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S1 Appendix

S1.1 Estimation of ©, (Cont’)

To solve the optimization (3.4)), we perform a easier way than the optimization
of (3.1). Given the update (fi, Z4) from previous iteration, a quadratic approx-

imation of the objective function —lyy (uJ + Z) + N'|| Z||. is formed:
Pi{Z, Zy} = — tw (i + Zoa)

(2~ Zas, ~Vzbw (3T + Zaa) + 5 |12 — Zaalls + X 2],
where L > 0 is an algorithmic parameter determining the step size of the prox-

imal gradient algorithm, and is chosen by a backtracking method (Beck and

Teboulle, 2009).
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In this iterative algorithm, an successive update of (zi, Z) can be obtained
by

argmin P} {Z, Zya},
1Z] <8

where the optimization is only required for Z. Thus we need to solve the fol-

lowing optimization.

. . L
zll‘rg‘;‘mm <Z — Z01d7 —szw (,uJ + Zold)> + 5 ||Z — Zold”i“ + /\/ ||Z||* s
Z|| <8

which is equivalent to

1 1 . DY
argmin —HZ—ZOld—ZVZEW (MJ+Z01d> +Z||ZH* (Sll)

1Z]l o <8

F

We apply a two-block alternative direction method of multipliers (ADMM) to

an equivalent form of (S1.1):

X 1 1 _ ?
argmin —HZ||*+— HG—ZOM— —szw (LLJ+Z01d) (512)
z=aG.|G|.<s L 2 L p
The augmented Lagrangian for (S1.2)) is
N 1 1 - ’
ﬁu(Z,G7H) :—HZH*—F— G_Zold__vZKW(,UJ_‘_Zold)
L 2 L .

U 2
—(H,Z-G) + 5 1Z - Gl +]I[HG||00§5]7

where © > (0 is an algorithmic parameter. The detailed algorithm to solve (S1.2)

is summarized in Algorithm

Proof of Theorem[l] 1t has been proved in (Chen et al.,[2016)) that the orthogo-

nality of any two coefficients lie in the linear constraints will lead to the con-
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vergence of the direct extension 3-block ADMM. In our case, this assumption is
fulfilled due to the constraint Z = G; = G,. It has been shown in Theorem 2.4
(i1) of |(Chen et al. (2016) that it converges to a KKT point of (3.3). Since slater’s
condition is satisfied, we can conclude that it converges to a global optimum.

See, e.g., Page 244 of Chapter 5 of Boyd and Vandenberghe (2004). 0

Proof of Theorem 2] Theorem 4.4 of Beck and Teboulle| (2009) shows the con-
vergence analysis of FISTA with both constant and backtracking step sizes. In
addition, they provide a detailed convergence rate of the algorithm. Here we

adopt the FISTA with backtracking step sizes. [

S1.2 Estimation of A, (Cont’)

S1.3 General n, n, Cases of the Theorems

For any threshold level 5 > 0, we adopt the two quantities L,,, and ,, defined

respectively:
el fm) {1 f ()}
R ) e B SRy O

(S1.3)
As discussed in Davenport et al.[(2014) L, and y,, control the “steepness”
and “flatness” of link function f respectively. Under the two natural link function

f, we have 7o, = e (1 4+ )2 ~ ¢ L, = 1and 7, < 7€%/2, Lo, <
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8(ap + 1) respectively.

Theorem S1. Assume that Conditions CI1-C2 hold, and (ji,, Z,.) € Cyy n,(01, 2).
Let L, be the quantities as in (S1.3). Consider M = [iJ + Z where (i, Z)
is the solution to (5.1). There exist some positive constants C, Cy, such that
Jor Cro nymny = (16€ +1) Lo, (a1 + agrlz/f)(nlng)l/z(nl V np)Y/2, we have with

probability at least 1 — 4C /(ny + ny),

2

1
" S CQ (Oé% VAN Fn17n2)

ning

~

Z —Z,

(fs — ﬁ)Q < Cy (O‘% A Fm,nz) 5

2

M — M, LS Ca(0f A Tuyy).

and

ning

(S1.4)

_ ’YocOCLao,nl,nz
where Fn1,n2 =T na

Theorem S2. Assume that Conditions C1-C2 hold, and (ji,, Z,.) € Cypy ny (01, 2).
Let L., and 73 be the quantities as in (S1.3). Consider M 5= pd + 25 where
Z 3 is the solution to (5.3) and 5 > 0, there exist some positive constants Cy, Cy
and Cs, such that for Cp, n,n, = (16 + 1)Lo, (o + a27"1Z/*2)(n1n2)1/2(n1 V
n2)'/? and CLayipmins = (16€+1) Lo,y p(ar + ﬂr%jz*))(nlng)l/?(nl Vng)l/?,
we have with probability at least 1 — 4C /(ny + na),

_ 2 — B)2N,
2 (Mﬂ,M*> < Cy (02 A Tpny) + Cshymy + U= B)Ns (15

ning

Cohnirs 8N
A

2 )
a1, naneL

~ C
P (81,01) < 1 (o A L) +
a1,

(S1.6)
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where

T « La 8N La — N — -~
Apy iy = min {BQ,F%@ 4 e LanspB 8N + nlgﬁ (mans = Np) ls — B}
1762

~ VB+on CLa1+@,n1,n2
and L'y n, = .

ning

Define the parameters ko, oy 81,1, and k. such that

a1,02,n1,n2
. 1/2
kal@%/ﬂ),m,nz = min |:ﬁ27 VB+aon |:L041+ﬁ <a1 + ﬁrTé(Z*)) <n1n2>1/2(n1 N n2>1/2

+Lay+58 {8Ns + Lay1p (nina — Np) K22 4] (nyma) ']

(a1 + Oég?”lz/f) Yoo Lag (N1 V n2)1/2

<n1n2>1/2

/
a1,02,11,12

= min < af,

In additional to h(1) g, we need two more h() 5 = max(@;z.lj’BGi/é), and

hsys = max(@;ilmﬁ*,ij) to complete the general form of Theorem (@) in the

following. Also let

A = max | oV e# /o2 =BH02 /278 { (ny v my) log (na + o)}
niny ’

2 az/2—p|1.1/2 3/2
/2+a1+|aa/ ﬂ|ka1,a2ﬁ,nm2 log”“n S17)
hahﬁn ‘ ‘

net

Theorem S3. Assume Conditions C1-C4 hold and logit inverse link function f.

