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Abstract: Matrix completion is a modern missing-data problem in which both the

missing structure and the underlying parameter are high dimensional. Despite the

missing structure being a key component of any missing-data problem, existing

matrix-completion methods often assume a simple uniform missing mechanism. In

this work, we study matrix completion from corrupted data under a novel low-rank

missing mechanism. The observation probability matrix is estimated using a high-

dimensional, low-rank matrix-estimation procedure, and then used to complete the

target matrix via inverse probability weighting. Owing to the high-dimensional and

extreme (i.e., very small) nature of the true probability matrix, the effect of inverse

probability weighting requires careful study. Lastly, we derive optimal asymptotic

convergence rates of the proposed estimators for both the observation probabilities

and the target matrix.
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1. Introduction

The problem of recovering a high-dimensional matrix A? ∈ Rn1×n2 from

very few (noisy) observations of its entries is commonly known as matrix com-

pletion, with applications including collaborative filtering, computer vision and

positioning. From a statistical viewpoint, it is a high-dimensional, missing-

data problem in which a high percentage of matrix entries are missing. As in

many missing-data problems, the underlying missing mechanism plays an im-

portant role. Most existing works (e.g., Candès and Recht (2009); Keshavan,

Montanari and Oh (2010); Recht (2011); Rohde and Tsybakov (2011); Koltchin-

skii, Lounici and Tsybakov (2011)) adopt a uniform observation mechanism,

where each entry has the same marginal probability of being observed. This

leads to significant simplifications, and has enabled the domain to move for-

ward rapidly, with various theoretical breakthroughs occurring in the last decade.

However, a uniform mechanism is often unrealistic. Recent works (Foygel et al.

(2011); Negahban and Wainwright (2012); Klopp (2014); Cai and Zhou (2016);
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Cai, Cai and Zhang (2016); Bi et al. (2017); Mao, Chen and Wong (2019)) have

tried to relaxing this restrictive assumption by adopting other missing structures.

The use of these settings hinges on having strong prior knowledge of the underly-

ing problem. At a high level, many of these works use a special form of low-rank

structure for the missing mechanism. For instance, Foygel et al. (2011) and Ne-

gahban and Wainwright (2012) both adopt a rank-one structure based on the

estimated marginal probabilities. In this study, we aim to recover the target ma-

trix A? under a flexible, high-dimensional, low-rank sampling structure. This is

achieved by using a weighted empirical risk minimization and by applying inverse

probability weighting (e.g., Schnabel et al. (2016); Mao, Chen and Wong (2019))

to adjust for the effect of non-uniform missingness.

Data arising in many applications of matrix completion, such as recommender

systems, usually possess a complex “sampling” structure that is largely unknown.

In a movie recommender system, users tend to rate movies that they prefer or

dislike the most, while often remaining “silent” about other movies. Another

example of a complex sampling regime is that of online merchandising. Here some

users may purchase certain items regularly without often rating them, but often

evaluate products that they rarely buy. Similarly to the widely adopted model

that ratings are generated from a small number of hidden factors, it is reasonable

to believe that the missingness is also governed by a small, and possibly different

set of hidden factors, leading to a low-rank model of the missing structure.

Inspired by generalized linear models, we model the probability of observation

Θ? = (θ?,ij)
n1,n2

i,j=1 ∈ (0, 1)n1×n2 using a high-dimensional, low-rank matrix M? =

(m?,ij)
n1,n2

i,j=1 ∈ Rn1×n2 with a known function f . Therefore, at the entry level,

we have θ?,ij = f(m?,ij). In generalized linear models, the linear predictor m?,ij

is further modeled as a linear function of the observed covariates. However, to

reflect the difficulty of attaining (appropriate and adequate) covariate information

and the complexity of modeling Θ? in some situations of the matrix completion,

we assume the predictor matrix M? is completely hidden. Despite M? being

hidden, the low rank and high dimensionality of M? allow both identification

and consistent estimation of Θ?, which facilitates matrix completion based on

inverse probability weighting. Motivated by the nature of matrix completion,

we propose a novel parametrization M? = µ?1n1
1T

n2
+ Z?, where Z? satisfies

1T

n1
Z?1n2

= 0. Our proposal extends the work of Davenport et al. (2014), who

solve a binary matrix-completion problem and pursue a different goal. In contrast

to that of Davenport et al. (2014), the proposed method does not regularize the

estimation of µ?. Instead, it regularizes the nuclear norm of the estimation of

Z?, which requires a different algorithmic treatment to avoid bias caused by the
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nuclear-norm penalty.

Three fundamental aspects that set our work apart from existing works on

matrix completion: (i) the high-dimensional probability matrix Θ, the dimensions

of which, n1, n2, go to infinity in our asymptotic setting; (ii) the diminishing lower

bound of the observation probabilities (as n1, n2 go to infinity), and added issue to

the instability of inverse probability weighting; (iii) the effects of the estimation

error in the inverse probability weighting of the matrix completion procedure.

Aspects (i) and (ii) are unique to our problem, and not found in the literature

on missing data. Works related to aspect (iii) are sparse in the literature on

matrix completion. Noted that Mao, Chen and Wong (2019) focused on the low-

dimensional parametric modeling of inverse probability weighting with observable

covariates.

We develop non-asymptotic upper bounds for the mean squared errors of the

proposed estimators of the observation probabilities and the target matrix. To

sustain the convergence rate of the target matrix under the high dimensionality of

M? and the low levels of the observation probabilities, we propose re-estimating

Z? by constraining the magnitude of its entries to a smaller threshold. Our

analysis shows that the proposed constrained inverse probability weighting es-

timator achieves the optimal rate (up to a logarithmic factor in the estimation

of the target matrix). We also compare the completion based on inverse prob-

ability weighting and the proposed constrained estimation with that based on

direct weight trimming (or winsorization), a known practice in the conventional

missing-value literature (e.g., Rubin (2001); Kang and Schafer (2007); Schafer

and Kang (2008)). As such, we show that the constrained estimation has both

theoretical and empirical advantages.

2. Model and Method

2.1. General setup

Let A? = (a?,ij)
n1,n2

i,j=1 ∈ Rn1×n2 be an unknown high-dimensional matrix of

interest, and Y = (yij)
n1,n2

i,j=1 be a contaminated version of A? according to the

following additive noise model:

yij = a?,ij + εij , for i = 1, . . . , n1; j = 1, . . . , n2, (2.1)

where {εij} are independently distributed random errors with zero mean and

finite variance. In the context of matrix completion, only a portion of {yij} is

observed. For the (i, j)th entry, define the sampling indicator wij = 1 if yij is
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observed, and zero otherwise, and assume {εij} are independent of {wij}.
For the sampling mechanism, we adopt a Bernoulli model, where {wij} are

independent Bernoulli random variables with observation probabilities {θ?,ij},
collectively denoted by a matrix Θ? = (θ?,ij)

n1,n2

i,j=1 ∈ (0, 1)n1×n2 . Similarly to

generalized linear models, the observation probabilities can be expressed in terms

of an unknown matrix M? = (m?,ij)
n1,n2

i,j=1 ∈ Rn1×n2 and a prespecified monotone

and differentiable function f : R → [0, 1]; that is, θ?,ij = f(m?,ij), for all i, j.

The matrix M? plays the same role as a linear predictor in the generalized linear

model. The function f is an inverse link function. Two popular choices of f are

the inverse logit function g(m) = em/(1 + em) (logistic model) and the standard

normal cumulative distribution function (probit model).

2.2. Low-rank modeling of A? and M?

The above setup is general. Without additional assumptions, it is virtu-

ally impossible to recover the hidden feature matrix M? or the target matrix

A?. A common and powerful assumption is that A? is a low-rank matrix; that

is, rank(A?) � min{n1, n2}. For example, consider the Yahoo! Webscope data

set (see Section 7). This data set contains a partially observed matrix of ratings

from 15,400 users fors 1,000 songs, and the goal is to complete the rating matrix.

