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Abstract: In the context of a high-dimensional linear regression model, we propose

an empirical correlation-adaptive prior that uses information in the observed pre-

dictor variable matrix to adaptively address high collinearity. We use this prior to

determine whether the parameters associated with the correlated predictors should

be shrunk together or kept apart. Under certain conditions, we prove that our em-

pirical Bayes posterior concentrates at the optimal rate. Therefore the benefits of

correlation-adaptation in finite samples can be achieved without sacrificing asymp-

totic optimality. A version of the shotgun stochastic search algorithm is employed

to compute the posterior and facilitate variable selection. Finally we demonstrate

our method’s favorable performance compared with that of existing methods using

real and simulated data examples, even in ultrahigh-dimensional settings.

Key words and phrases: Collinearity, empirical Bayes, posterior convergence rate,

stochastic search, variable selection.

1. Introduction

Consider the standard linear regression model

Y = Xβ + ε,

where Y is an n×1 vector of response variables, X is an n×p matrix of predictor

variables, β is a p × 1 vector of regression coefficients, and ε is a vector of inde-

pendent and identically distributed (i.i.d.) N(0, σ2) errors. We are interested in

the high-dimensional case where p � n. Furthermore, we assume that the true

β is sparse in the sense that only a small subset of the β coefficients are nonzero.

There are a variety of methods available for estimating β under a sparsity

constraint. These include regularization-based methods such as the Lasso (Tib-

shirani (1996)), adaptive Lasso (Zou (2006)), smoothly clipped absolute devia-

tions(SCAD) penalty (Fan and Li (2001)), and minimax concave penalty(MCP)
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(Zhang (2010)); see Fan and Lv (2010) for a review. From a Bayesian point

of view, a variety of priors for regression coefficients and the model space have

been developed, leading to promising selection properties. For the regression

coefficients, β, the normal mixture prior is specified in George and McCullogh

(1993); George and Foster (2000) introduce empirical Bayes ideas; Ishwaran and

Rao (2005) use spike-and-slab priors; Bondell and Reich (2012) estimate β as the

“most sparse” among those in a suitable posterior credible region; Polson and

Scott (2012) consider a horseshoe prior; Narisetty and He (2014) use shrinking

and diffusing priors; and Martin, Mess and Walker (2017) consider an empirical

Bayes version of the spike-and-slab.

Collinearity is unavoidable in high-dimensional settings. Methods such as

the Lasso tend to smooth away the regression coefficients of highly collinear

predictors and, hence, deter correlated covariates from being included in the

model simultaneously. This motivated Krishna, Bondell and Ghosh (2009) to

propose an adaptive-powered correlation prior that lets the data itself decide how

the collinear predictors are to be handled. However, their suggested generalized

Zellner’s prior is not applicable in the p > n scenario. To overcome this, we adopt

an empirical Bayes approach based on an empirical correlation-adaptive prior

(ECAP) that uses the data to decide how to shrink the coefficients associated with

the correlated predictors. In Section 2, we present our empirical Bayes model and

a motivating example illustrating the effect of the correlation-adaptation in the

prior. Asymptotic posterior concentration properties are derived in Section 3. In

particular, the minimax optimal concentration rates are established for the mean

response, showing that the finite-sample benefits of correlation-adaptation lead to

no loss of asymptotic optimality. In Section 4, we recommend a shotgun stochastic

search approach to compute the posterior distribution over the model space.

Simulation experiments are presented in Section 5. Here we demonstrate the

benefits for variable selection of adaptively varying the correlation structure in the

prior, as compared with existing methods. The real-data illustration in Section 6

highlights the improved predictive performance, even in ultrahigh-dimensional

settings, of the proposed correlation-adaptive prior. All proofs are deferred to

the Supplementary Material.

2. Model Specification

2.1. The prior

Under assumed sparsity, it is natural to decompose β as (S, βS), where S ⊆
{1, 2, . . . , p} is the set of nonzero coefficients, called the configuration of β, and
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βS is the |S|-vector of nonzero values, with |S| denoting the cardinality of S. We

write XS for the sub-matrix of X corresponding to the configuration S. With

this decomposition of β, a hierarchical prior is convenient, that is, a prior for S

and a conditional prior for βS , given S.

First, for the prior π(S) for S, we follow Martin, Mess and Walker (2017)

and write

π(S) = π(S | |S| = s)fn(s),

where fn(s) is a prior on |S| and π(S | |S| = s) is a conditional prior on S, given

|S|. Based on the recommendation in Castillo, Schmidt-Hieber and van der Vaart

(2015), we take

fn(s) ∝ c−sp−as, s = 0, 1, . . . , R, (2.1)

where a and c are positive constants, and R = rank(X) ≤ n. It is common to

take π(S | |S| = s) to be uniform, but here we break from this trend to take

collinearity into account. Let D(S) = |X>S XS | denote the determinant of X>S XS ,

and consider the geometric mean of the eigenvalues, D(S)1/|S|, as a measure of

the “degree of collinearity” in model S. We set

πλ(S | |S| = s) =
D(S)−λ/(2s)1{κ(S) < Cpr}∑

S:|S|=sD(S)−λ/(2s)1{κ(S) < Cpr}
, λ ∈ R, (2.2)

where κ(S) is the condition number of X>S XS , and r and C are positive constants,

specified to exclude models with extremely ill-conditioned X>S XS . The constant

λ is an important feature of the proposed model, and is discussed in more detail

below. Because of the dependence on λ above, we henceforth write πλ(S) for the

prior of S.