There exist some positive constants Cy, Cs, Cg and C; such that for 1 > C,A,

we have with probability at least 1 — 3/(ny + na),

C7h?1)ﬁh%2)767’,4* log (ny + no)
(nl A TLQ)

i

d? (A\g, A*> < max {Cﬁnanh%l)7ﬁlr‘A*7—2 +

(S1.8)

Cshqy shs),s108"%(n1 + na)
/1Mo ’
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S1.4 Proof of Theorems in Section [S1.3]

First, we review some basic facts about matrices which will be useful in the

following development. For any B, C' € R™*"2, we have
 Trace Duality Property:

i (B*C)| < [|IC][|| B, (S1.9)

* Norm Inequalities:

1/2 1/2
IBllz < IBIl, <78’ Bl and |IB|<|Bl,<rg*|Bl,
(S1.10)

where rg is the rank of matrix B.

In this section, we provide the proofs of general ny, n, and f cases of main
theorems presented in Section Their corresponding n; = ny = n and the
choice of inverse link function f to be logit cases can be directly derived from
the general cases.

To prove Theorem [ST| and Theorem [S2] in additional to the Hellinger dis-
tance, we also adopt the Kullback-Leibler (KL) distance. For any S, T €
[0, 1]"1%72_ define D(S||T) as (n1ng) =" 3775 D(silti;) where D(s||t) = slog(s/t)+
(1 —s)log((1 —s)/(1 —1t)) for s,t € [0,1] is the KL distance between two

Bernoulli distributions. The KL distance is bounded below by the Hellinger dis-

tance, i.e, d%(s,t) < D(sl||t). Given any matrix M € R™*"2 we work on the
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function

bw (M) = by (M) — bw (M,),

rather than on /yy itself. Now we present several lemmas and proofs.

Lemma S1. Under Condition C2, assume that matrix M = pJ + Z such that

(i, Z) € Cpy iy (1, 12) as defined in (5.1). Then, for any s > 0, we have

Pr _sup [lw (M) — Ew {fw (M)}| > Cos(a1 + agrlz/f)(nan)l/Q
(11,Z)ECn ny (a1,a2)
log(ni+n2)
I 1/2
e {8 o (11 Y 12) } , (SL1D)

where Cy and C'y are absolute constants and, the probability and the expectation

are both taken over W.

Proof of Lemma Noting that for any 4 > 0, by Markov’s inequality, we have

that
Pr sup |£7W (M) — Ew {ZW (M)}‘ > Cos(ag + QQTg*2)(n1n2)1/2]
(I‘L’Z)ec'"-l,'n-Q (011,042)
7. 7 h 1/2 1/2 h
=Pr _sup |€W (M) — Ew {KW (M)}| > (Cos(al +agry; )(n1n2) )
(11,Z)ECn ,ny (1,02)
- — h
EW NSllp |€W (M) — EW {KW (M)}| ‘|
< (1 2)ECn; ma (01,02) . (S1.12)

(C()S(Oél + OéQTIZ/*z)(nan)l/Q) "
The bound in (ST.TT)) will follow by combining (ST.12)) with an upper bound on

Ew| sup |0y (M) — Eyy {fw (M) }|"] and setting h = log(n; +ns).

(M,Z)Ecnl ,no (a17a2)
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Note that we can write the {yy as

ZW (M) = Z |:]I[wij1] log { / (m*’ij + (mij — m*ﬂj)) }

L=t f (m*,z’j)

By a symmetrization argument (Lemma 6.3 in [Ledoux and Talagrand (2013)),

7 7 h
Ew sup |lw (M) — Ew {lw (M)}| ] <
(P«»Z)ecnl,ng(al,O@)
ni,n2
My i + (Mg — M ij
2" By = sup Z & {H[wij:” log{f( i + (my ]))}
(1 Z)ECn ) ng (@1,02) | =1 f(m*,ij)

+1jw;;=0] 10g { L= f (s + (5 )_ Myij)) H

1- f (m*,ij

]

(S1.13)

where ¢;; are i.i.d. Rademacher random variables and the expectation in the

upper bound is taken with respect to W as well as ;.

For any |m,.;; + | < oo, define ¢y ;;(x) = L log(f(mu; + x)/ f(ma;))
and ¢ ;;(x) = L) log{[1 — f(m.;; — 2)]/[1 — f(m.;;)]}. By the definition of
L,,, it is not hard to show that |1 ;;(z1) — ¢1.45(z2)| < |21 — 22|, ¢1,4;(0) =0
and |p25(21) — ¢o,4j(x2)] < |1 — 22|, ¢2(0) = 0. For M — M, satisfies
|mi; — my;;| < 2ap, we can apply a contraction principle by Theorem 4.12 in
Ledoux and Talagrand| (2013). Thus, up to a factor of 2, the right hand side of

(ST.13)) can only decrease when ¢y ;;(m;; — m. ;;) and @2 ;;(m,;; — my;) are
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replaced by m;; — m, ;; and m, ;; — m,; respectively. We obtain

1, Z)ECn | ny (a1,02)

Ew [ sup |tw (M) — Ew {Iw (M)}\h]
(

<2" (2Lay)" Ew,

m

1

i,j=1

sup
(14,2)€Cn  ,ny (01,002)

=(4L4,)" Ew = sup |(Eo(2W—J),M—M*)|h} , (S1.14)

(1,2)€Cny ,ny (a1,02)

where E denotes the matrix with entries &;;. Using the facts that the distribution

of 2o (2W — J) is the same as the distribution of = and trace duality inequality

given in (S1.9), we have that

sup ](Eo(ZW—J),M—M*Hh]

(/u‘?Z)Eé'nl )12 (a17a2)

—F= sup =, M - M,)|"

(uvz)ECW«l,TLQ (04170[2)

<Eg sup I1=)1" 172 — M*Ilf]

_(sz) 6571,1 ,no (O‘l ,ag)

K (S1.15)

)

h
= (2(041 + (IQTIZ/*Q)(anLQ)l/2> EE ||E|

To bound Ex|E||", observe that Z is a matrix with i.i.d. zero mean entries and

thus by Theorem 1.1 of |Seginer| (2000),

=l

N>
——

E=||E|" < ¢y (n +n

for a positive constant C';. This in turn implies that

(EE ||E||h>ﬁ e (nf +n§) <207 (m V na) 2. (S1.16)
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Combining (SI.16) with (S1.14) and (S1.15)), we obtain

{ Ew [tw (M) — Bty (M|} <167 Loy (r-+aariy?) (mna) /2 (ny v o) /2.