The low-rank assumption reflects the belief that users’ ratings are generated by

a small number of factors, representing several standard preference profiles for

songs. This viewpoint has proven useful in modeling recommender systems (e.g.,

Candès and Plan (2010); Cai, Candès and Shen (2010)).

The same idea can be adapted to the missing pattern, despite the factors that

induce the missingness possible differing from those that generate the ratings. To

this end, we assume M? is of low rank. Next, we decompose M? as

M? = µ?J +Z?, where 1T

n1
Z?1n2

= 0, (2.2)

where 1n is an n-vector of ones, and J = 1n1
1T

n2
. Here, µ? is the mean of M?;

that is, µ? = 1T

n1
M?1n2

/(n1n2). Note that this decomposition holds for any

matrix M by setting µ = (n1n2)
−11T

n1
M1n2

and Z = M − µJ . Moreover, the

decomposition is unique, owing to the constraint that 1T

n1
Z?1n2

= 0. The key here

is to reparametrize M? in terms of µ? and Z?, which require different treatments

in their estimations. See Section 3 for details. Furthermore, the low-rankness of

M? can be translated to the low-rankness of Z?.

Note that the rank ofM? is not the same as that of Θ?, owing to the nonlinear

transformation f . In general, the low-rank structure of M? implies a specific low-
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dimensional nonlinear structure of Θ?. In a common high-missingness scenario,

most entries of M? are significant and negative, where many common choices of

the inverse link function can be well approximated by a linear function. Thus

our modeling can be regarded as a low-rank modeling of Θ?.

There are several related, but more specialized models. Srebro and Salakhut-

dinov (2010) and Negahban and Wainwright (2012) use an independent row and

column sampling mechanism, leading to a rank-one structure for Θ?. Cai, Cai

and Zhang (2016) consider a matrix block structure for Θ? and hence M?, that

can be regarded as a special case of low-rank modeling. Mao, Chen and Wong

(2019) examine the case when the missingness depends on observable covariates,

and adopt a low-rank modeling with a known row space of M?. In this study,

we focus on the situation in which the missingness is dependent on some hid-

den factors, reflecting situations when obvious covariates are unknown or not

available.

2.3. Inverse probability weighting-based matrix completion: Motiva-

tions and challenges

Write the Hadamard product as ◦ and the Frobenius norm as ‖ · ‖F . To

recover the target matrixA?, many existing matrix completion techniques assume

a uniform missing structure. Hence, they use an unweighted/uniform empirical

risk function R̂UNI(A) = (n1n2)
−1‖W ◦(A−Y )‖2F (e.g., Candès and Plan (2010);

Koltchinskii, Lounici and Tsybakov (2011); Mazumder, Hastie and Tibshirani

(2010)), which is an unbiased estimator of the risk R(A) = E(‖A−Y ‖2F )/(n1n2)

(up to a multiplicative constant) under uniform missingness. The work of Klopp

(2014) is a notable exception that considers the use of R̂UNI under non-uniform

missingness.

For any matrixB = (bij)
n1,n2

i,j=1 , we denoteB† = (b−1ij )n1,n2

i,j=1 andB‡ = (b
−1/2
ij )n1,n2

i,j=1 .

Under general missingness (uniform or non-uniform), one can show that, for any

A ∈ Rn1×n2 ,

R (A) =
1

n1n2
E
(
‖A− Y ‖2F

)
=

1

n1n2
E

(∥∥∥W ◦Θ‡? ◦ (A− Y )
∥∥∥2
F

)
.

Clearly, A? uniquely minimizes R. If Θ? were known, an unbiased estimator of

R would be

R̂ (A) =
1

n1n2

∥∥∥W ◦Θ‡? ◦ (A− Y )
∥∥∥2
F
, (2.3)

which motivates the use of inverse probability weighting in matrix completion, as

in Mao, Chen and Wong (2019). In addition, our theoretical analysis shows that
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the nuclear-norm-regularized empirical risk estimator (defined later) based on R̂

(assuming the use of true observation probabilities) improves upon the existing

error upper bound of the corresponding estimator based on R̂UNI achieved by

Klopp (2014), as shown in Section 5.3. However, the inverse probability weights

Θ‡? are often unknown and have to be estimated, which has to be conducted

carefully in the context of matrix completion.

Despite the popularity of inverse probability weighting in the missing-data

literature, it is known to produce unstable estimations, owing to the occurrence

of small probabilities (e.g., Rubin (2001); Kang and Schafer (2007); Schafer and

Kang (2008)). This problematic scenario is common in matrix-completion prob-

lems in which we attempt to recover a target matrix from very few observa-

tions. Theoretically, a reasonable setup should allow some θ?,ij to go to zero as

n1, n2 → ∞, leading to diverging weights and a nonstandard setup of inverse

probability weighting. Therefore, a careful construction of the estimation proce-

dure is required.

For uniform sampling (θ?,ij ≡ θ0 for some probability θ0), one only has to

worry about a small common probability θ0 (or that θ0 diminishes in an asymp-

totic sense.) Although a small θ0 increases the difficulty of the estimation, R̂(A)

changes only up to a multiplicative constant. However, in a non-uniform set-

ting, this is not as straightforward, owing to the heterogeneity among {θ?,ij}.
To demonstrate the issue, we examine the Yahoo! Webscope data set described

in Section 7. A sign of the strong heterogeneity in {θ?,ij} is a large θU/θL,

where θL = mini,j θ?,ij and θU = maxi,j θ?,ij . The corresponding ratio of es-

timated probabilities θ̂U/θ̂L based on the rank-one structure of Negahban and

Wainwright (2012) is 25,656.2, and that based on our proposed method (without

re-estimation, to be described below) is 23,988.0. This strong heterogeneity can

jeopardize the convergence rate of our estimator, which was address properly in

our framework.

In the following section, we propose an estimation approach for Θ? in Section

3.1 and an appropriate modification in Section 3.3, which, when substituted into

the empirical risk R̂, allows us to construct a stable estimator for A?.

3. Estimation of Θ?

3.1. Regularized maximum likelihood estimation

We develop the estimation of Θ? based on the framework of a regularized

maximum likelihood. Given the inverse of the link function f , the log-likelihood
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function with respect to the indicator matrix W = (wij) ∈ Rn1×n2 is

`W (M) =
∑
i,j

[
I[wij=1] log {f (mij)}+ I[wij=0] log {1− f (mij)}

]
,

for anyM = (mij)
n1,n2

i,j=1 ∈ Rn1×n2 , where IA is the indicator of an event A. Owing

to the low-rank assumption of M?, a natural candidate as an estimator for M?

is the maximizer of the regularized log-likelihood `W (M)− λ‖M‖∗, where ‖ · ‖∗
represents the nuclear norm, and λ > 0 is a tuning parameter. It is also common

to enforce an additional max-norm constraint ‖M‖∞ ≤ α, for some α > 0, in the

maximization (e.g., Davenport et al. (2014)). Note that the nuclear norm penalty

favors M = 0, corresponding to Pr(wij = 1) = 0.5, for all i, j. Nevertheless, this

does not align well with common settings of matrix completion, under which the

average probability of observations is quite small, resulting in a large bias. In

view of this, we instead adopt a parametrization M? = µ?J + Z?, and consider

the following estimator of (µ?,Z?):(
µ̂, Ẑ

)
= argmax

(µ,Z)∈Cn1,n2
(α1,α2)

`W (µJ +Z)− λ ‖Z‖∗ , (3.1)

where, Cn1,n2
(α1, α2) = {(µ,Z) ∈ R×Rn1×n2 : |µ| ≤ α1, ‖Z‖∞ ≤ α2, 1T

n1
Z1n2

=

0}. Note that the mean µ of the linear predictor µJ + Z is not penalized. The

constraint 1T

n1
Z1n2

= 0 ensures the identifiability of µ and Z. The constraints

in Cn1,n2
(α1, α2) are analogous to ‖M‖∞ ≤ α0, where α0 = α1 + α2, but on

the parameters µ and Z. With (µ̂, Ẑ), the corresponding estimator of M? is

M̂ = µ̂J + Ẑ.