In these high-dimensional problems, the properties of the posterior distribu-

tion are highly sensitive to the choice of prior. For example, Castillo and van

der Vaart (2012) show that, with thin-tailed Gaussian priors on the coefficients,

the posterior distribution might concentrate at a sub-optimal rate. As such, they

recommend using priors with heavier-than-Gaussian tails. However, these heavy-

tailed priors lack the desirable conjugacy properties and, therefore, their use adds

to the already substantial computational burden. This creates a dilemma: do we

use a theoretically justified heavy-tailed prior that makes the computation more

difficult, or do we use a computationally convenient thin-tailed prior with poten-

tially sub-optimal posterior convergence properties? Martin, Mess and Walker

(2017) observe that the prior tails are less relevant if the center is chosen ap-

propriately. Therefore, to overcome the aforementioned dilemma, they propose



2054 LIU ET AL.

using an empirical prior with a data-driven centering. Following their general

idea, as the prior for βS , given S, we take

(βS | S, λ) ∼ N
(
φβ̂S , σ

2gkS(X>S XS)λ
)
. (2.3)

Here, β̂S is the least squares estimator corresponding to configuration S and

design matrix XS , φ ∈ (0, 1) is a shrinkage factor to be specified, g is a parameter

controlling the prior spread, (X>S XS)λ is an adaptive powered correlation matrix,

and

kS =
tr{(X>S XS)−1}
tr{(X>S XS

)λ}
is a standardizing factor, as in Krishna, Bondell and Ghosh (2009), designed to

control for the scale corresponding to different values of λ. Let πλ(βS | S) denote

this prior density for βS , given S.

The power parameter λ on the prior covariance matrix can encourage or

discourage the inclusion of correlated predictors. When λ > 0, the prior shrinks

the coefficients of the correlated predictors toward each other; when λ < 0, they

tend to be kept apart, with λ = −1 being the most familiar; and, finally, λ = 0

implies prior independence. Therefore, a positive λ would prefer larger models

by capturing as many correlated predictors as possible, while a negative λ tends

to select models with less collinearity; see Krishna, Bondell and Ghosh (2009) for

a discussion of this phenomenon. Our data-driven choice of λ, along with that

of the other tuning parameters introduced here and in the next subsection, is

discussed in Section 4.2.

2.2. The posterior distribution

For this standard linear regression model, the likelihood function is

Ln(β) = (2πσ2)−n/2 e−‖Y−Xβ‖
2/2σ2

, β ∈ Rp.

It is straightforward to include σ2 as an argument in this likelihood function,

introduce a prior for σ2, and obtain a full (β, σ2) posterior; see Martin and Tang

(2019). However, our intention is to use a plug-in estimator for σ2 in what follows.

Hence, we omit the error variance as an argument to the likelihood function.

Given a prior and the likelihood, we can combine the two using Bayes’ formula

to obtain a posterior distribution for (S, βS) or, equivalently, for the p-vector β.

However, the fact that our prior also depends on the data changes the way we

think about the posterior construction. Specifically, updating the data-dependent

prior using the full likelihood amounts to a double-use of the data, and hence a
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risk of over-fitting. To avoid this risk, some regularization is needed. While there

are a number of ways to achieve this regularization (Martin and Walker (2019)),

arguably the simplest is to apply Bayes’ formula, but using only a (large) portion

of the likelihood. As in the generalized Bayes literature (e.g., Martin and Walker

(2014); Grünwald and van Ommen (2017); Syring and Martin (2019)), we use a

power likelihood and define our posterior for (S, βS) as

πnλ(S, βS) ∝ Ln(βS+)α πλ(βS | S)πλ(S),

where βS+ is the p-vector obtained by entering zeros around βS in the entries

corresponding to Sc, and α ∈ (0, 1) is a regularization factor, which can be taken

arbitrarily close to one. It may be possible to handle the case α = 1, making

appropriate adjustments elsewhere. However, the proposed approach achieves

the optimal posterior concentration rate (see Section 3), and hence will not be

improved.

To summarize, the posterior distribution for β, denoted by Πn
λ, is obtained

by summing over all configurations S; that is,

Πn
λ(A) ∝

∑
S

∫
{βS :βS+∈A}

πnλ(S, βS) dβS , A ⊆ Rp.

Because one of our primary objectives is variable selection, it is of interest that

we can obtain a closed-form expression for the posterior distribution of S, up to

a normalizing constant, a result of our use of a conjugate normal prior for βS ,

given S. That is, we can integrate out βS to obtain a marginal likelihood for Y ;

that is,

mλ(Y | S) = (2πσ2)−nα/2
s∏
i=1

(
1 + αgkSd

λ+1
S,i

)−1/2
× exp

[
− α

2σ2

{
‖y − ŷS‖2 + (1− φ)2

s∑
i=1

dS,i

1 + αgkSd
λ+1
S,i

θ2S,i

}]
, (2.4)

where ŷS is the least square estimate of y, given model S, dS,i is the ith eigen-

value of X>S XS , ΓSΛSΓ>S is the spectral decomposition of X>S XS , with ΛS =

diag(dS,1, . . . , dS,s), and θS,i is the ith element of θS = Γ>S β̂S . Then, it is straight-

forward to obtain the posterior distribution for S, as follows:

πnλ(S) ∝ mλ(Y | S)πλ(S). (2.5)

The variable selection method described in Section 4 and illustrated in Sections 5–

6 is based on this posterior distribution.