Plugging this into (ST.12) and take h = log(n; + ns), the probability in (ST.12))

is upper bounded by

log(ni+n2)
C {8La0 (n1 V n2)1/2 }
1 )

S

which establishes the lemma. O]

Lemma [ST| presents the general version with complete observations of indi-
cators W. A comparable result is Lemma 1 of |Davenport et al.| (2014) which
provide the incomplete indicators version. The following remark holds directly

by setting s = CyLq, (n1 V n2)*/? in our Lemma

Remark 1. Under Condition C2, assume that matrix M = pJ + Z such that
(u, Z) € 57“7”2(@1, z) as defined in (5.1)). Take s = Cr, iy = CoLag(a1 +
agrlz/f)(nan)l/Q(nl V n2)'/? and provided Cy > 16e, we can simplify (ST.TT)

to be

Ch

7’L1+TLQ

Pr (|tw (M) — Ew {lw (M)}| > Cp., mims) <
Next we will prove Theorem [ST|

Proof of Theorem[S1] Due to the fact that || < oy and || Z,||cc < a2, we can

easily have | M, ||cc = ||tsd + Zi||oo < ap. Similarly, due to the feasible set
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Cny o (1, 02), we have |fi] < a; and ||Z||C>O < as. These implies the bounds
only related to a; and oy of all the three terms in Theorem [S2]
Next we focus on the bounds related to 7z . According to the definition of

lw (M) we have

b [ (7)) = [ (7)o 00

_ ”]Z_l [f (m..;) log {ff(l(jTH;;)} {1 = f (i)} log { 11_—ff( ?ﬂf;> H |

where the expectation is taken over the indicators W. This term equals to

—n1n2D(]:(M*)H]-"(]\7)). Then for M = jiJ + Z, we have

tw (M) < —nmoD {F (M) |7 (M) }+‘EW (M) - Bw {iw (M)H .

Moreover, from the definition of (fi, Z) given in (5.1]), we also have that fy (M) =

tw (M) — by (M,) and by (M) = by (i + Z) > ly(M,). Thus

0 < —mmD {F (M) |7 (M)} + ]ZW (M) - Bw {tw (ﬁ)}( .

Applying Remarkfor matrix M = M = nuJ + Z, for any Cjy > 16e, we

obtain that with probability at least 1 — C'/(ny + ns),
0<—minsD {]—" (M,) | F (ﬁ) } + Clos i

Furthermore, we obtain that with probability at least 1 — Cy/(ny + ns),

By {F (M), F (M)} < D{F (M) |1F (M) ] < Cn—n



XIAOJUN MAO, RAYMOND K. W. WONG and SONG XI CHEN

By Lemma 2 of Davenport et al. (2014), we have

2

1

M AT (e} O ni,n
M = M| <yo,di {F (M), F (M)} < 2ot
ning F 1M
Due to the decomposition that ||J\//_7 — M*||2F = nyny(fi — M*)2 + ||2 —Z, % it
implies the bounds related to rz, that
1/2 ~1/2
Ta ni,n 1 ~ 2 o C’ onim
= il € —— Z - z,|| <TooTteomnz g
(n1in2) / ning F ning
Y57 - | < DeCregmns
ning F n1Na
O

To prove Theorem we measure the similarity of estimated distribution

~

Op=F (M ) and the constrained distribution (:)*75 = F{puJ +Ts(Z,)} at first
in next Theorem. Similar as the definition of /yy (M), define

lw (M) = tw (M) — bw {i +T3(Z.)},
for any matrix M € R™*"2,

Remark 2. Under Condition C2, let G, ,, (a1, ) C R x R™*™2 be

gn1,n2 (alaﬁ) - {(,U7 Z) € R x R™*" ‘:u’ < ay, ||Z”oo < 57 ||ZH* < 5VTZ*n1n2} :
Assume that matrix M = pJ + Z such that (u, Z) € G, n, (1, B) as defined

in 5.3). Take s = CL, 4 nims = CoLayys(an +Br%%z*))(n1n2)l/2(n1 Vng)t/?
and provided Cy > 16e, we can simplify (SI.11) to be
C

n1 + na

Pr (‘ZW (M) — Ew {ZW (M)}( > OLWMM) <
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Theorem S4. Assume that Conditions CI1-C3 hold, let L, be the quantities
as in (S1.3), 11 be the estimator defined in (5.1). Consider ﬁg = uJ + 25
where Zg is the solution to (5.3) and 8 > 0, for any Cy > 16, CLa,sgming =
CoLay+p(q —i—ﬁrlTﬁZ*)) (n1n2)Y2(nyVng)'/?, there exist some positive constants

Cy and CY, such that with probability at least 1 — 4C, /(ny + nz), we have

d? {23,7’@ (z*)} < C3min [ﬁQ,

nin2

Proof of Theorem[S4} For the proof of Theorem [S4] according to the definition

of fy (M) we have

Bw {Tw (Ms) } = Bw [tw (M) — tw (37 + T3 (2.)}]

I I P AT IS

1,7=1

ni,nz

1— f (B +7Zi,8)

_ ~ . Mo f(B+Zij8) e Mo 7
=3 [rarmeanes{ L S} = 1 @ T o { 1 LE 2)

J (B4 Tp (24,15

i,j=1

> [{f (mess) = £+ B)}tog { LELZDN 47 ot 6) = () { 1L 20)

(i + Zij8)

f@+p)
e ) — (5 — B 1o 1B+ Ziss) 8 — flme N oe [ L :
v ZB[(f( ) = =)o (LEEESEY) (1 i ) = f (oo (L2
v [ e = 4o {225
H @+ 5) — F e og { B Z

where the expectation is taken over the indicators W. The first term equals to
—nna D(F(ud + Ts(Z ))H]—"(Mg)) For the second term, similar to ¢ ;;(z)

and ¢, ;;(x), we can construct corresponding ¢3(z) and ¢4(z) for any [t| < oy

and || < f where ¢5(x) = L, 5 log(f(t+x)/f(t)) and ¢4 (2) = L |, 5 log{[1-

f(t—x)]/[L— f(t)]}. Due to the similar facts for ¢3(x) and ¢4(x) that |¢3(z1) —

/)
)

Vg+a1 [CLMHa,mm + Lay+8B8{8Np + Lay+5 (nin2 — Ng) | — ﬁ\}] ]

i
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¢3(l’2)| S |ZL’1 — CL’Ql and |¢4([L‘1) — ¢4(l‘2)| S |ZE1 — Tg|, WE have

1— f(ﬁ+3ij,ﬂ)”

