in the upper bound of
∣∣‖ĝl‖2n − ‖g∗l ‖22∣∣ separately.

Note that ‖f∗‖K is a bounded quantity, and it follows from Assumption 2 and

Rosasco et al. (2013) that maxl
∥∥D̂∗l D̂l

∥∥
HS

= maxl ‖∂lKx‖2K ≤ κ22. Hence, we
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have

max
1≤l≤p

∣∣‖ĝl‖2n − ‖g∗l ‖22∣∣
≤ a1

(
‖f̂ − f∗‖2K + 2‖f̂ − f∗‖K + max

1≤l≤p
‖D̂∗l D̂l −D∗lDl‖HS

)
,

where a1 = max{κ22, κ22‖f∗‖K , ‖f∗‖2K}. When ‖f̂ − f∗‖K is sufficiently small, the

upper bound can be simplified to

max
1≤l≤p

∣∣‖ĝl‖2n − ‖g∗l ‖22∣∣ ≤ a1(3‖f̂ − f∗‖K + max
1≤l≤p

‖D̂∗l D̂l −D∗lDl‖HS
)
,

where ‖f̂ − f∗‖K is bounded in the first half of the proof. Furthermore, for any

εn ∈ (0, 1), by the concentration inequalities for HS(K) (Rosasco et al. (2013)),

we have

P
(∥∥D̂∗l D̂l −D∗lDl

∥∥
HS
≥ εn

)
≤ 2p exp

(
− nε2n

8κ42

)
,

for any l = 1, . . . , p. Therefore, with probability at least 1− δn/2, there holds

max
1≤l≤p

∥∥D̂∗l D̂l −D∗lDl

∥∥
HS
≤
(

8κ42
n

log
4p

δn

)1/2

.

Combining all the upper bounds above, we have with probability at least

1− δn, there holds

max
1≤l≤p

∣∣∣‖ĝl‖2n − ‖g∗l ‖22∣∣∣ ≤ 2a1

(
3 log

8

δn

(
3κ1

n1/2λn

(
κ1‖f∗‖K + q−1

(
log

4c1n

δn

))
+

λr−1/2n ‖L−rK f∗‖2
)

+

(
2κ42
n

log
4p

δn

)1/2)
.

This implies the desired results immediately with λn = n−1/(2r+1).

Proof of Theorem 2. We first show that A∗ ⊂ Â in probability. If not, suppose

there exists some l′ ∈ A∗ but l′ /∈ Â, and thus ‖ĝl′‖2n ≤ vn. By Assumption 4, we

have with probability 1− δn that∣∣‖ĝl′‖2n − ‖g∗l′‖22∣∣ ≥ ‖g∗l′‖22 − ‖ĝl′‖2n
> bn,1 max

{
κ1‖f∗‖K , q−1

(
log

4c1n

δn

)}
n−ξ1 log p− vn

=
bn,1
2

max

{
κ1‖f∗‖K , q−1

(
log

4c1n

δn

)}
n−ξ1 log p,
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which contradicts with Theorem 1. This implies that A∗ ⊂ Â with probability

at least 1− δn.

Next, we show that Â ⊂ A∗ in probability. If not, suppose there exists some

l′ ∈ Â but l′ /∈ A∗, which implies ‖ĝl′‖2n > vn but ‖g∗
l′
‖22 = 0, and then with

probability at least 1− δn, there holds

∣∣‖ĝl′‖2n − ‖g∗l′‖22∣∣ > vn =
bn,1
2

max

{
κ1‖f∗‖K , q−1

(
log

4c1n

δn

)}
n−ξ1 log p.

This contradicts with Theorem 1 again, and thus Â ⊂ A∗ with probability at

least 1− δn. Combining these two results yields the desired sparsistency.
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