2056 LIU ET AL.

S*

S+

S-

-2 -1 0 1 2 3 4 5

λ

-7
  

  
  
-6

  
  
  
 -

5
  
  
  
 -

4
  
  
  

-3
  

  
  
 -

2

L
o
g
 P

o
st

er
io

r

(a) ρ = 0.8

S*

S+

S-

-2 -1 0 1 2 3 4 5

λ

-7
  
  
  
 -

6
  

  
  

-5
  
  
  
 -

4
  
  
  
 -

3
  

  
  

-2

L
o
g
 P

o
st

er
io

r

(b) ρ = 0.1

Figure 1. Plot of λ 7→ log πnλ(S) for three different S and two different ρ.

2.3. A motivating example

We now give a simple example to illustrate the effects of incorporating λ into

(2.2) and (2.3). Consider a case with n = p = 5, and let X = Xn×p have i.i.d.

rows, each with a standard multivariate normal with first-order autoregressive

dependence and correlation parameter ρ. Given X, the conditional distribution

of the response is determined by the linear model

yi = xi1 + 0.8xi2 + εi, where ε1, . . . , ε5
i.i.d.∼ N(0, 1).

The black, blue, and red curves in Figure 1 represent λ 7→ log πnλ(S), for three

different S configurations, namely, the true configuration S? = {1, 2}, S− =

{1}, and S+ = {1, 2, 3}. Panel (a) corresponds to a high correlation case, ρ =

0.8, and we see that the ECAP-based posterior prefers S? for suitably large λ.

Compare this to the choice λ ≡ −1 in Martin, Mess and Walker (2017), which

prefers the smaller configuration S−. On the other hand, when the correlation

is relatively low, as in Panel (b), we see that a large positive λ encourages a

larger configuration, while the true configuration is preferred for sufficiently large

negative values of λ. The take-away message is that, by allowing λ to vary, the

ECAP-based model has the ability to adjust to the correlation structure, which

can be beneficial in identifying the relevant variables.

3. Posterior Convergence Properties

3.1. Setup and assumptions

We stick with the standard notation given previously; however, keep in mind
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that Y n = (Y n
1 , Y

n
2 , . . . , Y

n
n ) and Xn = ((Xn

ij)) are better understood as triangu-

lar arrays. Therefore, we can have p, s? = |S?|, with S? denoting the true con-

figuration, and R all depend on n. We assume throughout that s? ≤ R ≤ n� p;

more precise conditions are given below. We also assume that λ, g, and σ2 are

fixed constants in this setting, not parameters to be estimated/tuned. Therefore,

to simplify the notation here and in the proofs, we drop the subscript λ, and

simply write Πn for the posterior for β, instead of Πn
λ.

When estimating the mean response, the minimax rate does not depend on

the correlation structure in X, so we cannot expect any improvements in the rate

by incorporating this correlation structure in our prior distribution. Therefore,

our goal here is simply to show that the minimax rates can still be achieved, while

leaving room to adjust for collinearity in finite samples. The finite-sample benefits

of the correlation-adaptive prior are shown in the numerical results presented in

Section 5.

We start by stating the basic assumptions for all the results that follow,

beginning with two assumptions about the asymptotic regime. In particular,

relative to n, the true configuration, S?, is not too complex.

Assumption 1. The true complexity satisfies s? →∞, with s? = o(n).

The next assumption puts a very mild size condition on β?S? , that is, the

nonzero regression coefficients of the true β?, and on the user-specified shrinkage

factor φ = φn in the prior.

Assumption 2. The factor φ = φn ∈ (0, 1) satisfies n(1− φn)2‖β?S?‖2 = o(s?).

Assumption 2 includes a very mild condition on the true β?, that is, that the

“total signal” ‖β?S?‖ is not too small. There is, of course, no reason to think that

the individual signals would be vanishing with n. If they do not, then we get

s?{n‖β?S?‖}−1 → 0 automatically from Assumption 1. However, it is not required

that all of the signals are bounded away from zero; the condition is related to the

total signal; thus, it is enough that at least one of the signals is away from zero.

Even if we require that all nonzero signals be lower-bounded, the condition above

holds if minj∈S? |β?j | > n−1/2. In addition, an even stronger beta-min condition—

see (3.3) in Section 3.5—is needed to establish variable selection consistency, both

here and throughout the literature on high-dimensional inference (e.g., Bühlmann

and van de Geer (2011); Arias-Castro and Lounici (2014)).

This also provides some insight into the connection between φ and the total

signal; that is, φ controls the influence of the prior centering. When the total

signal is large, this influence is more important than when the total signal is
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small. In Section 4.2.3, we present a data-driven choice of φ that adapts to the

total signal size.

Finally, we need to make some assumptions on the n × p design matrix X.

For a given configuration S, let λmin(S) and λmax(S) denote the smallest and the

largest eigenvalues of n−1X>S XS , respectively. Next, define

`(s) = min
S:|S|=s

λmin(S) and u(s) = max
S:|S|=s

λmax(S).