N o f (0 +Zijp) ~ — flme N o
> |t i)~ £+ 108 | b (7 ) - g msppion {0 2

e f(E+8)
ni,n2

Layip D |f(maig) = F+B)IB+T—Zijp — il <8Lay1pB D a5
Zy.i5>B Q=1

Similarly we can bound the third term in the same way. For the fourth term, we

have
f (i +Zijp) } N
F 0+ 2ei5)

1— f(u+Zijp) H
L= f i+ 2ai5)

S [ e = £+ o

—B<z4,i5<P

{f (1 + 245) — f (meij) } log {

2Layss Y. (M) = B+ 20ih)| |20 + B — 25 — Al
_/B<Z*,ij<ﬁ

<Ly, 18 (mnz — Np) i — il
Together we have
EW {EW <.Z/\ZB>} S — nlnzD f{ﬁJ + 7ig (Z*)} H.F (ﬁg)] + 8La1+5N56
+ L3, 18 (ming — Np) |u. — il
Then for ]\//_75 =pnd + 23, we have

tw (ﬁﬂ) — lw (AT + T3 (Z.)} = bw (ﬁﬁ) < —nineD [f (T + T3 (Z)} || F (ﬁﬁ)]

|t (M5) = B {B (W)} + Loy 98 48N5 + Ly 45 (mama — No) [ — 7.

Moreover, from the definition of 25, we also have that (v (uJ + 25) >
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twi{pd + Ts(Z,)}. Thus
0 < —mnaD |[F {3 + T (2.)} | F (M;))]
[t (32,) — Bw {fw (32,)
+Lay+B{8Ns + Lay 15 (ninz — Ng) [p — il } -
Applying Remarkfor matrix M = M 5 = pd + Z 3, for any Cyy > 16e,
we obtain that with probability at least 1 — C /(ny + ns),
0 < —nynyD {f(M*ﬂ) [Fa (ﬁﬁ)} +Cro. o yiina
+ Loy +B{8Ns + La,+5 (ning — Ng) |p — 1l } -
Combining with Theorem [S1} with probability at least 1 — 2C/(ny + ns),
we obtain

B [F{pT + 7520}, F (M3)] < D [F {37 + T (2} |1F (M)
< Yraepmm + LayesB{8Ns + Lay g (ama — Np) | — i}

nino
It implies that

) _y _tar [CLay taming + LaysB{8Ns + Lay+n (nina — Na) . — il}]
@ {73(2.), 25} < :

nin2

]

Next we will prove Theorem [S2]in two parts.

ProofofM\ﬁ part in Theorem Combining ||73(Z,)|lc < S and || Z,|s <
a2, by Lemma 2 of Davenport et al.|(2014), Theorems [ST|and [S4] we have with
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probability at least 1 — 4C' /(ny + na),

@ (M. ML) <2 [(i = ) + & {25, T3 (2.)} + (T (2.). 2.}

2
<Cymin {a%’ ’YQOCLuganhnz } i 2(042 — /6)+Nﬂ
ning nins
+ C3min | 3° W {CLa”ﬁ’nl’"z + Loy +88 (8Ng + Lo+ (nine — Np) | — /7\)}
3 ) — |
where 7, = max(z,0). ]

Proof of @2 part in Theorem By Taylor’s theorem, there is some 7 between

A+ Zijp and p, + Tp(z,i5) so that

L 1 _ s )
FGos) Tt Ty o) () 50— #e = T (i)

By HﬁﬁHoo < ag+ 06, || M, gllcc < a1+ f, and the definition of L,, ;3 and

ha, g, we have

Fo) o 1 ] L

P20 = T e T @ = F 1) hons

which further implies

(8}, ef ;) < L}%::f (7 + Zs. M. ) < 25;:;5 (7= ) +d*{ 25, T3 (2.)}].

(S1.17)

As it is easy to bound the remaining part by H('-)Iﬁ — O6||% < 4Ng/6%, we



S1. APPENDIX

have

& ((?)g, @1) <2 {d2 (@g, @Iyﬁ) Ny (@175, @1) }

2L2 _ 8N,
<S8 (T + Zs, M5 o
SR, I T ey

]

Write J;; = e;(n1)ej (n2), where e;(n) € R" is the standard basis vector

00,2} ’

Lemma S2. Assume Conditions C1-C4 hold, denote V1) = Z?;:f wl‘jﬁijJij/(nané\ij’/j),

with the i-th element being 1 and the rest being 0. Define

Wo (@I} - @I}B)T

9

Cw = maX{HW o (@L - @15>

HOO,Q

or some positive constants Cy and 6, there exists AV such that
p

[#0)] < D < ms [%%m (0 o) o -+ )} 7 g™ (s +1a) |
- 1Mo ning
holds with probability at least 1 — 1/(ny + ny) — 1/(ny + ny)°.
Proof of Lemma Due to the triangle inequality, we have
(1) 1 il €ijWij 1 il €ijWij
o) = —— ||y L, < T
ning ij=1 Q’Lj,ﬁ nino =1 e*ﬂ‘j’ﬁ
1= 1 1
ning 27]221 Y <9ij,ﬂ (9*,1‘]‘,5) !

Since ¢;; is independent of w;;, we have

w8 Ox.ij.p
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Write ng = nh2) 5/ 0}/ ? where 7 is the constant in Condition C1. Then we have

l 1 2 -2
€55 Wij €5 Wij ! Cgh(Q)’ﬁwij nw;;
—_— = R ;s < — .

t (9*-,ijﬁ) t {E <9m‘j,ﬁ Hw”}) } =F { 2 ( 6./2 6/2

*,1J *,1J

!
< 5 (eohig) nly® forl=2.3.4,...

Similar as the proof of Lemma S1.1 in Mao et al.|(2019), we can show that

with probability at least 1 — 1/(ny + na),

ni,n2
€ij Wi

1

ning

2¢c,h2),5{2 (01 V ng)log (ng + ng)}l/2
N9 '

<

o2 O

Denote ¢;; = eijwij(@\;j}ﬁ - 9;}; ). By the matrix Bernstein inequality

(Tropp, |2012, Theorem 6.2), we show that, for all ¢ > 0,

o —2/2
Pr( 1> hijdij|| >t | {wij} | < (na +ng) - exp /Mr ; :
E TR K

We further have

&= —t2/2
PI‘ ( Z]ZI ¢z’jJij Z t | {U)U}> S (n1 +n2) - exp {m} .