Davenport et al. (2014) considered a regularized maximum likelihood ap-

proach for a binary matrix completion problem. Their goal was different, be-

cause they aimed at recovering a binary rating matrix in lieu of the missing

structure, and considered a regularization on M (instead of Z) via ‖M‖∗ ≤
α′{rank(M?)n1n2}1/2. For the scaling parameter α′, Davenport et al. (2014)

considered an α′ independent of the dimensions n1 and n2 to restrict the “spik-

iness” of M . As explained earlier, in our framework, θL should be allowed to

go to zero as n1, n2 → ∞. To this end, we allow α1 and α2 to depend on the

dimensions n1 and n2. See Section 5.

3.2. Computational algorithm and tuning parameter selection

To solve the optimization given in (3.1), we begin with the observation that

`W is a smooth concave function, which allows us to use an iterative algorithm
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called the accelerated proximal gradient algorithm (Beck and Teboulle (2009)).

Given a pair (µold,Zold) from a previous iteration, a quadratic approximation of

the objective function −`W (µJ +Z) + λ‖Z‖∗ is formed, as follows:

PL {(µ,Z) , (µold,Zold)} =− `W (µoldJ +Zold)

+ (µ− µold) 1T

n1
{−∇µ`W (µoldJ +Zold)}1n2

+
Ln1n2

2
(µ− µold)2

+ 〈Z −Zold,−∇Z`W (µoldJ +Zold)〉

+
L

2
‖Z −Zold‖2F + λ ‖Z‖∗ ,

where L > 0 is an algorithmic parameter determining the step size of the prox-

imal gradient algorithm, and is chosen using a backtracking method (Beck and

Teboulle (2009)). Here, 〈B,C〉 =
∑

i,j bijcij , for any matrices B = (bij) and

C = (cij) of the same dimensions.

In this iterative algorithm, a successive update of (µ,Z) can be obtained by

argmin
(µ,Z)∈Cn1,n2

(α1,α2)
PL {(µ,Z) , (µold,Zold)} ,

where the optimization with respect to µ and Z can be performed separately.

For µ, one can derive a closed-form update

min
[
α1,max

[
−α1, µold + (Ln1n2)

−1 1T

n1
{−∇µ`W (µoldJ +Zold)}1n2

]]
.

For Z, we need to perform the minimization

argmin
‖Z‖∞≤α2,1T

n1
Z1n2

=0
〈Z −Zold,−∇Z`W (µoldJ+Zold)〉+ L

2
‖Z −Zold‖2F + λ ‖Z‖∗ ,

which is equivalent to

argmin
‖Z‖∞≤α2,1T

n1
Z1n2=0

1

2

∥∥∥∥Z −Zold −
1

L
∇Z`W (µoldJ +Zold)

∥∥∥∥2
F

+
λ

L
‖Z‖∗ . (3.2)

We apply a three-block extension of the alternative direction method of multipli-

ers (Chen et al. (2016)) to an equivalent form of (3.2):

argmin
Z=G1=G2,1T

n1
G11n2=0, ‖G2‖∞≤α2

λ

L
‖Z‖∗+

1

2

∥∥∥∥G2−Zold−
1

L
∇Z`W (µoldJ+Zold)

∥∥∥∥2
F

.

(3.3)
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Write H = (H1,H2). The augmented Lagrangian for (3.3) is

Lu (Z,G1,G2;H) =
λ

L
‖Z‖∗ +

1

2

∥∥∥∥G2 −Zold −
1

L
∇Z`W (µoldJ +Zold)

∥∥∥∥2
F

− 〈H1,Z −G1〉 − 〈H2,Z −G2〉+
u

2
‖Z −G1‖2F

+
u

2
‖Z −G2‖2F + I[1T

n1
G11n2=0] + I[‖G2‖∞≤α2],

where u > 0 is an algorithmic parameter, and IA is equal to zero if the constraint

A holds, and ∞ otherwise. The detailed algorithm to solve (3.3) is provided as

Algorithm 1 in the Supplementary Material. Noted that, in general, the multi-

block alternative direction method of multipliers may fail to converge for some

u > 0 (Chen et al. (2016)). In such cases, an appropriate selection of u is

crucial. However, we are able to show that the form of our algorithm belongs

to a special class (Chen et al. (2016)) in which convergence is guaranteed for

any u > 0. Therefore, we simply set u = 1. We summarize the corresponding

convergence result in the following theorem, the proof of which is provided in the

Supplementary Material.

Theorem 1. The sequence {Z(k),G
(k)
1 ,G

(k)
2 }, generated by Algorithm 1 in the

Supplementary Material, converges to the global optimum of (3.3).

Note that the alternative direction method of multipliers algorithm is nested

within the proximal gradient algorithm. However, our numerical experiments

show that the numbers of inner iterations (alternative direction method of multi-

pliers) and outer iterations (proximal gradient) are both small, usually less than

20. We summarize the corresponding convergence result of the overall proximal

gradient algorithm in the following theorem, the proof of which is provided in the

Supplementary Material.

Theorem 2. The estimator (µ̂, Ẑ) generated by the proximal gradient algorithm

converges to the global optimum of (3.1).

The tuning parameters α1 and α2 can be chosen based on prior knowledge of

the problem setup, if available. When a prior knowledge is not available, one can

choose large values for these parameters. Once these parameters are sufficiently

large, our method is not sensitive to their specific values. A more principled way

to tune α1 and α2 is a challenging problem, and beyond the scope of this work.

For λ, we adopt the Akaike information criterion (aic), where we approximate

the degrees of freedom by r
M̂

(n1 + n2 − rM̂ ).
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3.3. Constrained estimation

To use R̂ of (2.3), a naive idea is to obtain Θ̂ = (θ̂ij)
n1,n2

i,j=1 = F(M̂), where

F(M) = (f(mij))
n1,n2

i,j=1 ∈ Rn1×n2 , for any M = (mij)
n1,n2

i,j=1 ∈ Rn1×n2 , and then

to replace Θ‡? with Θ̂‡ = (θ̂
−1/2
ij )n1,n2

i,j=1 . However, this direct implementation is

not robust to extremely small probabilities of observation, and our theoretical

analysis shows that it could lead to a slower convergence rate in the estimation

of A?. In the literature om missing data, a simple solution is to winsorize the

small probabilities (Potter (1990); Scharfstein, Rotnitzky and Robins (1999)).

In the estimation of Θ̂ defined in (3.1) that assumes ‖Z?‖∞ ≤ α2, a large

α2 has an adverse effect on the estimation. In the setting of diverging α2 (due

to diminishing θL), the convergence rate of Ẑ becomes slower and the estimator

obtained after direct winsorization is affected. That is, even though the extreme

probabilities can be controlled by winsorizing, the unchanged entries of Ẑ (in

the winsorizing procedure) may already suffer from a slower rate of convergence.

This results in a larger estimation error under certain settings of missingness, as

revealed in Section 5.

A seemingly better strategy is to impose a tighter constraint directly in the

minimization problem given in (3.1), that is, to adopt the constraint ‖Z‖∞ ≤ β,

where 0 ≤ β ≤ α2. Theoretically, one can better control the errors on entries

of magnitude smaller than β. However, the mean-zero constraint of Z no longer

makes sense, because the constraint ‖Z‖∞ ≤ β may have shifted the mean.

We propose a re-estimation of Z? with a different constraint level β:

Ẑβ = argmax
Z∈Rn1×n2

`W (µ̂J +Z)− λ′ ‖Z‖∗ , subject to ‖Z‖∞ ≤ β. (3.4)

Note that we only re-computeZ, but not µ, which allows us to drop the mean-zero

constraint. Thus, M̂β = µ̂J+ Ẑβ. The corresponding algorithm for optimization

(3.4) can be derived similarly to that in Davenport et al. (2014), and is provided

in the Supplementary Material. In what follows, we write Θ̂ = F(M̂) and

Θ̂β = F(M̂β).

