REMI: REGRESSION WITH MARGINAL INFORMATION AND ITS APPLICATION IN GENOME-WIDE ASSOCIATION STUDIES

University of Iowa, Zhongnan University of Economics and Law,

Duke-NUS Medical School and Hong Kong University of Science and Technology

S1 Supplementary figures and table

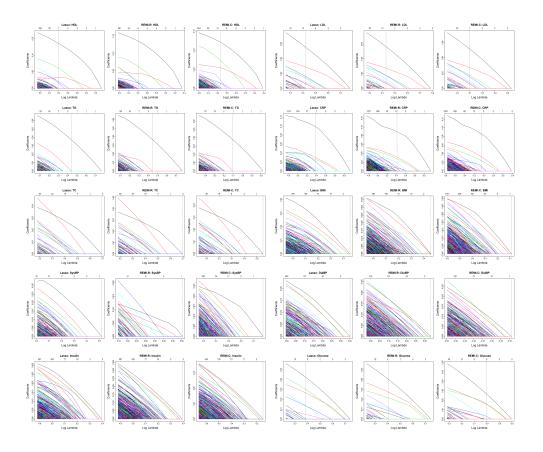


Figure S1: Solution paths of Lasso, REMI-R, and REMI-C for HDL, LDL, TG, CRP TC, BMI, SysBP, DiaBP, Insulin and Glucose using the NFBC1966 data sets.

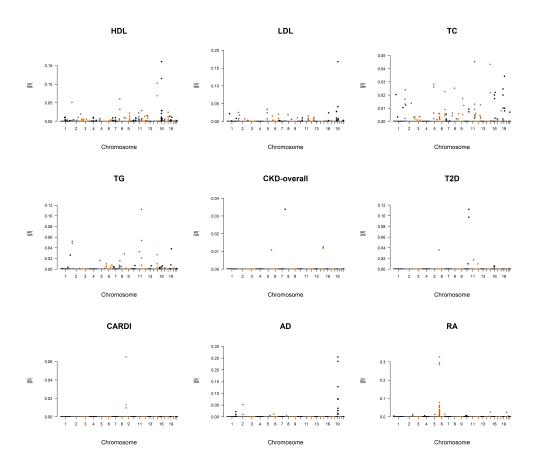


Figure S2: Manhattan plots of $|\widehat{\boldsymbol{\beta}}^r|$ from REMI-R for HDL, LDL, TC, TG, CKD-overall, T2D, CARDI, AD and RA.

Table S1: GWAS data sets in our experiment

ID	YEAR	Traits	Sample Size	SNPs	Link
AD	2013	Alzheimer Disorder	54162	1149751	http://www.pasteur-lille.fr/en/recherche/u744/igap/igap_download.php
CARDI	2015	Coronary Artery Disease	817857	1197724	http://www.cardiogramplusc4d.org/data-downloads/
CKD-overall	2015	eGFRcrea in overall population	133715	984086	https://www.nhlbi.nih.gov/research/intramural/researchers/ckdgen
HDL	2013	High-Density-Lipid cholesterol	94272	992986	http://csg.sph.umich.edu//abecasis/public/lipids2013/
Ht	2014	Height	252778	827344	http://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files
LDL	2013	Low-Density-Lipid cholesterol	89851	990583	http://csg.sph.umich.edu//abecasis/public/lipids2013/
TC	2013	Total Cholesterol	94556	992889	http://csg.sph.umich.edu//abecasis/public/lipids2013/
TG	2013	Triglycerides	90974	990915	http://csg.sph.umich.edu//abecasis/public/lipids2013/
RA	2010	Rheumatoid Arthritis	25708	989551	http://www.broadinstitute.org/ftp/pub/rheumatoid_arthritis/Stahl_etal_2010NG/
T2D	2008	Type 2 Diabetes	63390	1061515	http://diagram-consortium.org/downloads.html

S2 Technical details

Lemma 1. (Lemma 2.7.7 of Vershynin (2018) and Remark 5.18 of Vershynin (2010).) Let ξ_1, ξ_2 be sub-Gaussian random variables with noise level $\|\xi_1\|_{\psi_2} \leq \sigma_{\xi_1}$ and $\|\xi_2\|_{\psi_2} \leq \sigma_{\xi_2}$, respectively. Then both $\xi_1\xi_2$ and $\xi_1\xi_2 - \mathbb{E}[\xi_1\xi_2]$ are sub-exponential random variables, and there exist an absolute constant C > 0 such that $\|\xi_1\xi_2 - \mathbb{E}[\xi_1\xi_2]\|_{\psi_1} \leq C\sigma_{\xi_1}\sigma_{\xi_2}$. Here, for a random variable z we define, $\|z\|_{\psi_i} = \inf\{t > 0 : \mathbb{E}[\exp(|z|^i/t^i)] \leq 2\}$, $i \in \{1,2\}$.