(S1.19)
For any § > 0, take t = 1w log' ™ (ny + ny) so that 23, < nCwt, we

have that

—t%/2
(i + nlwt

(n1+n2).exp[ }S(nlJrn?).eXp[_ t? ]S( 1

477CW{; ny + ng)%

Combining all two terms in (S1.18)) together, for any § > 0, with probability
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atleast 1 — 1/(ny + ny) — 1/(ny + n2)%, we have

ni,n2
1 1
Z €ijWij <A — ) Jz

i,j=1 0:5.8 Osij.p

ni,n2
€ijWij
= Ji]'

i,j=1 0:5.8

ni,n2

S,
ij

52 Oxiss

1
ninz2

1
<
T ning

1
+
nin2

— AD = max | Coli@.8 {(m Vn2) log (n1 + n2) % néw log' ™ (n1 + na)
- nina ’ ning

]

Lemma S3. Assume Conditions C1-C4 hold, fi[g is the solution to (4.3)), denote
WO = Y 0, 55 — by p) (Wi B p — wis/0s45.5) T3/ (nina), there exists

1,7=1
At T
allet — e ‘
A(Q)X 0‘ B8 *,3 F7

ning

such that |[¥?)|| < A® holds.

Proof of Lemma By the inequality (S1.10), we have

i [0 < [W o (8] - 01,) o (4.~ &), < 20

o T
G _@*’BHF‘

]

Fora 0 < r < (n; A ng), we consider the following constraint set

2 64log(ni1 + n2)

F log(6/5)n1namyr

c(r) = {A e Al =1, [@icel 04 A, < \/F|A|F} :

(S1.20)

where ©% = (91/2

*,0]

). It is easy to see that once rank(A) < r, [|All. < /T||A|lF
holds.

Again, let §;; are i.i.d. Rademacher random variables and define Te) =

(ning)~t Y0, Z;Lil fijwije;,iljﬂ'
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Lemma S4. Assume Conditions CI1,C2 hold, let &;; are i.i.d. Rademacher ran-
dom variables. Then, for nins0r, > c(ny A noy) logg(nl + ny) where c is some

constant, there exist an absolute constant Cy such that

Cahiay o {(n1 V ) log (ny + 1) }'?

ning

Bv@]| <

Proof of Lemma The proof can be completed by following the proof of Lemma

6 in Klopp| (2014). [

Lemma S5. Assume Conditions C1,C2 and C4 hold, then for all A € C(r)

where C(r) is defined in (S1.20), we have

1

ning

2
HWo@fﬁoAH > 1
’ F

2
~ 2n1ns H@§ o @i,ﬁ o AHF—anmQh(l)’ﬁ (E H\p(3)H)2 ,

where ©% = (91/2) with probability at least 1 — 1/(ny + ns) for some constant

*,0]
Cs.
Proof of Lemma The proof can be completed by following the proof of Lemma

12 in Klopp, (2014)). ]

Proof of Theorem It follows from the definition of A 5 that,

1

nin2

~ ~ 2 ~ 1 . 2
W o ®f (A —Y)H HA < HW ot A*—YH Al
H °Ep o\ F+T Al = ning °® el )F+T|| I

(S1.21)

Since we can rewrite the first term in both the left and right hand sides of
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(S1.21) as
1 ~ ~ 2 1 ~ ~ 2
Wo®ho(4;-Y)|| = WoBlo(A;- A+ A -Y)| .
ning F ning F

the inequality (ST.21) is equivalent to

HW @i (Ag— ) <Wo(:)éo(A\Q—A*)7W0@EO(Y—A*)>

HF ning

ning
ce(ian -]
S (A awesed oo (a4

For the left hand side, we have

oo (- a);

—(Wo®lo(As-A,) Wob}o(As-A,))

(A5— A, Woblo(A;—A.))
~(A;-A Wo(@)T @T’ﬁ)o(ﬁﬁ—A*»

<Aﬂ—A woel, (ﬁﬁ—A*».

It implies that we can turns the above inequality to be

2 1

<

F~ ning2
2

ninz

| Jwootae ()

(As- A, Wo (O -0l ;)0 (A —4s))+

ning

(A awe8c) < (1. A )

(S1.22)

In the following, we use U@, for i = 1. 2, which are defined in Lemmas
[S2HS3] Under Conditions C1-C4, Lemmas [S2HS3|show that there exist constants

A®M and A® such that with probability at least 1 — 1/(n; +ng) — 1/(ny +ng)?
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and 1 respectively. As defined in (S1.7), we have for a positive constant C,
2AM + A® < A with probability at least 1 — 2/(ny + ny). Thus we can

simplify (S1.22)) due to the trace duality (SI.9) to be

1
ning

HW o @iﬁ o (A\ﬁ — A*>

‘ 2 ~

_<GiA Hﬁﬁ _ A,

(1A, - | A

N—

*

Write the singular value decomposition of A, as > ;2 JZ-(A*)UE?*UX)*T.

i

Let A,, be the linear span of ug) - ,u(AT‘:‘*) and A,, be the linear span of
vgz, cees vgf*). For any matrix B, define the operators

PA*L (B) :PA*jBPA*ﬁ and PA* (B):B—PA*L (B)

To prove the remaining bounds, note the fact that for any A\ﬁ,

AL — Hjﬁ < HPA* (A - 4,)| - HPA*L (4. 45)| - s123)
This, the triangle inequality and 7 > 3048 lead to
1 ; ~ 2 5 ~
Woe!,o (Aﬂ—A*) ’ < —THPA* (Aﬁ—A*> (S1.24)
n1N9 ' F 3 *

Since Py, (B) = Py, . BPa,,+P, 1+ B,rank(P4,,B) < rank(B) and rank(Py4,, B) <
rank(B), we have that rank(P,, (B)) < 2rank(A, ). From (S1.24)), we compute

1

ning

2
< gT\/ 2rank(A,)
F

W o @iﬂ o (Aﬁ - A*)

’ﬁg _ A,

» .