4. Estimation of A?

Now, we come back to (2.3), and replace Θ‡? with Θ̂‡β to obtain a modified

empirical risk:

R̃ (A) =
1

n1n2

∥∥∥W ◦ Θ̂‡β ◦ (A− Y )
∥∥∥2
F
, (4.1)
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where Θ̂‡β = (θ̂
−1/2
ij,β ) ∈ Rn1×n2 . Because A is a high-dimensional parameter, a

direct minimization of R̂∗ often results in over-fitting. To circumvent this, we

consider a regularized version,

R̃ (A) + τ ‖A‖∗ , (4.2)

where τ > 0 is a regularization parameter. Again, the nuclear-norm regularization

encourages a low-rank solution. Based on (4.2), our estimator of A? is

Âβ = argmin
‖A‖∞≤a

{
1

n1n2

∥∥∥W ◦ Θ̂‡β ◦ (A− Y )
∥∥∥2
F

+ τ ‖A‖∗

}
, (4.3)

where a is an upper bound on ‖A?‖∞. As special cases, Âβ contains (i) the

matrix completion Âα2
with an unconstrained probability estimator Θ̂ (β = α2)

and (ii) the estimator Âβ with a constrained probability estimator Θ̂β (β < α2).

We use an accelerated proximal gradient algorithm (Beck and Teboulle (2009))

to solve (4.3). For the choice of the tuning parameter τ in (4.3), we adopt a five-

fold cross-validation to select the remaining tuning parameters. Owing to the

non-uniform missing mechanism, we use a weighted version of the validation er-

rors; see Algorithm 3 in the Supplementary Material.

5. Theoretical Properties

5.1. Probabilities of observation

Let ‖B‖ = σmax(B), ‖B‖∞ = maxi,j |bij |, and ‖B‖∞,2 = (maxi
∑

j b
2
ij)

1/2

be the spectral norm, maximum norm, and l∞,2-norm, respectively, of a matrix

B. We use the symbol � to represent the asymptotic equivalence in order; that is,

an � bn if an = O(bn) and bn = O(an). The average squared distance between two

matrices B,C ∈ Rn1×n2 is d2(B,C) = ‖B −C‖2F /(n1n2). The average squared

errors of M̂β and Θ̂†β are then d2(M̂β,M?) and d2(Θ̂†β,Θ
†
?), respectively. We

adopt the Hellinger distance for any two matrices S, T ∈ [0, 1]n1×n2 , d2H(S, T ) =

(n1n2)
−1∑n1,n2

i,j=1 d
2
H(sij , tij), where d2H(s, t) = (s1/2 − t1/2)2 + {(1 − s)1/2 − (1 −

t)1/2}2, for s, t ∈ [0, 1]. In the literature on matrix completion, most discussions

related to the optimal convergence rate are only up to certain polynomial orders

of log n. For convenience, we use polylog(n) for polynomials of log n.

To investigate the asymptotic properties of M̂β and Θ̂†β defined in Section

3, we introduce the following conditions on the missing structure.

C1. The indicators {wij}n1,n2

i,j=1 are mutually independent and independent of

{εij}n1,n2

i,j=1 . For i = 1, . . . , n1 and j = 1, . . . , n2, wij follows a Bernoulli dis-
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tribution with probability of success θ?,ij = f(m?,ij) ∈ (0, 1). Furthermore,

f is monotonic increasing and differentiable.

C2. The hidden-feature matrix M? = µ?J + Z?, where 1Tn1
Z?1n2

= 0, |µ?| ≤
α1 < ∞, and ‖Z?‖∞ ≤ α2 < ∞. Here, α1 and α2 are allowed to depend

on the dimensions n1 and n2. This also implies that there exists a lower

bound θL ∈ (0, 1) (allowed to depend on n1, n2), such that mini,j{θij} ≥
θL ≥ f(−α1 − α2) > 0.

For convenience in the theoretical analysis, we consider an equivalent esti-

mator of (µ?,Z?) defined by the constrained maximization problem (5.1) instead

of the Lagrangian form (3.1). For rZ? ≤ min{n1, n2} and α1, α2 ≥ 0,(
µ̂, Ẑ

)
= argmax

(µ,Z)∈C̃n1,n2
(α1,α2)

`W (µJ +Z) , where (5.1)

C̃n1,n2
(α1, α2) =

{
(µ,Z) ∈ R× Rn1×n2 : |µ| ≤ α1, ‖Z‖∞ ≤ α2,

‖Z‖∗ ≤ α2
√
rZ?n1n2,1

T

n1
Z1n2

= 0
}
.

It is easy to see that we have (µ?,Z?) ∈ C̃n1,n2
(α1, α2) once (µ?,Z?) ∈ Cn1,n2

(α1, α2)

holds. For ease of presentation, we assume n1 = n2 = n, and choose the logit

function as the inverse link function f in the rest of Section 5; the corresponding

results under general settings of n1, n2, and f are delegated to Section S1.3 in

the Supplementary Material. We first establish the convergence results for µ̂, Ẑ,

and M̂ . To simplify the notation, let α0 = α1 + α2, hα1,β = (1 + eα1+β)−1, and

Γn = eα0(α1 + α2r
1/2
Z?

)n−1/2.

Lemma 1. Suppose Conditions C1−C2 hold, and (µ?,Z?) ∈ Cn1,n2
(α1, α2). Con-

sider M̂ = µ̂J + Ẑ, where (µ̂, Ẑ) is the solution to (5.1). There exist positive

constants C1, C2, such that we have with probability at least 1− C1/n,

(µ? − µ̂)2 ≤ C2

(
α2
1 ∧ Γn

)
,

1

n2

∥∥∥Ẑ −Z?∥∥∥2
F
≤ C2

(
α2
2 ∧ Γn

)
and

1

n2

∥∥∥M̂ −M?

∥∥∥2
F
≤ C2

(
α2
0 ∧ Γn

)
. (5.2)

The upper bounds in (5.2) all consist of trivial bounds α2
j and a more dedi-

cated bound Γn. The trivial upper bounds α2
1, α

2
2, and α2

0 can be derived easily

from the constraint set Cn1,n2
(α1, α2). For extreme settings of increasing α0, the

more dedicated bound Γn is diverging and the trivial bounds may provide better

control. The term Γn can be controlled by the rank of Z?. For a range of non-

extreme scenarios, that is, α0 ≤ 1/2 log n or θL ≥ n−1/2, the second term in Γn
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attains the convergence order once rZ? = O(1).

Similarly, we study the theoretical results of the re-estimation of Z? in terms

of the constrained optimization:

Ẑβ = argmax
Z∈Rn1×n2

`W (µ̂J +Z) subject to ‖Z‖∞ ≤ β, ‖Z‖∗ ≤ β
√
rTβ(Z?)n1n2.

(5.3)

We now consider the constrained estimation for Z?, M?, and Θ†?. For any matrix

B = (bij)
n1,n2

i,j=1 , define the winsorizing operator Tβ by Tβ(B) = (Tβ(bij)), where

Tβ(bij) = bijI[−β≤bij≤β] + βI[bij>β] − βI[bij<−β], for any β ≥ 0. (5.4)

Write M?,β = µ?J +Tβ(Z?) and M̂?,β = µ̂J +Tβ(Z?), and Θ?,β = F(M?,β) and

Θ̂?,β = F(M̂?,β). Noted that M̂?,β serves as a “bridge” between the underlying

M?,β and the empirical M̂β. Write Nβ =
∑

i,j(I[z?,ij>β] + I[z?,ij<−β]) as the

number of extreme values in Z? at level β. The convergence rates of d2(M̂β,M?)

and d2(Θ̂†β,Θ
†
?) are investigated in the next theorem. Define Λn = min[β2, Γ̃n +

h−1α1,β
n−2β{8Nβ + (n2 −Nβ)|µ? − µ̂|}], where Γ̃n = h−1α1,β

(α1 + βr
1/2
Tβ(Z?))n

−1/2.

