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The following two lemmas will be used in the proofs of Proposition

and Theorem [1] respectively.

Lemma 1 (Stein, |1981) Let a ~ Normal(0,1) and g(a) : R — R be an
indefinite integral of the Lebesque measurable function g(a). Thus, g(a) is

the derivative of g(a). Suppose that E|g(a)| < co. Then we have E{g(a)} =

E{ag(a)}-
Lemma 2 (Zhang, 2010; Gao et all |2019) Let
W = argmingcy {L(w) + a,(w) + by},
where a, (W) is a term related to w and b, is a term unrelated to w. If

sup |an(w)|/L*(w) = 0,(1),  sup |L(w) — L*(w)|/L"(w) = 0,(1),
wew wew

and there exists a positive constant ¢ and a positive integer N such that when
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n > N, infyepw L* (W) > ¢ > 0 almost surely, then L(w)/infwew L(W) — 1

wn probability.

S.1 Proof of Proposition

Let f(-) be a function with f[v/n{fi — pre(60)}]) = Vap{B(w)} — V/nf.
It is seen that
R(w) (S.1)
= B (11{0(w)} — t150c(00)] " QAu{B W)}~ p11rue(80)])
= B ([1{B(W)} — i+~ pinuc(00)] QUu{BW)} — i+ i~ p1ane(80)])
= B ([u{0(w)} — A" QU{OW)} = 1)) + B [{7 — ine(80)} "R — prerac(60)}]

+2B ([1{8(w)} — A" — arne(60)} ) (S.2)

and

E ([p,{§<w)} — " - utmewo)})
= B ([VA{8(w)} — VA Vi — (60}
= 07 E (f[VA{B = Bure(00) OV — puree(60)})
= 0 ' [E{f(m)"Qx} +o(1)]

= n! [E (trace { aéfg)ﬂv}) + 0(1)}

o <t [amu{é(w)} — Vi) oy,
a\/ﬁ {ﬁ' - Mtrue(e(J)}

= n_]'

> +o(1)
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= n'E (trace MQV

) —n"ttrace(QV) +o(n™t)

08(w)" o

= nlE (trace iw ;\( >} Qv

) —n"Ytrace(QV) +o(n™ 1),

where the third, fourth and fifth steps are from Lemma 1 and Conditions

(C.2)l The above two formulas imply (3.6)). This completes the proof.

S.2 Proof of Proposition
It is implied by (2.5)) that

O{fi — p(I1%6, m) 1 1 — u(I1%,0,,)}

=0, S.3
9. (5.3)

which is
A(6,)9 {ﬁ - p(nfném)} ~0. (S.4)
Taking derivative of the both sides of (S.4)) with respect to g, we have

d"L

00,

AL 0,) 0 — pn(I16,,) 22T+ A(6,,)Q S.5

> (B (A~ w6, } 525 + AG,) (3.5)
O, 6,,) 90y,

-5 A T . S.6

Z 89m7— OMT ( )

From the definitions of D,,, and B,, in (3.11]) and (3.12)), Equation (S.5) is

simplified to

00,
ot

b
D, 2o

T A(6,,)Q - B,



S.3  Proofs of (3.16), (3.17), (3.20) and (3.21

which implies

which, along with the condition that (D,, — B,,)*(D,, — B,,) is invertible,

implies (3.13). This completes the proof.

S.3 Proofs of (3.16)), (3.17), (3.20) and (3.21]

Let B,, = A(6,,)Q2AT(8,,). Then, we have
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where the first step is from ((3.13))-(3.15]) and the second step is from (i3.14])-

(3-15)). Hence, (3.16) is proved.
From (3.14) and (3.16]), we have

C(w)
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= [u{0(w)} — A"Qp{0(w)} — A

iw OM{O(W)} 13 000

+2n " Ytrace ~ ”
00 (w)T o™

= [p{0(w)} — A" QAu{O(W)} — ] +207'5° Y wiudy,

m=1
M
n HXTXO(w) — X Ty} (XTX) " H{XTXO(w) — X Ty} + 207162 Y wind,
m=1

M
— p! {e(w)TXTxé(w) +yTX(XTX) X Ty — 2yTX§(w)} +20715% S windy,
m=1

M
— T XO(W) — I 420762 S wd — ¥ {L - X(XTX) X}y,

m=1

which is (3.17).
The proof of (3.20) is exactly the same as that of (3.16]). For (3.21)),

C(w)

= [1{B(w)} ~ A" Qlu{b(w)} — A
%ﬁ o, OO} i 90 )5

m=1

= [1{0(w)} — A" Qu{O(W)} — fi] +20715" Y wind,

+2n " Mrace

= n YZ'XO(w) — Z Yy} (Z7Z) H{Z"XO(w) — Z Ty} + 2n 15> Zwm "
— g {é(w)TXszxé(w) +yTPgy — 2yTP,X0(w) } +on 15 Z wod,,