Together with Lemma[S6|and above, it implies that

< y/T2rank(A,)

*

oo a

<ol (a.-4)

i-al,
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Seta = ||25 — A,||co- By definition of A\B’ we have that a < 2ay.

n 64 log(ni+n .
Suppose that ||©% o @iﬂ o (A — A} < a’hs)p W, then it

further implies

L a4 > s - 2
A; — Al < 22 |e8 ot A, — A,
NN ? F~ ning « 0 © (Ap ) »
Thus we have
U144 l? < Cohanshe.slog!(m + no)
mang I N |

Otherwise if ||©% o @iﬁ o (Ag— A,)|% > a’he) s %, we have

that a™! (A\B — A,) € C(T2rank(A,)) due to the definition in (S1.20). By apply-
ing lemma|S4] we can have with probability at least 1 — 3/(ny + n»), there exist

some constants Cs and C'; such that

2

1
F <Cominahyy gra. (7 + (E [ 0@]))°)

ning

A;— A,

Crhiy shi) o7 4. 108 (m1 + 1)
(nl A ng)

§C6n1n2h%1)75r,4* 7% +

For the above result, let f to be logit inverse link function, we have 11 gh3) g <
27 iy pha,g < et /Free o222 Bland hy) 5 < et+/2Fortlee/20 which

leads to the final version of Theorem (S3). O

Lemma S6. If 7 > 3(2|[0W|| + [|[U®)|)) where V) and W@ are defined in

Lemmas [S2HS3]

I (4. 4)

sl (a-4)

*
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Proof of Lemma[S6] Due to the inequality (S1.22)) in the proof of Theorem [S3]

use the fact that the left hand side always nonnegative, we have that
(|4

This and (S1.23)) implies that

2 | ~
AL < 57|45 - A

*

feac (2. 40

S5 HPA* (A* - z‘iﬂ)

*

S1.5 Simulation Study (Cont’)

S1.6 Real data application (Cont’)

12500-
5000-

10000-
4000-

7500-
3000-

count
count

5000- 2000-

2500~ 1000-

0 200 400 600 10 20 30 40
Number of songs rated Number of songs rated

Figure S1: Left: The histogram of the number of songs rated per user in the Yahoo! Webscope

dataset. Right: Similar to the left figure but restricted to no more than 40 songs rated per user.

We also demonstrate the proposed methodology by analyzing the Coat dataset



MATRIX COMPLETION UNDER LOW-RANK MISSING

available at https://www.cs.cornell.edu/ schnabts/mnar/. It contains (incomplete)
ratings from 290 Turkers on 300 items. The dataset consists of two subsets, a
training set and a test set. The training set records approximately 7,000 ratings
for 24 self-selected coats given by the aforementioned 290 Turkers. The test set
was consisted of the ratings for 16 randomly picked coats that are not rated in
the training set. The missing rates are 0.92 overall, 0.9172 for each Turker, and
0.7067 to 0.9833 across coats. In this experiment, we applied those methods as
described in Section [6] to the training set and evaluated the test errors based on
the corresponding test set.

Table [S4|reports the root mean squared prediction errors. In additional to the
same ten versions of proposed methods, we also report the result of Prop,(:)Iorolo
which missing probability is provided by the propensities in Schnabel et al.
(2016). Note that Prop,ég,OJ performs the best among all ten versions of
proposed methods. With the propensities estimated by logistic regression in
Schnabel et al.| (2016), Prop,@prolo outperforms the existing methods NW, KLT
and MHT. However, even compared with Prop,(:)Iorolo which is the best, our
proposed method perform significantly better in terms of root mean squared pre-
diction errors, and achieve as much as 10% improvement. This suggests that a

more flexible modeling of missing structure improves the prediction power.
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Algorithm 1: The ADMM used to solve (3.3)

Input: Initialize k& = 0, and select u, H®*), Z#), ng), Gék) such that Z(*) is a

solution of (3.3) without constraints, 17 ng)lnz =0 and Hng)Hoo < as.

1 Minimize £, (Z, ng)7 Gék); H®)) with respect to Z:
Z0D = SVT (- {1/2(GF + G + 1/uH® +1/uH)Y.
Here SVT . is the singular value soft-thresholding operator defined as
SVT. (D) = Udiag({(o; —c), })V" foranyc >0,

where x4 = max(x,0), and ULV, with ¥ = diag({o;}), is the singular value
decomposition of a matrix D.

2 Minimize £, (Z*+D, Gy, G H®) with respect to Gy :

(k+1) _ ; EH gty _ (k) H2
G; aulrgmln0 5 Gy (Z 1/uH, ) o

1T Gilp,=
Let B; = Z*+D — 1/uH™ and simplifies to

ngJrl) =B — (nlng)_llleBlanJ.

3 Minimize £, (Z*+1), ngﬂ), Go; H®)) with respect to Ga:

2

1
G<2k+1> = argmin HG2 — {chd + ZVZEW (,uoldJ + Zold) — Hém + uZ(k+1)} /(1 + u)
G2l oo <2

F
Let By = {Zoa + £V 2lw (ptoiad + Zowa) — HS” + uZ* 1} /(1 + u) and

G;k—&-l)

simplifies to (i,7) = min{as, max{—as, Bs(i,j)}.

4 Update the dual variable H(*+1 = (F* 0T pr{myr by
HED — g0y (200 G0y ang JEHD Z g0y 20+ _ Gy,

5 Return Z = Z(**1) if converged. Otherwise, increment k and repeat Steps 1-5.
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Algorithm 2: The ADMM used to solve (S1.2)

Input: Initialize £ = 0, and select u, H® z®F G*) such that Z*) is a solution of

(ST2) without constraints, |G* ||, < 3.

1 Minimize £, (Z,G™*); H®) with respect to Z:
Z0H) = SVT ()~ 10 {GW + 1/uH P},

2 Minimize £,(Z*+1) G; H*®)) with respect to G:

| 1 - ’
G* Y = argmin HG - {zom + 2 Vzlw (@ + Zoo) — HY + uZ““*”} /(1 +w)
IGlloc<B

F
Let B = {Zoq + tVzlw (i + Zoa) — H® +uZ D} /(1 + u) and simplifies
to G¥H (i, j) = min{ 8, max{—3, B(i, j)}.

3 Update the dual variable H (1) by
HHD = ) _ y(Z0+) _ gty

a4 Return Z = Z(*+1) if converged. Otherwise, increment k and repeat Steps 1-4.
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Algorithm 3: Estimation of target matrix 25.

Input: Covariate matrix A, incomplete data matrix Y, estimated probability matrices
(:)5 (or (:)), tuning parameter candidates 7(1), ... 7(*) where k is the grid
length used for the search of parameter 7 and a k evaluation matrix Q = (Q;;)

tobe Q = 0.