Lemma 2. (Corollary 5.17 of Vershynin (2010)) Let $\xi_1, ..., \xi_m$ be independent centered sub-exponential random variables. Then for every t > 0 one has

$$\mathbb{P}[|\sum_{i=1}^{m} \xi_i|/m \ge t] \le 2 \exp(-C \min\{\frac{t^2}{K^2}, \frac{t}{K}\}m),$$

where, C is a absolute constant and $K = \max_{i=1,..m} \{ \|\xi_i\|_{\psi_1} \}$.

Lemma 3. Suppose the rows of X and X_r are i.i.d sub-Gaussian samples drawn from population with mean $\mathbf{0}$ and covariance matrix Σ . Then, with probability at least $1 - 1/p^2$, we have

$$\|\widehat{\Sigma} - \Sigma\|_{\infty} \le \frac{2C_1}{\sqrt{C}} \sqrt{\frac{\log p}{n}},$$

and

$$\|\widehat{\Sigma}_{\mathbf{r}} - \Sigma\|_{\infty} \le \frac{2C_1}{\sqrt{C}} \sqrt{\frac{\log p}{n_r}},$$

as long as $n > \frac{4}{C} \log p$ and $n_r > \frac{4}{C} \log p$.

Proof of Lemma 3. Since the proof of these two results are similar, we give one of them. Let \mathbf{x}_i be the i-th row of \mathbf{X} , i=1,...n, and $(\mathbf{x}_i)_j$ denote the j-th entry of \mathbf{x}_i . Define $G^i_{j,k}:=(\mathbf{x}_i)_j(\mathbf{x}_i)_k-\mathbb{E}[(\mathbf{x}_i)_j(\mathbf{x}_i)_k]\in\mathcal{R}^1, i=1,...,n, j=1,...,p, k=1,...,p,$ which is sub-exponential with $\|G^i_{j,k}\|_{\psi_1}\leq C_1$ by Lemma 1. Therefore,

$$\mathbb{P}[\|\widehat{\Sigma} - \Sigma\|_{\infty} \ge t] = \mathbb{P}[\|\sum_{i=1}^{n} (\mathbf{x}_{i}^{T} \mathbf{x}_{i} - \mathbb{E}[\mathbf{x}_{i}^{T} \mathbf{x}_{i}])/n\|_{\infty} \ge t] \\
= \mathbb{P}[\bigcup_{j=1,k=1}^{p,p} |\sum_{i=1}^{n} G_{j,k}^{i}/n| \ge t] \\
\leq \sum_{j=1,k=1}^{p,p} \mathbb{P}[|\sum_{i=1}^{n} G_{j,k}^{i}|/n \ge t] \\
\leq p^{2} \exp(-C \min\{\frac{t^{2}}{C_{i}^{2}}, \frac{t}{C_{1}}\}n) \\
\leq p^{2} \exp(-C \frac{t^{2}}{C_{i}^{2}}n)$$
(S2.1)

where the first inequality is due to union bound, and the second one follows from Lemma 2 and the last inequality is because of restricting $t \leq C_1$. Then Lemma 3 follows from setting $t = \frac{2C_1}{\sqrt{C}} \sqrt{\frac{\log p}{n}}$ and the assumption that $n > \frac{4}{C} \log p$.

Lemma 4. Under the same assumption as Lemma 3, we have

$$\|(\widehat{\Sigma} - \widehat{\Sigma}_{\mathbf{r}})\boldsymbol{\beta}_{\mathcal{A}}^*\|_{\infty} \leq \frac{2C_1C_3}{\sqrt{C}}(\sqrt{\frac{\log p}{n}} + \sqrt{\frac{\log p}{n_{\mathbf{r}}}}),$$

holds with probability at least $1 - 2/p^2$.