Recall that these depend (implicitly) on n because of the triangular array for-

mulation. It is also clear that `(s) and u(s) are nonincreasing and nondecreasing

functions, respectively, of the complexity s. If κ(S) = λmax(S)/λmin(S) is the

condition number of n−1X>S XS , then we can define

ω(s) = max
S:|S|=s

κ(S),

and obtain the relation ω(s) ≤ u(s)/`(s).

Assumption 3. 0 < lim infn `(s
?) < lim supn u(s?) <∞.

This assumption roughly states, that every submatrix XS , for |S| ≤ s?, is of

full rank. This is implied by, for example, the sparse Riesz condition of order s?

in Zhang and Huang (2008).

3.2. Rates under prediction error loss

Ideally, we expect the posterior for β to concentrate asymptotically around

values of β such that ‖Xβ − Xβ?‖ is relatively small. The following theorem

states this result precisely. Recall the definitions of the prior and, in particular,

the quantities a and r.

Theorem 1. Under Assumptions 1–3, there exists a constant M such that

supEβ?{Πn(β ∈ Rp : ‖Xβ −Xβ?‖2 > Mεn)} → 0, n→∞,

where the supremum is over all β?, such that |Sβ? | = s?,

εn = max

{
q(R, λ, r, a), s? log

(
p

s?

)}
,

and

q(R, λ, r, a) =


R{r(1 + λ)− a} log p if λ ∈ [0,∞);

R(r − a) log p if λ ∈ [−1, 0);

R(−rλ− a) log p if λ ∈ (−∞,−1).
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Proof. See Section S2.1 in the Supplementary Material.

In the so-called ordinary high-dimensional regime (e.g., Rigollet and Tsy-

bakov (2012)), s? log(p/s?) is the minimax concentration rate. Thus, our pro-

posed ECAP posterior attains the minimax optimal rate, as long as (a, r) in

(2.1) and (2.2) are chosen such that a > rmax{1 + λ, 1,−λ}.

3.3. Effective posterior dimension

Theorem 1 suggests that the posterior for β concentrates near the true β?,

in a certain sense. However, because β? is sparse, we might ask whether the

posterior is also concentrated on a roughly s?-dimensional subset of Rp. The

following theorem gives an affirmative answer to this question. Aside from the

economical benefits of having an effectively low-dimensional posterior, Theorem 2

aids in the proofs of the remaining results.

Theorem 2. Suppose that the prior π(S) has parameters (a, r) that satisfy the

condition a > rmax{1 + λ, 1,−λ}, and define

ρ0 =
a+ 1

a− rmax{1 + λ, 1,−λ}
> 1. (3.1)

Then, under Assumptions 1–3, for any ρ > ρ0, we have

supEβ?{Πn(β ∈ Rp : |Sβ| ≥ ρs?)} → 0, as n→∞,

where the supremum is over all s?-sparse β?.

Proof. See Section S2.2 in the Supplementary Material.

3.4. Rates under the estimation error loss

Following on from the result in Section 3.2 on the posterior concentration with

respect to the mean response difference, we might ask whether the concentration

holds similarly with respect to a metric relevant to the estimation of β, namely,

‖β − β?‖. The following theorem establishes this rate, which turns out to be

optimal as well.

Theorem 3. Suppose that the prior π(S) has parameters (a, r) that satisfy the

condition a > rmax{1 + λ, 1,−λ}, and let ρ be greater than ρ0 in (3.1). Under

Assumptions 1–3, there exists a constant M > 0 such that

supEβ?{Πn(β ∈ Rp : ‖β − β?‖2 > Mδn)} → 0, as n→∞,

where the supremum is over all s?-sparse β? and
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δn =
s? log(p/s?)

n`(ρs? + s?)
. (3.2)

Proof. See Section S2.3 in the Supplementary Material.

Under Assumptions 1 and 3, `(ρs? + s?) is bounded with probability one.

Hence, our rate, n−1s? log(p/s?), is optimal in the so-called ordinary high-dime-

nsional regime considered by Rigollet and Tsybakov (2012), where s? log(p/s?) <

R, with R the rank of X.

3.5. Variable selection consistency

One of our primary objectives in introducing the λ-dependent prior distri-

bution to account for the collinearity structure in the design matrix is to achieve

a more effective variable selection. Thus, it is imperative that we can show, at

least asymptotically, that our posterior distribution concentrates around the cor-

rect configuration S?. The following theorem establishes this variable selection

consistency property.

Theorem 4. In addition to Assumptions 1–3, assume that the constant a in the

prior π(S) is such that a > 1 and pa � s?eGs
?

, where G = (1− α) log 2 +m and

m =
1

2
log{1 + αgκ(S?)max{λ+1,1,−λ}} = O(1).

Then,

supEβ?{Πn(β ∈ Rp : Sβ ⊃ Sβ?)} → 0, n→∞,

where the supremum is over all β? that are s?-sparse. Furthermore, if

min
j∈S?
|β?j | ≥ %n :=

{
2Mσ2

n`(s?)α(1− α)
log p

}1/2

, (3.3)

where M > a+ 1 and pM−(a+1) � eGs
?

, then

Eβ?{Πn(β ∈ Rp : Sβ 6⊇ Sβ?)} → 0, n→∞.