1 Randomly partition the observed entries of Y into 5 equal sized subsamples. These
subsamples are used in turn as a test set. When subsample [ is used as test data, the
remaining 4 subsamples are used as training data. Denote the corresponding indicator
matrix of test data by W*(l) and that of training data by W),

) by plugging W and 7(*)

2 Foreachi=1,...,kpandl =1,...,5, calculate ﬁg
in (4.3).
~ 0)
sFori=1,....k Q=1 W' o0 o (AP —v)3.

4 Output the best parameters 7) that minimize Q; among the entries of Q.

5 Calculate ﬁgm by plugging W and 74) in #@3).
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Table S1: Root mean squared errors, test errors, estimated ranks 7 i, and their standard devi-
ations (in parentheses) under the low-rank, missing-observation mechanism, for three existing
methods and 10 versions of the proposed methods, where Prop indicates the estimators are
obtained by solving problem (#.3), while (:)/3, (:)Winﬁ, (:)a, (:)1-bit,ﬁ’ @1_bit,wm,[5, and (:)1_|0it70Y
represent the probability estimators used in (.3)), as described in Section and ¢ = 0.05 or
0.1 denotes the winsorized proportion for which 3 is chosen.

RMSE(Ajg, A, )

(n1,n2) = (1000, 1000) Test Error TA,
Prop_Owin.0.05 1.3975(0.0142)  0.2375(0.0035)  114.67 (19.73)
Prop.©;5.0.05 1.3909 (0.0064)  0.2391 (0.0023)  90.04 (6.51)
Prop_Owins.0.1  1.3878 (0.0078)  0.2354 (0.0023)  100.69 (16.20)
Prop-©;.0.1 1.3852(0.0062)  0.2375(0.0022) 81.79 (4.75)
Prop.©, 1.4024(0.0242)  0.2389 (0.0062)  115.40 (22.21)
Prop_©1.piwin5-0.05  1.4068 (0.0062)  0.2430 (0.0022)  98.97 (2.55)
Prop_©.15-0.05 13920 (0.0072)  0.2383(0.0027) 97.88 (6.06)
Prop_®1piwins-0.1 14121 (0.0062)  0.2449 (0.0022)  105.50 (1.16)
Prop_©14it5-0.1 13913 (0.0064)  0.2383 (0.0023)  100.94 (7.12)
Prop-©1pioa 13894 (0.0084)  0.2353(0.0029) 113.92 (11.35)
NW  1.8519(0.3534)  0.4081 (0.1405)  246.64 (82.34)
KLT  2.3207 (0.0053)  0.5964 (0.0016) 1.0 (0.00)
MHT  1.5083 (0.0084)  0.2857 (0.0033)  77.47 (5.31)
(n1,n2) = (1200, 1200) RMSE(Az, A,) Test Error ra,

Prop,C:)Win,g,O.05
Prop,(:)g,0.0S
Prop,(:)wmﬁ,o.l
Prop_©;.0.1
Prop,(:)CY
Pr0p7@1.bnywm,570.05
PrOp,(/':)1.bn,@,0.05
PrOpféLbit,Win,B—O-l
Prop,(:)1_bit,5,0.1
Prop,C:)rbit,a

NW

KLT

MHT

1.3389 (0.0168)
1.3226 (0.0057)
1.3270 (0.0073)
1.3144 (0.0054)
1.3453 (0.0287)
1.3415 (0.0054)
1.3237 (0.0066)
1.3489 (0.0054)
1.3259 (0.0058)
1.3289 (0.0103)
1.5528 (0.3693)
2.3494 (0.0044)
1.4649 (0.0062)

0.2171 (0.0040)
0.2157 (0.0020)
0.2148 (0.0019)
0.2135 (0.0018)
0.2187 (0.0071)
0.2202 (0.0019)
0.2146 (0.0025)
0.2226 (0.0019)
0.2157 (0.0019)
0.2141 (0.0025)
0.3016 (0.1382)
0.6041 (0.0013)
0.2706 (0.0024)

135.84 (25.41)
106.13 (5.81)
112.28 (19.72)
97.71 (5.49)
138.51 (29.08)
115.63 (1.37)
115.07 (8.29)
125.48 (1.04)
119.25 (10.60)
137.05 (17.28)
214.89 (100.18)
1.00 (0.00)
84.03 (4.49)

2 With ryv, = 11, 1A, =11, (n1,n2) = (1000, 1000), (1200, 1200), and SNR = 1. The
three existing methods are proposed, respectively, in|Negahban and Wainwright (2012)(NW),
Koltchinskii et al.|(2011)(KLT), and [Mazumder et al.| (2010)(MHT)
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Table S2: Root mean squared errors, test errors, estimated ranks r Ay and their standard devi-
ations (in parentheses) under the low-rank, missing-observation mechanism, for three existing
methods and 10 versions of the proposed methods, where Prop indicates the estimators are
obtained by solving problem (#.3), while (:)/3, (:)Winﬁ, (:)a, (:)1-bit,ﬁ’ @1_bit,wm,[5, and (:)1_|0it70Y
represent the probability estimators used in (.3)), as described in Section and ¢ = 0.05 or
0.1 denotes the winsorized proportion for which 3 is chosen.

(n1,n2) = (600, 600) RMSE(As, A,) Test Error ra,
Prop_®win 5-0.05 1.8460 (0.1167)  0.4080 (0.0470)  25.88 (23.71)
Prop-©;5.0.05 17310 (0.0321) 03625 (0.0135)  43.55 (5.29)
Prop_Owin s 0.1 17601 (0.0760)  0.3745 (0.0308) ~ 44.63 (16.16)
Prop.©;.0.1  1.7275(0.0217)  0.3611 (0.0091)  42.85 (3.96)
Prop.©. 1.8992(0.1061)  0.4289 (0.0429)  14.75 (21.17)
Prop_©1iwin,s-0.05  1.8113 (0.1117)  0.3932 (0.0443)  31.20 (20.73)
Prop_©1it,5-0.05 17846 (0.1045)  0.3827 (0.0417)  34.66 (18.38)
Prop_©1pinwin,g-0.1  1.8245(0.1129)  0.3984 (0.0444)  28.58 (22.20)
Prop_©qit5.0.1  1.7888 (0.1118)  0.3845 (0.0449)  33.49 (18.47)
Prop ©1pie  1.8358 (0.1133)  0.4024 (0.0446)  25.45 (22.45)
NW 20240 (0.2553)  0.4941 (0.1225)  149.33 (53.68)
KLT  2.3087 (0.0079)  0.5997 (0.0025)  1.00 (0.00)
MHT  1.8147 (0.0087)  0.4033 (0.0038) 43.61 (2.60)
(n1,n2) = (800,800) RMSE(Az, A,) Test Error T4,
Prop_®win 5 0.05 16632 (0.0151)  0.3355 (0.0061)  76.87 (7.80)
Prop_©5.0.05  1.6700 (0.0066)  0.3389 (0.0026)  63.18 (4.26)
Prop_Owins-0.1  1.6647 (0.0128)  0.3362 (0.0054) 71.94 (3.7)
Prop.©;.0.1  1.6673 (0.0067)  0.3380 (0.0026)  61.29 (3.79)
Prop.©, 1.6657 (0.0194)  0.3362 (0.0076)  77.60 (9.58)
Prop_©1siwin,5-0.05  1.6816 (0.0080)  0.3427 (0.0028)  69.62 (9.42)
Prop_©1it,5.0.05  1.6740 (0.0070)  0.3396 (0.0027)  66.47 (6.59)
Prop_©1iwin,s-0.1  1.6800 (0.0064)  0.3431 (0.0027)  74.12 (3.95)
Prop_®1is-0.1  1.6701 (0.0070) 03389 (0.0026)  70.28 (6.25)
Prop ©1pia 16722 (0.0111)  0.3386 (0.0044)  70.46 (5.63)
NW  2.1071 (0.3128)  0.5377 (0.1498)  222.81 (84.29)
KLT  2.3572(0.0067)  0.6102 (0.0021)  1.00 (0.00)
MHT  1.7604 (0.0076) ~ 0.3823 (0.0031)  61.07 (3.2)