Theorem 3. Assume that Conditions C1−C2 hold, and (µ?,Z?) ∈ C̃n1,n2
(α1, α2).

Consider M̂β = µ̂J+Ẑβ, where Ẑβ is the solution to (5.3) and β ≥ 0. Then there

exist some positive constants C1, C2, and C3, such that we have with probability

at least 1− 2C1/n,

d2
{
Ẑβ, Tβ (Z?)

}
≤ C3Λn, (5.5)

d2
(
M̂β,M?

)
≤ C2

(
α2
1 ∧ Γn

)
+ C3Λn +

2(α2 − β)2+Nβ

n2

and d2
(
Θ̂†β,Θ

†
?

)
≤ C2

h2α1,β

(
α2
1 ∧ Γn

)
+
C3Λn
h2α1,β

+
8Nβ

n2θ2L
. (5.6)

We can derive an upper bound 4β2 for d2(ẐWin,β, Tβ(Z?)) from the second

term in Theorem 1, where ẐWin,β = Tβ(Ẑ) is winsorized directly from Ẑ. Ob-

viously, the order of this upper bound is larger than or equal to Λn. Moreover,

there are scenarios in which Λn is a smaller order of β2. To illustrate, assume

that α1 � 1 and β � 1, and we have hα1,β � 1. Once we have Nβ = o(n),

rTβ(Z?) = o(n), and |µ̂− µ?| = o(1), then Λn = o(β2).

With a more dedicated investigation of (5.5), one can derive an upper bound

for d2(Θ̂†β, Θ̂
†
?,β), which is used in Section 5.2. Denote k′α1,α2,n = min{α2

1, e
α0(α1+

α2r
1/2
Z?

)n−1/2}. Such an upper bound is of order kα1,α2,β,nh
−2
α1,β

, where
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kα1,α2,β,n �min
[
β2, h−1α1,β

β
{

8Nβ +
(
n2 −Nβ

)
k′1/2α1,α2,n

}
n−2

+ h−1α1,β
n−1/2(α1 + βr

1/2
Tβ(Z?))

]
.

5.2. Target matrix

To study the convergence of d2(Âβ,A?), we require the following conditions

on the random errors ε and the target matrix A?. Recall that Âβ includes the

estimations obtained with the unconstrained estimator Θ̂ and those with the

constrained estimator Θ̂β, because Â(Θ̂) = Âα2
, with β = α2.

C3. (a) The random errors {εij} in Model (2.1) are independently distributed

random variables, such that E(εij) = 0 and E(ε2ij) = σ2ij <∞, for all i, j. (b)

For some finite positive constants cσ and η, maxi,j E|εij |l ≤ (1/2)l!c2ση
l−2,

for any positive integer l ≥ 2.

C4. There exists a positive constant a0 such that ‖A?‖∞ ≤ a0.

Denote h(1),β = maxi,j(θ
−1
?,ijθ?,ij,β) and

∆ = max

{
(cσ ∨ a) e−µ?/2+α2−β+|α2/2−β| (n log n)1/2

n2
,

ηeµ?/2+α1+|α2/2−β|k
1/2
α1,α2,β,n

log3/2 n

hα1,βn

}
.

(5.7)

The following theorem establishes a general upper bound for d2(Âβ,A?).

Theorem 4. Assume Conditions C1−C4 hold. For β ≥ 0, there exist some pos-

itive constants C4, C5, C6, and C7, all independent of β, such that for h(1),βτ ≥
C4∆, we have with probability at least 1− 3/(2n),

d2
(
Âβ,A?

)
≤max

{
C6n

2h2(1),βrA?
τ2 + C7h

2
(1),βh

2
(2),βrA?

n−1 log (n) ,

C5h(1),βh(3),βn
−1 log1/2(n)

}
.

(5.8)

As for the estimator of the target matrix based on direct winsorization

Θ̂Win,β = F(µ̂J+ẐWin,β), where ẐWin,β = Tβ(Ẑ), an upper bound can be derived

using Theorem 3. As noted after Theorem 3, d2(ẐWin,β, Tβ(Z?)) converges at a

slower rate β2, causing a larger error bound for the target matrix.

Now, we discuss the rates of d2(Âβ,A?) under various missing structures.

For simplicity, the following discussion focuses on the low-rank linear predictor

(M?) setting, such that rM?
� 1.
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Uniform missingness. Under uniform missingness (i.e., θij ≡ θ0), Koltchin-

skii, Lounici and Tsybakov (2011) show that θ−10 n−1polylog(n) is the optimal

rate for d2(Âβ,A?). Therefore, it is reasonable to require α1 + α2 = α0 =

O(polylog(n)) for the convergence of d2(Âβ,A?). Under uniform missingness, we

have α2 = 0, α0 = α1, and eµ? � θ0. For β = 0, our estimator Âβ degenerates

to that based on the unweighted empirical risk function. Theorem 4 shows that

this achieves the optimal rate θ−10 n−1polylog(n). For β > 0, by taking β → 0

such that kα1,α2,β,n = O(eµ?−2α1−2βn−1 log−2 n), the estimator can also reach the

optimal rate. Of interest here is that β is allowed to be strictly positive to achieve

the same rate.

Non-uniform missingness. Under non-uniform missingness, suppose the lower

and upper bounds of the observation probability satisfy θL � eµ?−α2 and θU �
eµ?+α2 , respectively. For the non-constrained case of β = α2 and hα1,β � e−α1−α2 ,

the second term of ∆ in (5.7) dominates because

e−µ?/2+α2/2n−3/2 log1/2 n = o(eµ?/2+5α1/2+3α2/2n−5/4 log3/2 n).

Thus, the convergence rate of d2(Âβ,A?) is eµ?+5α1+3α2n−1/2 log3 n. Because

eµ?/2+5α1/2+3α2/2 ≤ e3α1+3α2/2, guaranteeing convergence requires that α1 +

α2/2 < (1/12) log n, which implies that θ−1L = O(n1/6).

However, the above range of θ−1L = O(n1/6) excludes θL ≡ (n−1polylog(n)).

This is the case that results in the number of observed matrix entries being of the

order of n polylog(n), which represents the most sparse case of observation where

the matrix can still be recovered (Candès and Recht (2009); Candès and Plan

(2010); Koltchinskii, Lounici and Tsybakov (2011); Negahban and Wainwright

(2012)). We show in the following that with an appropriately chosen β, the

constrained estimator Θ̂β can accommodate the case of θ−1L = O(n log−1 n).

Case (I): β = 0. To demonstrate this, we start with the absolute constrained case

(i.e., β = 0), which forces the estimated probabilities to be uniform, and

implies e−µ?/2+α2−β+|α2/2−β| = e−µ?/2+3α2/2 � θ
1/2
U θ−1L . Then, according

to Theorem 4, d2(Âβ,A?) attains the convergence rate θUθ
−2
L n−1 log(n),

which converges to zero provided that θUθ
−2
L = o(n log−1 n). The condition

θUθ
−2
L = o(n log−1 n) includes the extreme case of θ−1L = O(n log−1 n) and

n polylog(n) observations.

Case (II): β > 0. For the more interesting setting β > 0, to simplify the dis-

cussion, we concentrate on the case when the first term in kα1,α2,β,n is of a

smaller order, which can be achieved by choosing β = O(e−µ?−2α1+α2n−1/2
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log−1 n). Then, according to Theorem 4,

d2(Âβ,A?)=Op(e
−µ?+2α2−2β+2|α2/2−β|n−1 log n)=Op(e

α1/2+3α2/2n−1 log n),

because e−µ?/2+α2−β+|α2/2−β| ≤ eα1/2+3α2/2. In the following, we consider

two further cases: (i) α2 = O((log log n)−1α1) and (ii) α1 = o(α2 log log n).