If both sets of conditions hold, then variable selection consistency holds; that is,

Eβ?

[
Πn(β ∈ Rp : Sβ = Sβ?)} → 1, n→∞.

Proof. See Section S2.4 in the Supplementary Material.

The extra conditions on (p, s?) in Theorem 4 effectively require that the

true configuration size, s?, is small relative to log p and, furthermore, that the

constant a in (2.1) is large enough that fn(s) concentrates around comparatively
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small configurations. In addition, the nonzero β? values are more difficult to

detect if their magnitudes are small. This is intuitively clear, and shows up in our

simulation results for Cases 1–2 in Section 5. Theorem 4 gives a mathematical

explanation for this intuition, stating that the variable selection based on our

empirical Bayes posterior is correct asymptotically if condition (3.3) is satisfied.

4. Implementation Details

4.1. Stochastic search of the configuration space

In order to compute the posterior probability for a configuration S, we need

to evaluate πλ(S | |S| = s) in (2.2), which can be rewritten as

D(S)−λ/(2s)1{κ(S) < Cpr}(
p
s

) {(
p

s

)−1 ∑
S:|S|=s

D(S)−λ/(2s)1{κ(S) < Cpr}

}−1
.

The difficulty comes from the term in curly braces, namely,(
p

s

)−1 ∑
S:|S|=s

D(S)−λ/2s1{κ(S) < Cpr},

where, again, D(S) = |X>S XS | is the determinant. Here C and r can be chosen

sufficiently large that only the few extremely ill-conditioned cases are excluded.

This leaves approximately
(
p
s

)
terms in the above summation, making brute-

force computation a challenge. Given that the eigenvalues of X>S XS , for S with

|S| ≈ s?, are assumed to be bounded from above and below, the geometric mean,

D(S)1/s, of those eigenvalues should depend on the particular XS , but not on s.

Therefore, the quantity in the above expression, the average of these geometric

means, is roughly constant in both S and s. As such, it is not unreasonable to

approximate πλ(S | |S| = s) in (2.2) with

D(S)−λ/(2s)1{κ(S) < Cpr}(
p
s

) .

This approximation is exact in the case of λ = 0 if all S are included, and our

numerical experiments suggest that it is stable across a range of p, s, and λ.

Using this approximation, the posterior distribution for S we use is given by

πnλ(S) ∝ mλ(Y | S)D(S)−λ/2|S|
(
p

|S|

)−1
fn(|S|)1{κ(S) < Cpr}. (4.1)
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In practice, C is chosen to be large enough that no configurations, S, are excluded,

which effectively removes the indicator function.

Markov chain Monte Carlo (MCMC) methods can be used to compute this

posterior, but this tends to be inefficient in high-dimensional problems. As an

alternative, we employ a version of the shotgun stochastic search algorithm (SSS,

Hans, Dobra and West (2007)) to explore our posterior distribution. In contrast

to the traditional MCMC method, the SSS does not attempt to approximate

the posterior distribution of S; instead, it only tries to explore high posterior

probability regions as thoroughly as possible.

Our SSS algorithm is summarized as follows. Let S be a configuration of

size s, with πnλ(S) its corresponding (unnormalized) posterior. Define the neigh-

borhood of S as nbd(S) = {S+, S0, S−}, where S+ is the set containing all

(s + 1)-dimensional configurations that include S, S0 is the set containing all

s-dimensional configurations that have only one variable different from those in

S, and S− is the set containing all (s − 1)-dimensional configurations nested in

S. The tth iteration of the SSS goes as follows:

1. Given St, compute πnλ(S), for all S ∈ nbd(St) = {St+, St0 , St−}.
2. Sample St1, S

t
2 and St3 respectively from St+, St0 and St−, with probabilities

∝ πnλ(St· ).

3. Sample St+1 from {St1, St2, St3}, with probabilities proportional to πnλ(St+),

πnλ(St0), and πnλ(St−), obtained by summing.

All visited configurations are recorded. The final chosen configuration can be

the maximum a posteriori model, median probability model (the model that

includes those variables with a marginal inclusion probability not less than 0.5),

or something else. For our simulations in Section 5, the selected configuration Ŝ

is the median probability model.

Although the SSS can explore many more high posterior configurations than

the MCMC can, it is still computationally expensive, especially in high-dimensional

cases. When p, the number of candidate predictors, is large and the true dimen-

sion s? is small, the cost of exhausting all possible configurations in S+ can be

tremendous. Therefore, we adopt the simplified SSS algorithm with screening

of Shin, Bhattacharya and Johnson (S5, 2018), which uses a screening technique

to significantly decrease the computational cost. More specifically, when consid-

ering candidate models with an additional predictor, instead of calculating the

posterior probabilities for all possible configurations, we first calculate the partial

correlation between response Y and each of the remaining p− s predictors, con-

ditioning on all variables in the current model St. Then, we select only the top



EMPIRICAL BAYES CORRELATION-ADAPTIVE PRIOR 2063

-5.0 -2.5 0.0 2.5 5.0
Lambda

L
o
g
 M

ar
g
in

al

-25

-50

-75

Figure 2. Dotted lines are λ 7→ logmλ(Y ) for different Y samples, and the solid line is
the point-wise average, which approximates λ 7→ E{logmλ(Y )}.

K predictors with the highest correlations to form S+ and S0. In the simulation,

we choose K = 20.