S with ry, = 11,74, =31, (n1,n2) = (600, 600), (800, 800), and SNR = 1. The three
existing methods are proposed, respectively, in |[Negahban and Wainwright| (2012)(NW),
Koltchinskii et al.|(2011)(KLT), and[Mazumder et al.|(2010)(MHT)
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Table S3: Root mean squared errors, test errors, estimated ranks r Ay and their standard devi-
ations (in parentheses) under the low-rank, missing-observation mechanism, for three existing
methods and 10 versions of the proposed methods, where Prop indicates the estimators are
obtained by solving problem (#.3), while (:)/3, (:)Winﬁ, (:)a, (:)1-bit,ﬁ’ @1_bit,wm,[5, and (:)1_|0it70Y
represent the probability estimators used in (.3)), as described in Section and ¢ = 0.05 or
0.1 denotes the winsorized proportion for which 3 is chosen.

(n1,n2) = (1000, 1000)

RMSE(Ajg, A,)

Test Error

r~
Ap

Prop,(:)win,g,0.0S
Prop,(:)g,O‘OE)
Prop,(:)Winﬁ,O.l
Prop,@)g,().l
Prop,@a
Prop,(:)1.bn,wm,5,0.05
Prop,(:)1.bit,5,0405
PI’OpféLbit,Win,ﬁ—O-l
PI’Op,@Lbit’[g,O. 1

1.6123 (0.0096)
1.6155 (0.0054)
1.6045 (0.0069)
1.6140 (0.0056)
1.6167 (0.0156)
1.6285 (0.0050)
1.6173 (0.0063)
1.6362 (0.0052)
1.6210 (0.0055)

0.3134 (0.0037)
0.3163 (0.0020)
0.3104 (0.0026)
0.3154 (0.0020)
0.3149 (0.0057)
0.3205 (0.0020)
0.3167 (0.0024)
0.3231 (0.0020)
0.3175 (0.0020)

108.31 (18.72)
86.32 (5.28)
94.81 (7.74)
79.20 (5.26)
109.57 (20.21)
94.35 (2.47)
96.33 (6.07)
87.25 (6.15)
84.35 (4.62)

Prop_©pra 1.6166 (0.0111)  0.3150 (0.0038)  96.14 (14.22)
NW  1.9631(0.2975)  0.4638 (0.1336) 236.97 (85.86)
KLT  2.3312(0.0051)  0.5984 (0.0016)  1.00 (0.00)
MHT  1.6924 (0.0077)  0.3512(0.0030) 77.64 (4.73)
(n1,n2) = (1200, 1200) RMSE(Az, A,)  Test Error ra,
Prop_®win 5-0.05  1.5805(0.0094)  0.3018 (0.0035)  132.90 (24.35)
Prop.©®;5.0.05 1.5756 (0.0051)  0.3020 (0.0019)  106.59 (6.45)
Prop_®wins.0.1  1.5746 (0.0051)  0.2991 (0.0018)  110.47 (21.53)
Prop.©;.0.1  1.5722(0.0047)  0.3007 (0.0017)  99.41 (5.04)
Prop.®. 1.5860(0.0192)  0.3036(0.0067) 134.72 (27.92)
Prop_©1pitwin3-0.05 15937 (0.0041)  0.3073 (0.0017)  108.50 (2.12)
Prop_®1.15-0.05 1.5785(0.0070)  0.3020 (0.0026) 111.98 (7.35)

Pr0p7é1-bit,win,ﬁ—0~1
Prop,(:)1_bm,0.1
Prop,C:)pbn,a

NW

KLT

MHT

1.5952 (0.0041)
1.5774 (0.0048)
1.5727 (0.0060)
1.6896 (0.2417)
2.3525 (0.0043)
1.6638 (0.0046)

0.3087 (0.0017)
0.3026 (0.0018)
0.2993 (0.0022)
0.3538 (0.1054)
0.6060 (0.0014)
0.3416 (0.0019)

116.63 (1.24)
120.85 (8.72)
132.53 (16.82)
193.73 (80.51)
1.00 (0.00)
93.87 (2.34)

52 With ryv, = 11, ra, = 31, (n1,n2) = (1000, 1000), (1200, 1200), and SNR =
1. The three existing methods are proposed, respectively, in Negahban and Wainwright
(2012)(NW), [Koltchinskii et al.| (201 1)(KLT), and Mazumder et al.|(2010)(MHT)
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Table S4: Root mean squared prediction errors based on coat data set for the 10 versions of
the proposed method, Prop,(:)p,op and the three existing methods proposed, respectively, in
Negahban and Wainwright (2012)(NW), [Koltchinskii et al.| (2011)(KLT), and [Mazumder et al.
(2010)(MHT).

Prop_®win,3-0.05 Prop,@B,O.OS Prop,(:)Win,g,OJ
RMSPE 1.0241 0.9592 1.0210
Prop_©;_.0.1 Prop_©., Prop,(:)1.bn,wm,ﬁ,0.05
RMSPE 0.9376 1.0190 1.0172
Prop,(:)1,bn,ﬂ,0.05 Prop,@pbmwmﬁ,oj Prop,C:)1,bn,ﬁ,O.1
RMSPE 1.0987 1.0171 1.0878
Prop,(:)1 bit,cx Prop,(:)prop NW
RMSPE 1.0162 1.0206 1.0329
KLT MHT

RMSPE 2.1758 1.5436
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