M
= n7Y[PzX0(w) —y|? +207'6% > wady, — ¥y (I, — Pg)y.

m=1

Hence, ([3.21)) is proved.
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S.4 Examples where Conditions [(C.3)H(C.5) and |[(C.7)| are sat-
isfied

We first consider the example with the linear regression candidate mod-
els, which are described in Remark [1| detailedly. In this example, V =

?B(X,X]), V = 62X X /n, ou{(w)} /00(w)  |5.)_5.= X" X/n, and
6,, = (IL,X"X1")'1L,X"y
= (I, X*XIT}) ', X" (X0 + ¢€)
= (I, X"XIT}) 11, X*X6 + (I1,, X" XIT} ) 11, X e.

Therefore, when XX /n converges to a positive definite matrix, XTe/n =

0,(1) and 6% — 0% = 0,(1), Conditions |(C.3)H(C.5)|and [(C.7)| are satisfied in

this example.

Second, we consider the example with linear regression models with
instrumental variables, which are described in Remark [2 detailedly. In this
example, Q = (ZTZ/n)~!, V = 02E(Z;Z}) with Z] being the i’ row of Z,

V = 622"Z/n, Op{B(w)}/00(w) g5, = Z"X/n, and
6,, = (IL,X"P,XII") 1L, X Py
= (I, X"PzXIT!) ', X" P (X0 + €)
= (IL,X"PzXII, ) 'IL,, X "PzX6 + (I, X "PXII} ) 'I1,, X" Pze.

Therefore, when ZTZ/n converges to a positive definite matrices, Z*X/n
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converges to a matrix with full column rank, ZTe/n = 0,(1) and 5% — 6% =

0,(1), Conditions |[(C.3)H(C.5)| and |(C.7)| are satisfied in this example.

S.5 Proof of Theorem [1

It is well-known that the following equalities are satisfied for any matrices

B; and B, with identical dimensions (see, for example, Li (1987)):
Amax(Bl + BQ) S )\max(Bl) + )\max(B2) and )\maX(BlBQ) S Amax(Bl))\max(BQ)gS-S)

where the definition of Ap.x(+) is in Condition |(C.5)

Now, we prove that uniformly for any m € {1,..., M},

00,
e (255) 00 59

Let Ppp = (D, — By) {(D,, — B,))"(D,, - B,,)} ' (D,, — B,,)". By

(3.13), (S.8), the assumption that (D,, — B,,)*(D,, — B,,) is invertible,

and the truth that € is a positive definite matrix, we have that uniformly

forme {1,..., M},

- \2 <QTA<§m)T(Dm — B.,) {(Dm _ Bm>T(Dm . Bm)}_2 (D, — Bm)TA(é\m)Q)

N

>
—
~
[\o}

{(D,, - B,,)"(D,, - Bm)}”) AL/2 (QTA(ém)TPBDA(ém)Q)

max
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< N ({0 =B (D = B} ) ML (Pop) M (A(81)) M)

= 0(1), (S.10)

hence, (S.9) is proved.

Let

L Op{O(W)} v 06,

el 8ﬁTm7 and H(w)=

H, =2n Wy H 1y

1[1=

It is seen that

C(w)

= [w{0(w)} ~ A" QAu{6(w)} — fi)] + trace{H (w)}

=[O0} pirelO) + prc80) — ] 9 [1{BW)} — pac(80) + e 80) — f
+trace{ H (w)}

= L)+ 2 [{BW)} — prec(80)] R ptenc(80) — i} + (b 60) — B) ' pac(60) — )
Ftrace{H (w))

= L(w) + 2 [u{B(w)} — u{0"(W)}] Qpne(00) — )

1

+2 [M{O*(W)} - M/true(QO)]T Q{Mtrue(BO) - ﬁ’}

H{ B (00) — ) QU prire(80) — B} + trace{ H(w)}, (S.11)

where the term {fue(00) — F)"Q{ prorue(60) — i} is unrelated to w, and

L(w)
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= (1B}~ puc(8)] 2 [{B(W)} — e (60)]
(B} — (0" (W)} + 10" (W)} — pec(00)] ' ©
x [1OW)} — {8 (W)} + {07 (W)} — pine00)]
= L(w) + [u{Bw)} — 0" (w)}] @ [w{B(w)} — (0" (w))]
42 [{B(w)} — (6" (w))] Q{8 (W)}~ pene(B0)]. (512)

In addition, from Condition |(C.6), we know that there exists a positive
constant ¢ and a positive integer N such that when n > N, infyeyy L*(w) >