4.2. Choice of tuning parameters

4.2.1. Choice of λ

An “ideal” value λ? of λ is one that minimizes the Kullback–Leibler diver-

gence of the marginal distribution mλ(y) =
∑

Smλ(y | S)πλ(S) from the true

distribution of Y or, equivalently, one that maximizes the expected log marginal

likelihood; that is,

λ? = argmax
λ

E{logmλ(Y )}.

Unfortunately, the ideal value λ? is not available, because we do not know the

true distribution of Y , nor can we estimate it using an empirical distribution.

However, a reasonable estimate of the ideal λ is

λ̂ = argmax
λ

logmλ(Y ).

Indeed, Figure 2 shows logmλ(Y ) for several different Y samples, along with

an approximation of E{logmλ(Y )} based on point-wise averaging. Note that

the individual log marginal likelihoods are maximized very close to where the

expectation is maximized.

There is still one more obstacle in obtaining λ̂, namely, that we cannot di-

rectly compute the summation involved in mλ(Y ), owing to the large number of

configurations S. Fortunately, we can employ an importance sampling strategy

to overcome this. Specifically, we have
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mλ(Y ) =

∑
Smλ(Y | S)D(S)−λ/2|S|fn(|S|)

( p
|S|
)−1∑

S D(S)−λ/2|S|fn(|S|)
( p
|S|
)−1

≈
∑N

`=1mλ(Y | S`)D(S`)
−λ/2|S`|∑N

`=1D(S`)−λ/2|S`|
,

where {S` : ` = 1, . . . , N} are samples from π0(S) ∝ fn(|S|)
( p
|S|
)−1

. In our

numerical results, we use this mλ(Y ) to estimate λ̂.

As discussed in Section 2.3, λ plays an important role in both the model prior

and the coefficient prior. That is, for a fixed size s, a positive λ favors models

that include predictors with relatively high correlations, and a negative λ favors

models that include predictors with relatively low correlations. When λ is equal

to zero, the models are treated equally, regardless of their predictors’ correlation

structure. The λ in the conditional prior for βS , given S, has a similar effect;

see Krishna, Bondell and Ghosh (2009). Thus, a “good” estimate of λ should be

such that it reflects the correlation structure in X.

To help see this, consider a few examples, each with X of dimension n = 100

and p = 500, having an AR(1) correlation structure with varying correlation ρ

and true configuration S?. In particular, we consider two configurations:

S?1 = {11, . . . , 15, 31, . . . , 35}
S?2 = {1, 51, 100, 151, 200, 251, 300, 351, 400, 451}.

Figure 3 shows λ̂ chosen by maximizing the marginal likelihood in three different

cases, and we argue that λ̂ is at least in the “right direction.” In particular,

when the true predictors are highly correlated, as in Panel (a), λ̂ tends to be

positive, which encourages the selection of highly correlated predictors. When

the true predictors have low correlation, as in Panel (b), the estimate of λ is close

to zero; hence, we have a nearly uniform prior for S. The situation in Panel (c) is

different because the true predictors are minimally correlated, while unimportant

predictors are highly correlated. In this case, λ̂ tends to be negative, which

discourages the selection of the highly correlated ones that are likely unimportant.

4.2.2. Choice of g

Now, recall that g determines the magnitude of the prior variance of βS .

If g is sufficiently large, the conditional prior for βS is effectively flat; if g is

extremely tiny, then the posterior probability for βS will concentrate around the

prior center φnβ̂S . Kass and Wasserman (1995) proposed the unit information

criterion, which amounts to taking g = n in the regression setting with Zellner’s
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Figure 3. Expected log marginal likelihood versus λ, for φ = 0, under different correlation
structures of true configurations S?; see the text for definitions of S?1 and S?2 .

prior. Foster and George (1994) suggest a choice of g = p2. Here, we use a local

empirical Bayes estimator for g. That is, for given S and λ, we choose a g that

maximizes the local marginal likelihood; that is,

ĝS = argmax
g

mλ(y | S).

In the special case where φn = 0 and λ = −1, and there is a conjugate prior for

σ2, Feng et al. (2008) showed that ĝS = max{FS − 1, 0}, where FS is the usual F

statistic under model S used to test βS = 0. In general, our estimator, ĝS must

be computed numerically.

4.2.3. Choice of φ

In our choice of φ = φn, we seek to employ a meaningful amount of shrinkage,

while still maintaining the condition in Assumption 2. To this end, if we view φβ̂S?

as a shrinkage estimator, then it is possible to choose φn so that the corresponding

James–Stein-type estimate has a smaller mean squared error. In particular, this

is achieved by

φn = 1−
2E‖β̂S? − β?S?‖2

‖β?S?‖2 + E‖β̂S? − β?S?‖2
,

and, moreover, it can be shown that 1 − φn = O(s?{n‖β?S?‖2}−1); see Sec-

tion S3 in the Supplementary Material for details. Unfortunately, this φn still

depends on S? and β?S? , so we need to use a data-driven proxy. We recommend

first estimating S? using Ŝ from the adaptive Lasso, with β̂Ŝ and σ̂2 the corre-

sponding least squares estimators, and then setting
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Figure 4. Approximated log marginal likelihood for different values of φ, with sample
size n = 100, 500, 1000, 5000 and p = 500, under Scenario 2, as described in Section 5.
The value of φ is 0.99, 0.95, 0.9, 0.7, 0.5, 0 from top to bottom for all of the four plots
above.