Note that for both cases, e−µ?+2α2−2β+2|α2/2−β| � θUθ−2L , which leads to

d2(Âβ,A?) = Op(θUθ
−2
L n−1 log n).

If α2 = O{(log log n)−1α1}, we require α1 < (1 + 3 log log n)−1(log n −
log logn) to guarantee convergence, which implies that θL = O(n−1). Thus,

we only lose a polylog(n) factor compared with the most extreme, but fea-

sible setting of θ−1L = O[n{polylog(n)}−1]. In addition, β = O(e−µ?−2α1+α2

n−1/2 log−1 n) implies that β = O(n−1/2 log−1 n).

If α1 = o{(log log n)α2}, we require that α2 < {3 + (log log n)−1}−1(log n −
log log n), which leads to θ−1L = O(n1/3). Furthermore, β = O(e−µ?−2α1+α2n−1/2

log−1 n) implies that β = O(n−1/6 log−1 n). However, to make d2(Âβ,A?) con-

vergent, the attained rate for θ−1L has to be O(n1/3), which excludes the most

extreme heterogeneity case of θ−1L = O{n(polylog(n))−1}. The reason for not be-

ing able to cover the most extreme case of θ−1L = O{n(polylog(n))−1} is that the

current Case (ii) allows more heterogeneity in Z?, as reflected by having a larger

α2 than that prescribed under Case (i). Because µ? is jointly estimated with Z?
in the unconstrained estimation (Section 3.1), stronger heterogeneity slows down

the convergence rate in the estimation of µ?, which becomes a bottleneck for fur-

ther improvement. If µ? were observable, the problem would not be as serious,

despite the adverse effect of the stronger heterogeneity on the estimation of Z?.

To summarize, under uniform missingness and Case (I) and (II)(i) under non-

uniform missingness, we can achieve the optimal rate up to a polylog(n) order.

For Case (II)(ii), when the missingness is not extreme, with an appropriately

chosen β > 0, the proposed estimator can also attain the optimal rate up to the

polylog(n) order.

5.3. Comparison with the uniform objective function

Recall that the unweighted empirical risk function R̂UNI(A) = n−2‖W ◦(A−
Y )‖2F is adopted by many existing matrix-completion techniques (Klopp (2014)).

An interesting question is whether there is any benefit to adopting the proposed

weighted empirical risk function for matrix completion. In this subsection, we
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examine this aspect by comparing the non-asymptotic error bounds of the corre-

sponding estimators. Owing to the additional complication from the estimation

error of the observation probability matrix, we focus only on the weighted em-

pirical risk function with a true inverse probability weighting. We demonstrate

empirically in Sections 6 and 7 the benefits of the weighted objective function

with estimated weights.

Most existing works that use an unweighted empirical risk function assume

the true missingness is uniform (Candès and Plan (2010); Koltchinskii, Lounici

and Tsybakov (2011)). One notable exception is Klopp (2014), who studies an

unweighted empirical risk function under a possibly non-uniform missing struc-

ture. The estimator of Klopp (2014) is equivalent to our estimator when β = 0,

and is denoted by ÂUNI. Thus, according to Theorem 4, we have with probability

at least 1− 3/(2n),

d2
(
ÂUNI,A?

)
≤ min

{
(C6 + C7)rA?

θUθ
−2
L n−1 log n,C5θ

1/2
U θ−1L n−1/2 log1/2 n

}
= UUNI,

which is the same upper bound obtained in Klopp (2014). Define ÂKNOWN as

the estimator that minimizes the known weighted empirical risk function in (2.3).

Then,

d2
(
ÂKNOWN,A?

)
≤ min

{
(C6 + C7)rA?

θ−1L n−1 log n,C5θ
−1/2
L n−1/2 log1/2 n

}
= UKNOWN.

The improvement in the upper bound of the weighted objective function R̂ lies in

that, under non-uniform missingness, θUθ
−1
L > 1, which implies that UKNOWN <

UUNI, as summarized below.

Theorem 5. Assume Conditions C1−C4 hold, and take τKNOWN = C3θ
−1/2
L

n−3/2 log1/2 n and τUNI = C3θ
1/2
U f−1(µ?)n

−3/2 log1/2 n. The upper bound of

d2(ÂUNI,A?) is the same as UUNI, and the upper bound of d2(ÂKNOWN,A?)

is the same as UKNOWN. In addition, UKNOWN ≤ UUNI and UKNOWN < UUNI if

θU > θL; that is, the true missing mechanism is non-uniform.

Our approach draws inspiration from the missing-value literature. For in-

stance, Chen, Leung and Qin (2008) show that using the estimated parameters

in the inverse probability weighting can actually reduce the variance of the pa-

rameter of interest; see Theorem 1 of their paper. Given the results of Chen,

Leung and Qin (2008), we expect that using the estimated parameters Θ̂β in the
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weighting probability will not be inferior to the version with the true parameter

Θ̂?. However, although this is verified using numerical studies, a theoretical proof

cannot be achieved.

6. Simulation Study

6.1. Missingness

This section reports the results of our simulation experiments, which were

designed to evaluate the numerical performance of the proposed methodologies.

We first evaluate the estimation performance of the observation probabilities in

Section 6.1, and then do so for the target matrix in Section 6.2. In the simulation,

the true observation probabilities Θ? and the target matrix A? were randomly

generated once and kept fixed for each simulation setting. To generate Θ?, we

first generated UM?
∈ Rn1×(rM?−1) and VM?

∈ R(rM?−1)×n2 as random Gaussian

matrices, with independent entries each following N (−0.4, 1). We then obtained

M? = UM?
V T

M?
− m̄n1,n2,rM?

J , where m̄n1,n2,rM?
is a scalar chosen to ensure

the average observation rate is 0.2 in each simulation setting. We finally set

Θ? = F(M?), where the inverse link function f is a logistic function.

In our study, we set rM?
= 11 (or rZ? = 10) and choose n1 = n2, with

four sizes: 600, 800, 1000, and 1200. The number of simulation runs for each

setting is 500. For the purpose of benchmarking, we compare various missingness

estimators:

1. the non-constrained estimator Θ̂α defined in (3.1);

2. the constrained estimator Θ̂β defined in (3.4);

3. the directly winsorized estimator Θ̂Win,β = F{µ̂J + Tβ(Ẑ)};

4. the one-bit estimator Θ̂1-bit,α proposed in Davenport et al. (2014), and its

corresponding constrained and winsorized versions Θ̂1-bit,β, and Θ̂1-bit,Win,β,

respectively (note that the one-bit estimator Θ̂1-bit,α imposes the nuclear-

norm regularization on the whole M instead of Z, in contrast to Θ̂α);

5. the rank-one probability estimator Θ̂NW used in Negahban and Wainwright

(2012), where gi. = n−12

∑n2

j=1wij , g.j = n−11

∑n1

i=1wij , and θij,NW = gi.g.j ;

6. the uniform estimator, Θ̂UNI = N/(n1n2)J .

For the non-constrained estimator Θ̂α and the one-bit estimator Θ̂1-bit,α, the

parameter α is set based on our knowledge of the true M?. For the constrained
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Table 1. The root mean squared errors RMSE(M̂ ,M?), Hellinger distance d2H(Θ̂,Θ?),

rank of linear predictor M̂ , and estimated Θ̂ and their standard errors (in parentheses)
under the low-rank missing-observation mechanism, with (n1, n2) = (600, 600), (800,

800), (1000, 1000), (1200, 1200) and rM?
= 11, for the proposed estimators Θ̂α, Θ̂1-bit,α

and the two existing estimators Θ̂NW and Θ̂UNI.

