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Abstract: We consider the problem of variable selection and estimation in high-

dimensional linear regression models when complete data are not accessible, but

we do have certain marginal information or summary statistics. This problem is

motivated by genome-wide association studies (GWASs) with millions of genotyped

single nucleotide polymorphisms (SNPs), which have been widely used to identify

risk variants among complex human traits/diseases. With the large number of

completed GWASs, statistical methods using summary statistics have become in-

creasingly important because of the inaccessibility of individual-level data. In this

study, we propose the regression with marginal information (REMI) method, an

`1 penalized approach with estimated marginal effects and an estimated covariance

matrix of the predictors with external reference samples. The proposed method is

highly scalable and capable of analyzing multiple GWAS data sets from hundreds

of thousands individuals and a large number of SNPs. We also establish an upper

bound on the error of the REMI estimator, which has the same order as that of the

minimax error bound of the Lasso with complete individual-level data. We conduct

simulation studies to evaluate the performance of the proposed method. An inter-

esting finding is that when there is a large number of marginal estimates available

with a small number of reference samples, as in a GWAS, the proposed method

yields good estimation and prediction results, outperforming the Lasso with com-

plete data, but with a relatively small sample size. We apply the proposed method

to the 10 traits GWAS data of the Northern Finland Birth Cohorts program. In

particular, the real-data analysis results indicate that a summary-level-based analy-

sis using the REMI outperforms an individual-level-based analysis when the sample

size of the summary-level data is larger than that of the individual-level data. In

summary, our theoretical and real-data results provide solid support for a summary-

level-based analysis. As a result, polygenic risk scores of a wide variety of complex

diseases can be obtained using summary statistics with theoretically guaranteed

performance. The developed R package and the code to reproduce the results are

available at https://github.com/gordonliu810822/REMI.
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1. Introduction

High-dimensional regressions are widely applied in fields such as medicine,

biology, finance, and marketing (Hastie, Tibshirani and Friedman (2009)). Con-

sider the linear regression model that relates a response variable Y to a vector of

p predictors X = (X1, . . . , Xp)
T :

Y =

p∑
j=1

Xjβ
∗
j + ε, (1.1)

where β∗ = (β∗1 , . . . , β
∗
p)T is a vector of regression coefficients, and ε is a ran-

dom error term with mean zero and noise level σ2ε . In most applications, the data

set comprises an n× p matrix X of variables in X and a vector y = (y1, . . . , yn)T

of responses Y collected from n individuals. Given the individual-level data

{X,y}, there exist convex (Tibshirani (1996); Candes and Tao (2007)) and non-

convex (Fan and Li (2001); Zhang (2010)) penalized methods for estimating β∗

with a theoretical guarantee (Zhao and Yu (2006); Meinshausen and Bühlmann

(2006); Zhang and Huang (2008); Bickel, Ritov and Tsybakov (2009); Zhang and

Zhang (2012)). See also the monographs (Bühlmann and van de Geer (2011);

Hastie, Tibshirani and Wainwright (2015)), and the references therein.

Motivated by applications in human genetics, we consider the problem of

estimating β∗ when individual-level data {X,y} are not accessible, but marginal

information is available, such as XT
j y and XT

j Xj , for j = 1, . . . , p, where Xj is the

jth column of X. Therefore, we refer to our problem formulation as a ”regression

with marginal information” (REMI). To make our formulation feasible, we assume

the covariance structure of the variables in X can be estimated using a reference

panel data set in the form of an nr × p data matrix Xr, where nr is the number

of samples from the reference panel and nr � p. A natural question arises:

Without accessing individual-level data, can we use the marginal information

and the reference data Xr to estimate β∗, assuming observations in Xr and X

are from the same distribution?

In particular, our problem arises in genome-wide association studies

(GWASs), which have been conducted over the past decade to study the ge-

netic basis of human complex phenotypes, including both quantitative traits and

complex diseases (Hindorff et al. (2009); Welter et al. (2014); Visscher et al.

(2017)). As of April 2018, more than 59,000 unique phenotype-variant (typi-

cally single-nucleotide polymorphism, or SNP) associations have been reported
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in about 3,300 GWAS publications (see the GWAS Catalog database (https:

//www.ebi.ac.uk/gwas/). An important lesson from the GWASs (Yang et al.

(2010); Visscher et al. (2012, 2017)) is that complex phenotypes are highly poly-

genic; that is, they are often affected by many genetic variants with small effects.

Well-known examples include human height (Wood et al. (2014)), psychiatric

disorders (Gratten et al. (2014)), and diabetes (Fuchsberger et al. (2016)). Due

to the polygenicity, variants with small effects remain largely undiscovered, and

large sample sizes are required to explore the genetic architectures of complex

phenotypes. As a results, researchers are forming large genomic consortia, such

as the genetic investigation of anthropometric traits (GIANT) consortium and

the psychiatric genomic consortium (PGC), to maximize sample sizes, aiming at

a deeper understanding of these architectures.

Despite the prevalence of data sharing, it is still difficult for a research

group to fully access the individual-level genotype data available in a consor-

tium. For example, a core research group from the GIANT consortium re-

ported that they can only access genotype data from about 44,000 individuals

(Yang et al. (2015)), even though the total sample size is more than 250,000

for the consortium (Wood et al. (2014)). There are several reasons for the re-

stricted access to individual-level data. First, privacy protection is always a

concern when sharing individual-level genotype data. Second, it is often time-

consuming to achieve agreement on data sharing among different research groups.