φ̂n =

[
1−

2σ̂2tr{(X>
Ŝ
XŜ)−1}

‖β̂Ŝ‖2 + σ̂2tr{(X>
Ŝ
XŜ)−1}

]+
.

In practice, the variable selection results are not sensitive to the choice of φ, unless

it is too close to one. That is, according to Figure 4, we see good curvature in the

log marginal likelihood for λ, with roughly the same maximizer, for a range of

φ. The curves flatten out when φ is too close to one, but that “too close” cutoff

gets larger with n. To ensure identifiability of λ, we manually keep our estimate

of φ away from one, taking φ̃n = min{φ̂n, 0.7}.

4.2.4. Specification of remaining parameters

It remains to specify the likelihood power α, the tuning parameters (a, c),

specifying the prior on the configuration size, the tuning parameter (C, r), spec-

ifying the prior on the collinearity of the configurations, given a fixed size, and

a plug-in estimator for the error variance σ2. As in Martin, Mess and Walker

(2017), we take α = 0.999, a = 0.05, and c = 1. We let C and r be sufficiently
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large, so that, in practice, no models are excluded owing to the ill-conditioness.

For the error variance, we use the adaptive Lasso to select a configuration, and

set σ̂2 equal to the mean squared error of the selected configuration. A prior for

σ2 was used by Martin and Tang (2019) in this empirical Bayes framework for

a simpler model formulation; their results were similar to those of the plug-in

approach adopted here.

5. Simulation Experiments

Here, we investigate the variable selection performance of different methods

in five simulated data settings. In each setting, n = 100 and p = 500, and the

error variance σ2 is set to one. The first two settings have severe collinearity.

We employ the first-order autoregressive structure with ρ = 0.8 as the covariance

structure of the n × p design matrix X. The true configuration S? includes two

blocks of variables; the first block contains the 11th to the 15th variables, and

the second block contains the 31st to the 35th variables. We explored both large

and small signal cases, as follows:

1. βS? = (0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95)>

2. βS? = (1, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5)>

3. In this case, we consider a block covariance setting, which is the same as

Case 4 in Narisetty and He (2014). In this setting, interesting variables

have common correlation ρ1 = 0.25; uninteresting variables have common

correlation ρ2 = 0.75 and the common correlation between the interesting

and uninteresting variables is ρ3 = 0.5. The coefficients of the interesting

variables are βS? = (0.6, 1.2, 1.8, 2.4, 3.0)>.

4. This case is similar to Case 3, but let ρ1 = 0.75, ρ2 = 0.25, and ρ3 = 0.4.

In addition, a larger βS? = (1, 1.5, 2.0, 2.5, 3.0)> is adopted.

5. This is a low correlation case, set the same as Case 2 in Narisetty and He

(2014). All variables are set to have common correlation ρ = 0.25, and the

coefficients of the interesting variables are βS? = (0.6, 1.2, 1.8, 2.4, 3.0)>.

For each case, 1,000 data sets are generated. Denoting the chosen config-

uration as Ŝ, we compute P(Ŝ = S?) and P(Ŝ ⊇ S?) in these 1,000 iterations

to measure the performance of our method, denoted by ECAP. For compari-

son purposes, we also consider the Lasso (Tibshirani (1996)), the adaptive Lasso

(Zou (2006)), the SCAD (Fan and Li (2001)), the elastic net (EN, Zou and Hastie
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Table 1. Simulation results for Cases 1–5. (The best score among the six methods is
shown in bold.)

Case Method P(Ŝ = S?) P(Ŝ ⊇ S?) Average |Ŝ|
1 lasso 0.082 0.996 13.61 (0.09)

alasso 0.397 0.930 10.73 (0.04)

EN 0.133 0.983 13.24 (0.20)

SCAD 0 0.001 12.36 (0.15)

EB 0.165 0.215 9.56 (0.17)

ECAP 0.263 0.342 9.65 (0.15)

2 lasso 0.297 1 11.65 (0.05)

alasso 0.356 0.412 9.33 (0.03)

EN 0.557 0.816 10.25 (0.07)

SCAD 0 0 7.93 (0.04)

EB 0.815 1 11.27 (0.91)

ECAP 0.994 1 10.00 (0.00)

3 lasso 0 0.874 18.67 (0.12)

alasso 0.002 0.277 11.26 (0.10)

EN 0 0.945 19.82 (0.22)

SCAD 0.882 0.958 5.05 (0.01)

EB 0.560 0.670 4.69 (0.05)

ECAP 0.760 0.778 4.90 (0.08)

4 lasso 0.135 1 8.08 (0.09)

alasso 0.701 0.940 5.34 (0.03)

EN 0.327 0.997 7.33 (0.13)

SCAD 0.070 0.148 4.45 (0.04)

EB 0.793 0.822 4.87 (0.04)

ECAP 0.861 0.940 5.05 (0.07)

5 lasso 0.001 0.990 17.55 (0.15)

alasso 0.057 0.693 8.63 (0.11)

EN 0.005 0.991 17.04 (0.28)

SCAD 0.419 0.908 5.88 (0.04)

EB 0.680 0.795 4.82 (0.04)

ECAP 0.827 0.919 4.95 (0.05)

(2005)), and an empirical Bayes approach (EB, Martin, Mess and Walker (2017)).