600 Θ̂α Θ̂1-bit,α Θ̂NW Θ̂UNI

RMSE(M̂ ,M?) 2.6923 (0.0342) 2.9155 (0.0295) - -

d2H(Θ̂,Θ?) 0.0369 (0.0015) 0.0450 (0.0016) 0.1233 (1e-04) 0.1729 (1e-04)

r
M̂

12.45 (0.50 ) 12.69 (0.46 ) - -

rΘ̂ 600.00 (0.00 ) 600.00 (0.00 ) - -

800 Θ̂α Θ̂1-bit,α Θ̂NW Θ̂UNI

RMSE(M̂ ,M?) 2.5739 (0.0116) 2.7796 (0.0033) - -

d2H(Θ̂,Θ?) 0.0317 (5e-04 ) 0.0379 (1e-04 ) 0.1219 (1e-04) 0.1767 (1e-04)

r
M̂

12.04 (0.20 ) 12.03 (0.17 ) - -

rΘ̂ 800.00 (0.00 ) 800.00 (0.00 ) - -

1,000 Θ̂α Θ̂1-bit,α Θ̂NW Θ̂UNI

RMSE(M̂ ,M?) 2.4870 (0.0212) 2.7731 (0.0015) - -

d2H(Θ̂,Θ?) 0.0266 (8e-04 ) 0.0351 (1e-04 ) 0.1246 (1e-04) 0.1767 (1e-04)

r
M̂

12.68 (0.53 ) 12.00 (0.00 ) - -

rΘ̂ 1,000.00 (0.00 ) 1,000.00 (0.00 ) - -

1,200 Θ̂α Θ̂1-bit,α Θ̂NW Θ̂UNI

RMSE(M̂ ,M?) 2.3809 (0.0018) 2.6470 (0.0012) - -

d2H(Θ̂,Θ?) 0.0242 (1e-04 ) 0.0314 (1e-04 ) 0.1211 (1e-04) 0.1761 (1e-04)

r
M̂

12.00 (0.00 ) 12.00 (0.00 ) - -

rΘ̂ 1,200.00 (0.00 ) 1,200.00 (0.00 ) - -

estimators Θ̂β and Θ̂Win,β, the constraint level β is chosen so that either 5%

or 10% of the elements in Ẑα are winsorized. The parameters for Θ̂1-bit,β and

Θ̂1-bit,Win,β are set in a similar manner.

To quantify the estimation performance of the linear predictor M? and the

observation probabilities Θ?, we consider the empirical root mean squared errors

RMSE(B,C) with respect to any two matrices B and C of dimension n1 × n2,
and the Hellinger distance d2H(Θ̂,Θ?) between Θ̂ and Θ?, defined as follows:

RMSE (B,C) =
‖B −C‖F
(n1n2)

1/2
and d2H

(
Θ̂,Θ?

)
=

∑n1,n2

i,j=1 d
2
H

(
θ̂ij , θ?,ij

)
(n1n2)

1/2
.

Because the estimators F−1(Θ̂α) and F−1(Θ̂1-bit,α) are both of low rank, we also

report their corresponding ranks.
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Table 1 summarizes the simulation results. The most visible aspect of the

results is that the proposed estimators Θ̂α and Θ̂1-bit,α both outperform the

two existing estimators Θ̂NW and Θ̂UNI. As such, the former have smaller root

mean square errors with respect to M̂ , smaller Hellinger distances d2H(Θ̂,Θ?),

and more accurate estimated ranks of M?. Without the separation of µ? from

M?, Θ̂1-bit,α has a larger error and Hellinger distance than those of the proposed

estimators. The performance of Θ̂NW is roughly between that of the proposed

estimators and that of the uniform estimator Θ̂UNI. The estimator Θ̂UNI is a

benchmark that captures no variation of the observation probabilities.

6.2. Target matrix

To generate a target matrix A?, we first generated UA?
∈ Rn1×(rA?−1)

and VA?
∈ R(rA?−1)×n2 as random matrices with independent Gaussian en-

tries distributed as N (0, σ2A?
), obtaining A? = 2.5J + UA?

V T

A?
. Here, we set

the standard deviation of the entries in the matrix product UA?
V T

A?
to 2.5 to

mimic the Yahoo! Webscope data set described in Section 7. To achieve this,

σA?
= (2.52/(rA?

− 1))1/4. The contaminated version of A? was then gener-

ated as Y = A? + ε, where ε ∈ Rn1×n2 has independent and identically dis-

tributed mean-zero Gaussian entries εij ∼ N (0, σ2ε ). Here, σ2ε is chosen such that

SNR = (E‖A?‖2F /E‖ε‖2F )1/2 = 1, where E‖A?‖2F = n1n2(rA?
− 1 + 2.52) implies

σε = 0.5(rA?
− 1 + 2.52)1/2.

For the estimation of the target matrix, we evaluated 10 versions of the

proposed estimators Prop Θ̂β t, Prop Θ̂Win,β t, Prop Θ̂α, Prop Θ̂1-bit,β t, Prop

Θ̂1-bit,Win,β t, and Prop Θ̂1-bit,α. Here, Prop indicates the estimators are obtained

by solving problem (4.3), Θ̂β, Θ̂Win,β, Θ̂α, Θ̂1-bit,β, Θ̂1-bit,Win,β, and Θ̂1-bit,α rep-

resent the probability estimators used in (4.3), as described in Section 6.1, and

t = 0.05 or 0.1 denotes the winsorized proportion for which β is chosen. In

addition, as in Mao, Chen and Wong (2019), we compare these with three ex-

isting matrix-completion techniques: the methods proposed in Negahban and

Wainwright (2012) (NW), Koltchinskii, Lounici and Tsybakov (2011) (KLT), and

Mazumder, Hastie and Tibshirani (2010) (MHT). Of these three methods, NW is

the only one that adjusts for non-uniform missingness. All three methods require

tuning parameter selection, for which cross-validation is adopted. See Mao, Chen

and Wong (2019) for more details.

To quantify the performance of the matrix completion, in addition to the

empirical root mean squared errors with respect to Âβ and A?, we use one more

measure: Test Error = ‖W ?◦(Âβ−A?)‖2F /‖W ?◦A?‖2F , whereW ? is the matrix

of the missing indicator, with the (i, j)th entry being (1 − wij). The test error
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measures the estimation error of the unobserved entries relative to their signal

strength. The estimated ranks of Âβ are also reported.

Table 2 summarizes the simulation results for dimensions n1=n2 ranging

from 600 to 800 and two different settings of rA?
= 11. The results for rA?

= 11

for dimensions n1=n2 ranging from 1,000 to 1,200 are relegated to Table S1, and

the results for rA?
= 31 are relegated to Tables S2−S3 of Section S1.5 in the

Supplementary Material. The tables show that the 10 versions of the proposed

methods outperform the three existing methods by having smaller root mean

squared errors and Test Error values. Among the first five proposed methods,

Prop Θ̂β is better than Prop Θ̂α in most cases. This is because the constrained

estimator Θ̂β has a much smaller ratio θ̂U/θ̂L than Θ̂α, which improves the

stability of the prediction and the accuracy. Furthermore, Prop Θ̂β 0.1 performs

better than Prop Θ̂1-bit,α in most cases.

7. Real-Data Application

In this section, we demonstrate the proposed methodology by analyzing the

Yahoo! Webscope data set (ydata-ymusic-user-artist-ratings-v1 0), available at

https://webscope.sandbox.yahoo.com/. It contains (incomplete) ratings from

15,400 users on 1,000 songs. The data set consists of two subsets, a training set

and a test set. The training set records approximately 300,000 ratings given by

the aforementioned 15,400 users. Each song has at least 10 ratings. The test

set was constructed by surveying 5,400 out of these 15,400 users, each of whom

rated exactly 10 songs that were not rated in the training set. The missing rates

are 0.9763 overall, ranging from 0.3520 to 0.9900 across users, and from 0.6372

to 0.9957 across songs. The non-uniformity of the missingness is shown in Figure

S1 of Section S1.6 in the Supplementary Material. In this experiment, we applied

the methods described in Section 6 to the training set, and evaluated the test

errors based on the corresponding test set. Because there is no prior knowledge

about the true parameters α1 and α2, we suggest choosing α1 and α2 sufficiently

large, say α1 = 100 and α2 = 100, to ensure that the range covers all missing

probabilities. Noted that Θ̂α is not sensitive to a larger α.