Proof of Lemma 4.

$$\begin{split} \|(\widehat{\Sigma} - \widehat{\Sigma}_{r})\boldsymbol{\beta}_{\mathcal{A}}^{*}\|_{\infty} &\leq \|(\widehat{\Sigma} - \Sigma)\boldsymbol{\beta}_{\mathcal{A}}^{*}\|_{\infty} + \|(\Sigma - \widehat{\Sigma}_{r})\boldsymbol{\beta}_{\mathcal{A}}^{*}\|_{\infty} \\ &\leq \|\widehat{\Sigma} - \Sigma\|_{\infty}\|\boldsymbol{\beta}_{\mathcal{A}}^{*}\|_{1} + \|\Sigma - \widehat{\Sigma}_{r}\|_{\infty}\|\boldsymbol{\beta}_{\mathcal{A}}^{*}\|_{1} \\ &\leq \frac{2C_{1}C_{3}}{\sqrt{C}}\sqrt{\frac{\log p}{n}} + \frac{2C_{1}C_{3}}{\sqrt{C}}\sqrt{\frac{\log p}{n_{r}}}, \end{split}$$

where the first inequality is due to triangle inequality, and the second inequality follows from Cauchy-Schwartz inequality, and the last one holds with probability larger than $1 - 2/p^2$ due to Lemma 3. This finishes the proof of Lemma 4.

Lemma 5. Suppose the rows of \mathbf{X} are i.i.d sub-Gaussian samples drawn from population with mean $\mathbf{0}$ and covariance matrix $\mathbf{\Sigma}$, and the entries of noise $\boldsymbol{\epsilon}$ are i.i.d centered sub-Gaussian with noise level σ_{ϵ} . With probability at least $1 - 1/p^3$, we have

$$\|\widetilde{\boldsymbol{\epsilon}}\|_{\infty} < 2\sigma_{\epsilon} \frac{C_1}{\sqrt{C}} \sqrt{\frac{\log p}{n}},$$

provided that $n \ge \frac{4 \log p}{C}$.

Proof of Lemma 5. We have,

$$\mathbb{P}[\|\widetilde{\boldsymbol{\epsilon}}\|_{\infty} < t] = \mathbb{P}[\|\mathbf{X}^{T}\boldsymbol{\epsilon}/n\|_{\infty} < t]$$

$$= 1 - \mathbb{P}[\|\mathbf{X}^{T}\boldsymbol{\epsilon}/n\|_{\infty} \ge t]$$

$$= 1 - \mathbb{P}[\bigcup_{j=1}^{p} |\mathbf{X}_{j}^{T}\boldsymbol{\epsilon}/n| \ge t]$$

$$\ge 1 - \sum_{j=1}^{p} \mathbb{P}[|\sum_{i=1}^{n} (\mathbf{X}_{j})_{i}\boldsymbol{\epsilon}_{i}|/n \ge t]$$

$$\ge 1 - p \exp(-C \min\{\frac{t^{2}}{C_{1}^{2}\sigma_{\epsilon}^{2}}, \frac{t}{C_{1}\sigma}\}n)$$

$$\ge 1 - p \exp(-C \frac{t^{2}}{C_{1}^{2}\sigma_{\epsilon}^{2}}n)$$

$$\ge 1 - 1/p^{3}, \tag{S2.2}$$

the first inequality is due to union bound, and the second one follows from Lemma 1 and Lemma 2, where we use $\|(\mathbf{X}_j)_i \epsilon_i - \mathbb{E}[(\mathbf{X}_j)_i \epsilon_i]\|_{\psi_1} \leq C \sigma_{\epsilon} C_1$, and the last two inequality follows from by setting $t = 2\sigma_{\epsilon} C_1 \sqrt{\frac{\log p}{Cn}}$ and the assumption that $n > \frac{4}{C} \log p$, i.e., with probability at least $1 - 1/p^3$, we have

$$\|\widetilde{\boldsymbol{\epsilon}}\|_{\infty} \le 2\sigma_{\epsilon}C_1\sqrt{\frac{\log p}{Cn}}.$$

Lemma 6. Under the same assumption as Lemma 5, we have,

$$\|\widehat{\boldsymbol{\Sigma}}\boldsymbol{\beta}_{\mathcal{I}}^*\|_{\infty} \leq \frac{2C_1C_4}{\sqrt{C}}\sqrt{\frac{\log p}{n}} + 2C_2\sigma_{\epsilon}\sqrt{\frac{\log p}{n}}.$$

with probability larger than $1 - 1/p^2$.