The tuning parameters in the first four methods are chosen using the BIC. The

results are summarized in Table 1.

According to these results, ECAP performs significantly better than the

Lasso, SCAD, and EN in terms of the probability of choosing the true configu-

ration. It also has uniformly better performance compared with that of the EB,

which is expected because the ECAP method takes the correlation information
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into account. However, when considering P(Ŝ ⊇ S?), the ECAP is not always

the highest(e.g., Case 1). Note that P(Ŝ = S?) and P(Ŝ ⊇ S?) for the ECAP are

always close to each other, which is not the case for the Lasso or EN. This is be-

cause the ECAP method is more likely to shrink the coefficients of unimportant

predictors to zero, which is desirable if the goal is to find the true S?.

6. Real-Data Illustration

Here, we examine our method in a real, data example to evaluate its perfor-

mance against that of other prevalent approaches, including the Lasso, SCAD,

and penalized credible region approach in Bondell and Reich (2012). We use

data from an experiment conducted by Lan et al. (2006) that studies the genet-

ics of two inbred mouse populations (B6 and BTBR). The data include 22,575

gene expressions of 31 female and 29 male mice. Some phenotypes, including

phosphoenopiruvate (PEPCK) and glycerol-3-phosphate acyltransferase (GPAT),

were also measured using quatitative real-time PCR. The data are available at

the Gene Expression Omnibus data repository (http://www.ncbi.nlm.nih.gov/

geo; accession number GSE3330).

We choose PEPCK and GPAT as the response variables. Given that this is an

ultrahigh-dimensional problem, we use the marginal correlation-based screening

method to screen down from 22,575 genes to 1,999 genes. Combining the screened

1,999 genes with the sex variable, the final dimension of the predictor matrix is

p = 2,000. After screening, we apply our method to the data, and select the best

subset of predictors Ŝ. Then, we use the posterior mean of βS as the estimator

for β, for given Ŝ and y. The posterior distribution for βS is normal, with

mean =
(
X>
Ŝ
XŜ + V −1

Ŝ

)−1(
X>
Ŝ
y + φV −1

Ŝ
β̂Ŝ
)

covariance = σ2
(
X>
Ŝ
XŜ + V −1

Ŝ

)−1
,

where VŜ = gkŜ
(
X>
Ŝ
XŜ

)λ
. For the hyperparameters λ, φ, and g, we can plug in

their corresponding estimators, given in Section 4.

In order to evaluate the performance of our approach, we randomly split the

sample into a training data set of size 55 and a test set of size five. First, we apply

our variable selection method to the training set and obtain the selected variables.

Then, conditioning on this model, we estimate the regression coefficients using

the above method. Based on the estimated regression coefficient, we predict the

remaining five observations and calculate the prediction loss. This process is

repeated 100 times, and we can compute an estimated mean squared prediction

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
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Table 2. Mean squared prediction error (MSPE) and average configuration size in the
real-data example of Section 6; numbers in parentheses are standard errors. The results
except for the ECAP are from Bondell and Reich (2012).

PEPCK GPAT

Method MSPE Model Size MSPE Model Size

ECAP (p = 2,000) 1.02 (0.07) 5.04 (0.19) 2.26 (0.18) 8.34 (0.33)

lasso (p = 2,000) 3.03 (0.19) 7.70 (0.96) 5.03 (0.42) 3.30 (0.79)

BCR.joint (p = 2,000) 2.03 (0.14) 9.60 (0.46) 3.83 (0.34) 4.20 (0.43)

BCR.marginal (p = 2,000) 1.84 (0.14) 23.3 (0.67) 5.33 (0.41) 21.8 (0.72)

SIS+SCAD (p = 22,575) 2.82 (0.18) 2.30 (0.09) 5.88 (0.44) 2.60 (0.10)

ECAP (p = 22,575) 0.72 (0.07) 4.93 (0.30) 1.66 (0.52) 7.92 (0.73)

error (MSPE), along with its standard error; see Table 2.

In Table 2, BCR.joint and BCR.marginal denote methods using joint credible

sets and marginal credible sets, respectively, for details, see Bondell and Reich

(2012). The first four rows correspond to the ECAP, the Lasso, BCR.joint, and

BCR.marginal, applied to the screened data with dimension p = 2,000. The fifth

row shows sure independence screening (SIS) combined with the SCAD, applied

to the full data p = 22,575, and the last row is based on directly applying the

ECAP to the unscreened data. The stopping rules for the Lasso, the SCAD,

BCR.joint, and BCR.marginal are based on the BIC.

In terms of the MSPE, the ECAP outperforms the other methods signifi-

cantly in both the PEPCK and the GPAT cases, given the estimated standard

errors. Moreover, the MSPE from the ECAP is even smaller for the full data

set than it is for the screened data. For the model size, on average, the ECAP,

the Lasso, BCR.joint, and the SIS+SCAD select models with comparable sizes,

while BCR.marginal always chooses larger models. Overall, the ECAP performs

very well in this real data example compared with these other methods in terms

of both the MSPE and the model size.

Supplementary Material

The online Supplementary Material contains proofs of the theorems pre-

sented in Section 3, along with details about our choice of φ and some additional

simulation experiments.
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