Table 3 reports the root mean squared prediction errors, where RMSPE =

‖W test ◦ (Âβ − Y )‖F /(
∑n1

i=1

∑n2

j=1w
test
ij )1/2, and W test is the indicator matrix

of the test set with an (i, j)th entry of wtestij . Note that Prop Θ̂β 0.05 performs

the best of the 10 versions of the proposed methods. In addition, Prop Θ̂α has

a much smaller root mean squared prediction error than those of the other eight

versions of the proposed methods. This may indicate that only a slight constraint

https://webscope.sandbox.yahoo.com/
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Table 2. Root mean squared errors, test errors, estimated ranks rÂβ
, and their standard

deviations (in parentheses) under the low-rank, missing-observation mechanism for three
existing methods and 10 versions of the proposed methods, where Prop indicates the esti-
mators are obtained by solving problem (4.3), while Θ̂β , Θ̂Win,β , Θ̂α, Θ̂1-bit,β ,Θ̂1-bit,Win,β ,

and Θ̂1-bit,α represent the probability estimators used in (4.3), as described in Section
6.1, and t = 0.05 or 0.1 denotes the winsorized proportion for which β is chosen.

(n1, n2) = (600, 600) RMSE(Âβ ,A?) Test Error rÂβ

Prop Θ̂Win,β 0.05 1.5615 (0.0147) 0.3005 (0.0062) 65.28 ( 5.72)

Prop Θ̂β 0.05 1.5548 (0.0085) 0.2996 (0.0034) 54.98 ( 3.01)

Prop Θ̂Win,β 0.1 1.5621 (0.0111) 0.3013 (0.0046) 63.68 ( 5.36)

Prop Θ̂β 0.1 1.5509 (0.0085) 0.2983 (0.0034) 53.13 ( 2.72)

Prop Θ̂α 1.5637 (0.0147) 0.3010 (0.0061) 65.63 ( 5.89)

Prop Θ̂1-bit,Win,β 0.05 1.5664 (0.0093) 0.3028 (0.0037) 62.76 ( 5.96)

Prop Θ̂1-bit,β 0.05 1.5573 (0.0089) 0.2996 (0.0036) 61.80 ( 5.34)

Prop Θ̂1-bit,Win,β 0.1 1.5669 (0.0092) 0.3032 (0.0037) 62.78 ( 2.68)

Prop Θ̂1-bit,β 0.1 1.5540 (0.0089) 0.2987 (0.0036) 60.79 ( 3.01)

Prop Θ̂1-bit,α 1.5612 (0.0097) 0.3005 (0.0040) 62.12 ( 4.76)

NW 1.9896 (0.2814) 0.4676 (0.1341) 167.67 (54.78)

KLT 2.2867 (0.0073) 0.5951 (0.0026) 1.00 ( 0.00)

MHT 1.6543 (0.0097) 0.3432 (0.0041) 51.20 ( 2.61)

(n1, n2) = (800, 800) RMSE(Âβ ,A?) Test Error rÂβ

Prop Θ̂Win,β 0.05 1.4754 (0.0107) 0.2669 (0.0041) 88.58 (10.81)

Prop Θ̂β 0.05 1.4797 (0.0080) 0.2714 (0.0030) 71.79 ( 4.12)

Prop Θ̂Win,β 0.1 1.4724 (0.0108) 0.2664 (0.0042) 86.25 (10.34)

Prop Θ̂β 0.1 1.4763 (0.0082) 0.2704 (0.0031) 67.08 ( 4.22)

Prop Θ̂α 1.4783 (0.0115) 0.2676 (0.0041) 88.92 (11.70)

Prop Θ̂1-bit,Win,β 0.05 1.4917 (0.0078) 0.2743 (0.0030) 83.51 ( 1.45)

Prop Θ̂1-bit,β 0.05 1.4804 (0.0080) 0.2705 (0.0031) 82.60 ( 3.47)

Prop Θ̂1-bit,Win,β 0.1 1.4972 (0.0080) 0.2765 (0.0031) 81.64 ( 7.23)

Prop Θ̂1-bit,β 0.1 1.4800 (0.0078) 0.2708 (0.0030) 74.89 ( 3.54)

Prop Θ̂1-bit,α 1.4790 (0.0099) 0.2685 (0.0039) 88.57 ( 9.56)

NW 1.9515 (0.3625) 0.4585 (0.1593) 215.61 (82.24)

KLT 2.3447 (0.0064) 0.6081 (0.0020) 1.00 ( 0.00)

MHT 1.6067 (0.0086) 0.3245 (0.0036) 63.68 ( 3.02)

With rM? = 11, rA? = 11, (n1, n2) = (600, 600), (800, 800), and SNR = 1. The three existing met-

hods are proposed, respectively, in Negahban and Wainwright (2012)(NW), Koltchinskii, Lounici and

Tsybakov (2011)(KLT), and Mazumder, Hastie and Tibshirani (2010)(MHT).
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Table 3. Root mean squared prediction errors based on Yahoo! Webscope data set for the
10 versions of the proposed method and the three existing methods proposed, respec-
tively, in Negahban and Wainwright (2012)(NW), Koltchinskii, Lounici and Tsybakov
(2011)(KLT), and Mazumder, Hastie and Tibshirani (2010)(MHT).

Prop Θ̂Win,β 0.05 Prop Θ̂β 0.05 Prop Θ̂Win,β 0.1
RMSPE 1.0396 1.0381 1.0476

Prop Θ̂β 0.1 Prop Θ̂α Prop Θ̂1-bit,Win,β 0.05
RMSPE 1.0490 1.0383 1.0831

Prop Θ̂1-bit,β 0.05 Prop Θ̂1-bit,Win,β 0.1 Prop Θ̂1-bit,β 0.1
RMSPE 1.1091 1.0760 1.0523

Prop Θ̂1-bit,α NW KLT
RMSPE 1.1065 1.7068 3.6334

MHT
RMSPE 1.3821

is required for the probability estimator for this data set. Note that we cannot

guarantee the optimal convergence rate or even asymptotic convergence in certain

settings of missingness for Prop Θ̂α; see Section 5.2 for details.

With the separation of µ, Prop Θ̂α is better than Prop Θ̂1-bit,α; analogously,

Prop Θ̂β t is better than Prop Θ̂1-bit,β t with a different constraint level t, and

Prop Θ̂Win,β s is better than Prop Θ̂1-bit,Win,β s with a different winsorization

level s.

Compared with the existing methods NW, KLT, and MHT, our proposed

methods perform significantly better in terms of the root mean squared prediction

errors, achieving as much as a 25% improvement over the method of Mazumder,

Hastie, and Tibshirani (the best of the three existing methods). This suggests

that a more flexible model of a missing structure improves the model’s prediction

power.

8. Conclusion

When matrix entries are heterogeneously observed owing to a selection bias,

this heterogeneity needs to be taken into account. This study focuses on the

problem of matrix completion under a low-rank missing structure. To recover the

observation probabilities, we adopted a generalized linear model with a low-rank

linear predictor matrix. To avoid unnecessary bias, we introduced a separation

of the mean effect µ. Because extreme values of the probabilities may lead to

an unstable estimation of the target matrix, we propose an inverse probability

weighting-based method with constrained probability estimates, and demonstrate

its improvements empirically. Our theoretical result shows that the estimator
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of the high-dimensional probability matrix can be embedded into the inverse

probability weighting framework without compromising the rate of convergence

of the target matrix (for an appropriately tuned β > 0), and reveals a possible

regime change in the tuning of the constraint parameter (β > 0 vs. β = 0). In

addition, corresponding computational algorithms are developed, and a related

algorithmic convergence result is established. Empirical studies compare the

proposed methods with existing matrix-completion methods, demonstrating their

appealing performance.

Supplementary Material

The online Supplementary Material contains useful lemmas, the proofs of the

main theorems and some additional numerical studies.
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