Proof of Lemma 6.

$$\begin{split} &\|\widehat{\boldsymbol{\Sigma}}\boldsymbol{\beta}_{\mathcal{I}}^*\|_{\infty} \leq \|\boldsymbol{\Sigma}\boldsymbol{\beta}_{\mathcal{I}}^*\|_{\infty} + \|(\widehat{\boldsymbol{\Sigma}} - \boldsymbol{\Sigma})\boldsymbol{\beta}_{\mathcal{I}}^*\|_{\infty} \\ &\leq \max_{j=1,\dots p} \{\|\boldsymbol{\Sigma}_j\|_1\} \|\boldsymbol{\beta}_{\mathcal{I}}^*\|_{\infty} + \|\widehat{\boldsymbol{\Sigma}} - \boldsymbol{\Sigma}\|_{\infty} \|\boldsymbol{\beta}_{\mathcal{I}}^*\|_1 \\ &\leq 2C_2 \sigma_{\epsilon} \sqrt{\frac{\log p}{n}} + \frac{2C_1 C_4}{\sqrt{C}} \sqrt{\frac{\log p}{n}}, \end{split}$$

where first inequality is due to triangle inequality, and the second one follows from Cauchy-Schwartz inequality, the third inequality holds with probability larger than $1 - 1/p^2$ by using (4.7) and Lemma 3. This completes the proof of Lemma 6.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. (i). Let $\Delta = \widehat{\boldsymbol{\beta}}^c - \boldsymbol{\beta}_A^*$. Define the event

$$\mathcal{E} = \{2\|(\widehat{\Sigma} - \widehat{\Sigma_r})\boldsymbol{\beta}_A^* + \widehat{\Sigma}\boldsymbol{\beta}_T^* + \widetilde{\boldsymbol{\epsilon}}\|_{\infty} < \lambda_0\}.$$