¢ > 0 almost surely. Hence, by Lemma , to prove (4.2) it is sufficient to

verify that

sup |1 (w) " [{8(w)} — 10" (w)}] @ [ufB(w)) — u{0"(w)}] | = 0,(15.13)

weWw

sup |L*(w) ™'

sup [(B(w)} — 110" (W)}| Q2 e{0° (W)} — el O0)] | = 0,(15.14)

sup (17 (w) ™ [1(B(w)} — a0 (w)}] ptne(80) — &} = 0y(1){8.15

sup |L° (W) ™! [11{0" (W)} — Berue(00)] Q2 pteruc(B0) — Fi}] = 0,(1), (S.16)

and

v‘5116111/)\} In " L*(w) trace{ H(w)}| = 0,(1). (S.17)
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By Taylor’s expansion, we obtain that

(81} — i

2

- | 2O s (8() 0 ()
00(w)
op{O(w)} onfb(w)) 0 (||
< Aax W 6w, W \é(w)—éa] HO(W) — 0" (w)
< AL % |§<w>5:v] Hé(w)_O*(W)HQ
_ o, (n:1 M), (S.18)

where 67, is a vector between a(w) and 0*(w) and can be related to w,
the third step is from , and the last step is from Conditions and
(C.5)t

From and Condition , we can obtain -. From
and Conditions and we can obtain (S.15)). From

Conditions |(C.1)} [(C.3) and |(C.6), we can obtain (S.16]).

It is seen that

trace{ H (w)}

IN

 fnax trace(H,,)

= 27! max trace(H,, + H)

1<m<M

IN

271 max rank(H,, + H ) \nax(H,, + H)

1<m<M

< 2 max rank(H,)A\pax(Hpn)

1<m<M
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B0,
00(w)T o’

3u{5(W)}] A (TT) A (@)
~ max m max (9ﬁT

< 2 max rank(H,,)2n " max Apax
1<m<M 1<m<M

< 4n~'p max Amax
1<m<M

= Oyp/n), (5:19)

where the fourth and sixth steps use (S.8) and the last step uses (S.9) and

Conditions |(C.3)| and [(C.5). Now, by (S.19) and Condition |(C.6), we can

obtain ((S.17)). As stated in above (S.13)), the optimality (4.2)) is implied by

(S.13))-(S.17) This completes the proof.

S.6 Proof of Theorem [2

Let
Glw) = OO u{B(w)} ANy
00(w) T 96(w)
and
Op{B(w)}*
06(w)

where 52;, is defined following 1} It is seen that

g(w) = |§(W)=§$v Q{piruc(6o) — /-/i} )

C(w)
= I‘l’{é\(w)} - ﬂ'true(eo) + /J'true(OO) - ﬁ’}T Q [I‘l’{é\(w)} - /J'true(OO) + l-l'true(OO) — [

+trace{ H (w)}
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= [{0W)) — pne(8)] 2 [{B(W)) — prc(00)
42 (8w}~ pue(80)] R {pinel00) — )
ttrace{ H (W)} + {firue(60) — i} Q2 {iruc(60) — A}
= {0(w) — 00} "G(W){B(w) — 00} + 2{0(w) — 65} "g(w) + trace{ H (w)}

+ {1 (60) — B} Q {hirue(80) — B3},

where the first step is from the second step of (S.11)) and the last step is
from Taylor’s expansion. Recall that wy; is a weight vector in which the m!"

component is one and the other are zeros. From (4.1)), (S.19), Conditions

[(C.1)land |(C.3), and the second step of (S.20)), we have

C(Wir) = {pterue(80) = 3" 2 {presuc(60) — 1} + O,p(n”"p) = O,(n~'p{S.21)
From ([S.19)), Condition and the third step of , we have

C(W) = {8(W) — 00} "G(W){B(W) — 0o} + 2{0(W) — 05} "g(W) + Op(n~"p).

Combining the above equations and C(w) < C'(wy), we have

{0(%) = 00} "G(W){B(W) — 00} +2{0(W) — 00} 'g(W) + O,(n”"p) < Opl(n”'p),

from which and Condition we further have

Kal|O(W) — Bo)> < —2{0(W) — 0} g(W) — Op(n'p) + O,(n""p)

< 2]6(w) - 6o]lllg(W)I| + O, (n~"p), (5.22)

(S.20)
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by which, we further have
~ 2
{166%) = 0]l = 3" lg(®) 1} < w32l g2 + Opln~'p).  (3.23)

From Conditions |(C.1)] and [(C.5)] it is easily to obtain ||g(W)| =
O, (n=2p'/2) which along with (S.23)), implies (4.3). This completes the

proof.
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Figure S.1: MSE in simulation Design I, with B2 = 0.5.
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Figure S.2: MSE in simulation Design I, with R?=0.28.
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Figure S.3: Loss in simulation Design II, with R? =0.5.
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Figure S.4: Loss in simulation Design II, with R?=0.28.
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