The optimality of $\widehat{\boldsymbol{\beta}}^{c}$ implies that

$$\begin{split} \langle \widehat{\boldsymbol{\beta}}^{c}, \widehat{\boldsymbol{\Sigma}}_{r} \widehat{\boldsymbol{\beta}}^{c} \rangle - 2 \langle \widetilde{\mathbf{y}}, \widehat{\boldsymbol{\beta}}^{c} \rangle + \lambda \| \widehat{\boldsymbol{\beta}}^{c} \|_{1} &\leq \langle \boldsymbol{\beta}_{\mathcal{A}}^{*}, \widehat{\boldsymbol{\beta}}^{c} \boldsymbol{\beta}_{\mathcal{A}}^{*} \rangle - 2 \langle \widetilde{\mathbf{y}}, \boldsymbol{\beta}_{\mathcal{A}}^{*} \rangle + \lambda \| \boldsymbol{\beta}_{\mathcal{A}}^{*} \|_{1}, \\ & \qquad \qquad \Downarrow (eq1) \\ \langle \widehat{\boldsymbol{\beta}}^{c} - \boldsymbol{\beta}_{\mathcal{A}}^{*}, \widehat{\boldsymbol{\Sigma}}_{r} (\widehat{\boldsymbol{\beta}}^{c} - \boldsymbol{\beta}_{\mathcal{A}}^{*}) \rangle + 2 \langle \boldsymbol{\beta}_{\mathcal{A}}^{*}, \widehat{\boldsymbol{\Sigma}}_{r} (\widehat{\boldsymbol{\beta}}^{c} - \boldsymbol{\beta}_{\mathcal{A}}^{*}) \rangle + \lambda (\| \widehat{\boldsymbol{\beta}}^{c}_{\mathcal{A}} \|_{1} + \| \widehat{\boldsymbol{\beta}}^{c}_{\mathcal{I}} \|_{1}) \leq 2 \langle \widetilde{\mathbf{y}}, \widehat{\boldsymbol{\beta}}^{c} - \boldsymbol{\beta}_{\mathcal{A}}^{*} \rangle + \lambda \| \boldsymbol{\beta}_{\mathcal{A}}^{*} \|, \\ & \qquad \qquad \Downarrow (eq2) \\ \langle \Delta, \widehat{\boldsymbol{\Sigma}}_{r} \Delta \rangle + \lambda \| \Delta_{\mathcal{I}} \|_{1} \leq 2 \langle \widetilde{\mathbf{y}}, \Delta \rangle - 2 \langle \widehat{\boldsymbol{\Sigma}}_{r} \boldsymbol{\beta}_{\mathcal{A}}^{*}, \Delta \rangle + \lambda \| \boldsymbol{\beta}_{\mathcal{A}}^{*} \| - \lambda \| \widehat{\boldsymbol{\beta}}^{c}_{\mathcal{A}} \|_{1}, \\ & \qquad \qquad \Downarrow (eq3) \\ \langle \Delta, \widehat{\boldsymbol{\Sigma}}_{r} \Delta \rangle + \lambda \| \Delta_{\mathcal{I}} \|_{1} \leq 2 \langle (\widehat{\boldsymbol{\Sigma}} - \widehat{\boldsymbol{\Sigma}}_{r}) \boldsymbol{\beta}_{\mathcal{A}}^{*} + \widehat{\boldsymbol{\Sigma}} \boldsymbol{\beta}_{\mathcal{I}}^{*} + \widetilde{\boldsymbol{\epsilon}}, \Delta \rangle + \lambda \| \Delta_{\mathcal{A}} \|, \\ & \qquad \qquad \Downarrow (eq4) \\ \langle \Delta, \widehat{\boldsymbol{\Sigma}}_{r} \Delta \rangle + \lambda \| \Delta_{\mathcal{I}} \|_{1} \leq 2 \| (\widehat{\boldsymbol{\Sigma}} - \widehat{\boldsymbol{\Sigma}}_{r}) \boldsymbol{\beta}_{\mathcal{A}}^{*} + \widehat{\boldsymbol{\Sigma}} \boldsymbol{\beta}_{\mathcal{I}}^{*} + \widetilde{\boldsymbol{\epsilon}} \|_{\infty} \| \Delta \|_{1} + \lambda \| \Delta_{\mathcal{A}} \|, \\ & \qquad \qquad \Downarrow (eq5) \\ \langle \Delta, \widehat{\boldsymbol{\Sigma}}_{r} \Delta \rangle + \lambda \| \Delta_{\mathcal{I}} \|_{1} \leq \frac{\lambda}{2} (\| \Delta_{\mathcal{A}} \|_{1} + \| \Delta_{\mathcal{I}} \|_{1}) + \lambda \| \Delta_{\mathcal{A}} \|, \\ & \qquad \qquad \Downarrow (eq6) \\ \langle \Delta, \widehat{\boldsymbol{\Sigma}}_{r} \Delta \rangle + \frac{\lambda}{2} \| \Delta_{\mathcal{I}} \|_{1} \leq \frac{3}{2} \lambda \| \Delta_{\mathcal{A}} \|_{1}, \end{split} (S2.3) \end{split}$$

where, (eq1) and (eq2) and (eq6) are due to some algebra, and (eq3) follows from (4.8), and (eq4) uses Cauchy-Schwartz inequality, and (eq5) holds by conditioning \mathcal{E} and the assumption $\lambda_0 \leq \lambda/2$. It follow from (S2.3) that

$$\Delta \in \mathcal{C}_{\mathcal{A},3}.\tag{S2.4}$$

Then, by the restricted eigenvalue condition on $\widehat{\Sigma}_{r}$ and (S2.3) we deduce,

$$\phi_0 \|\Delta\|_2^2 \le \langle \Delta, \widehat{\Sigma}_r \Delta \rangle \le \frac{3}{2} \lambda \|\Delta_{\mathcal{A}}\|_1 \le \frac{3}{2} \sqrt{s} \lambda \|\Delta\|_2,$$

i.e.,

$$\|\Delta\|_2 \leq \frac{3}{2\phi_0}\sqrt{s}\lambda \leq \frac{6}{\phi_0}(\frac{C_1(C_3+C_4)}{\sqrt{C}}\sqrt{\frac{s\log p}{n}} + \frac{C_1+\sqrt{C}C_2}{\sqrt{C}}\sigma_\epsilon\sqrt{\frac{s\log p}{n}} + \frac{C_1C_3}{\sqrt{C}}\sqrt{\frac{s\log p}{n_{\rm r}}}).$$

The above induction is conditioning on \mathcal{E} . We need give a lower bound on $\mathbb{P}[\mathcal{E}]$. Indeed,

$$2\|(\widehat{\boldsymbol{\Sigma}} - \widehat{\boldsymbol{\Sigma}}_r)\boldsymbol{\beta}_{\mathcal{A}}^* + \widehat{\boldsymbol{\Sigma}}\boldsymbol{\beta}_{\mathcal{I}}^* + \tilde{\boldsymbol{\epsilon}}\|_{\infty} \leq 2\|(\widehat{\boldsymbol{\Sigma}} - \widehat{\boldsymbol{\Sigma}}_r)\boldsymbol{\beta}_{\mathcal{A}}^*\|_{\infty} + 2\|\widehat{\boldsymbol{\Sigma}}\boldsymbol{\beta}_{\mathcal{I}}^*\|_{\infty} + 2\|\tilde{\boldsymbol{\epsilon}}\|_{\infty}$$

Then, it follows Lemma 4 and Lemma 5 and Lemma 6 that $\mathbb{P}[\mathcal{E}] \geq 1 - 3/p^2 - 1/p^3$. This completes the proof of (i) of Theorem 1.

(ii). Let
$$\widehat{\Sigma}_{\text{new}} = \mathbf{X}_{\text{new}}^T \mathbf{X}_{\text{new}} / n_{\text{new}}$$
. Then,
$$\|\mathbf{X}_{\text{new}}(\widehat{\boldsymbol{\beta}}^{c} - \boldsymbol{\beta}_{\mathcal{A}}^{*})\|_{2}^{2} / n_{\text{new}} = \langle \widehat{\Sigma}_{\text{new}}(\widehat{\boldsymbol{\beta}}^{c} - \boldsymbol{\beta}_{\mathcal{A}}^{*}), \widehat{\boldsymbol{\beta}}^{c} - \boldsymbol{\beta}_{\mathcal{A}}^{*} \rangle$$

$$= \langle \Delta, \widehat{\Sigma}_{r} \Delta \rangle + \langle \Delta, (\widehat{\Sigma}_{\text{new}} - \widehat{\Sigma}_{r}) \Delta \rangle$$

$$\leq \frac{3}{2} \lambda \|\Delta_{\mathcal{A}}\|_{1} + \|\Delta\|_{1}^{2} \|\widehat{\Sigma}_{\text{new}} - \widehat{\Sigma}_{r}\|_{\infty}$$

$$\leq \frac{3}{2} \lambda \|\Delta_{\mathcal{A}}\|_{1} + \|\Delta\|_{1}^{2} \frac{2C_{1}}{\sqrt{C}} (\sqrt{\frac{\log p}{n_{r}}} + \sqrt{\frac{\log p}{n_{\text{new}}}})$$

$$\leq \mathcal{O}(\sigma_{\epsilon} \sqrt{\frac{s \log p}{n}} + \sqrt{\frac{s \log p}{n_{r}}}) \|\Delta_{\mathcal{A}}\|_{2} + \mathcal{O}(\sqrt{\frac{\log p}{n_{r}}} + \sqrt{\frac{\log p}{n_{\text{new}}}}) s^{2} \|\Delta_{\mathcal{A}}\|_{2}^{2}$$

$$\leq \mathcal{O}((\sigma_{\epsilon} \sqrt{\frac{s \log p}{n}} + \sqrt{\frac{s \log p}{n_{r}}})^{2}) (1 + s^{2} (\sqrt{\frac{\log p}{n_{r}}} + \sqrt{\frac{\log p}{n_{\text{new}}}}))$$

where, the first inequality uses (S2.3) and Cauchy-Schwartz inequality, and the second one is due to Lemma 3, and the third inequality follow from (S2.4) and Cauchy-Schwartz inequality, the fourth inequality uses Theorem 1.

References

Bibliography

Vershynin, R. (2010). Introduction to the non-asymptotic analysis of random matrices, $arXiv\ preprint\ arXiv:1011.3027$.

Vershynin, R. (2018). High-dimensional probability: An introduction with applications in data science, Vol. 47, Cambridge University Press.