Third, many practical issues arise in data transportation and storage. In con-

trast, GWAS summary statistics are widely available through many public gate-

ways (Genetics (2012)), for example, the download session at the GWAS cata-

log https://www.ebi.ac.uk/gwas/downloads/summary-statistics. Because

these summary statistics (e.g., estimated effect sizes, standard errors, and z-

values) are often generated by a simple linear regression analysis, summary statis-

tics are essentially marginal information.

To meet the demand for data analysis in GWASs, various statistical meth-

ods have been proposed that use marginal information. Using a few hundred

human-genome data values from the 1000 Genome Project as a reference panel,

we find information on the correlation structure of genetic variants (typically

using “linkage disequilibrium” in genetics, or LD). This allows these methods

to bypass the individual-level data, using only marginal information. Here, we

roughly divide these methods into three categories. The first is methods for

heritability estimation. The heritability of a phenotype quantifies the relative

importance of genetics and the environment to the phenotype (Visscher, Hill

and Wray (2008)). When individual-level data are accessible, linear mixed-model

https://www.ebi.ac.uk/gwas/
https://www.ebi.ac.uk/gwas/
https://www.ebi.ac.uk/gwas/downloads/summary-statistics
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(LMM)-based approaches (e.g., GCTA, Yang et al. (2010, 2011)) are widely used

for heritability estimation (Lee et al. (2011)). In the absence of individual-level

data, Bulik-Sullivan et al. (2015) first introduced the LD score regression, called

LDScore, for heritability estimation using only summary statistics and reference

data from the 1000 Genome Project. Based on the minimal-norm quadratic un-

biased estimation criteria, Zhou (2016) proposed a novel method of moments,

MQS, for variance component estimation using summary statistics. The second

category is methods for association mapping. Heritability estimation provides a

global measure that quantifies the overall contribution from genetic factors. As-

sociation mapping localizes genetic variants associated with a given phenotype.

Recently, several statistical methods have been proposed for association mapping

based on summary statistics, including the functional GWAS (FGWAS) (Pickrell

(2014)), probabilistic annotation integrator (PAINTOR) (Kichaev et al. (2014)),

causal variants identification in associated regions (CAVIAR) (Hormozdiari et al.

(2014)), and CAVIAR Bayes factor (CAVIARBF) (Chen et al. (2015)). Although

these methods are very useful for performing association mapping on summary

statistics, they still have limitations. First, they adopt ad-hoc methods of re-

ducing the computational cost. For example, to avoid a combinatorial search,

FGWAS assumes there is only one causal signal in an LD block, and PAINTOR

searches no more than two causal variants in its default setting. Second, the sta-

tistical analysis is oversimplified in order to overcome estimation difficulties. For

example, the noncentrality parameter in PAINTOR and the variance components

in CAVIAR and CAVIARBF are pre-fixed, rather than adaptively estimated from

the data. The third category contains methods for effect size estimation and risk

prediction. Recently, Vilhjálmsson et al. (2015) proposed a Bayesian method, LD-

pred, for effect size estimation and risk prediction by accounting for LD. Along

this line, Hu et al. (2017) proposed AnnoPred to improve LDpred by incorpo-

rating functional information on the human genome. However, neither LDpred

nor AnnonPred should be considered as a marginal-information-based method

because they both require individual-level data as validation data for their pa-

rameter tuning.

Most recently, Ning et al. (2017) proposed the selection operator for jointly

analyzing multiple variants (SOJO), which uses GWAS summary statistics to

identify association signals in complex traits. However, they do not consider the

theoretical properties of this approach.

Although existing statistical methods have shown good empirical perfor-

mance in GWAS data analyses, there are a number of open questions related

to regressions with marginal information. First, the sample size of the reference
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panel is often very small. For example, there are only about 370 samples from

the 1000 Genome Project that can be used as references when analyzing GWAS

data on European ancestry. It remains unclear why such a small sample size is

good enough for exploring the correlation structure of a large number of variables

(i.e., SNPs). Second, the theoretical properties of existing methods for effect size

estimation and prediction errors have not been studied. Third, the algorithms

are often time-consuming, because they need to run thousands of Markov chain

Monte Carlo (MCMC) iterations. Positive answers to these questions will ben-

efit GWAS data analysis. For example, the polygenic risk score of a disease

can be established without accessing individual-level data, instead using sum-

mary statistics and a few reference samples. This saves on computational effort

without sacrificing statistical accuracy.

We propose a statistically guaranteed method, the regression with marginal

information (REMI) method, to address the above open questions. The rest

of this paper is organized as follows. In Section 2, we introduce our REMI

model and discuss its use with GWAS data. In Section 3, we present an efficient

coordinate descent algorithm, and discuss practical issues in implementing this

algorithm. In Section 4, we establish the error bound and prediction error of

the proposed method. In particular, our theoretical results explain why a small

number of samples (i.e., nr) from the reference panel can be good enough for

effect size estimation and risk prediction. In Section 5, we present the results

of simulation studies and a real-data analysis. In particular, our results indicate

that a summary-level-based analysis using the REMI method outperforms an

individual-level-based analysis when the sample size in summary-level data is

larger than that of the individual-level data.

2. The REMI Model

2.1. The REMI model

For the linear regression model in (1.1), if the individual-level data (y,X)

are available, a basic approach for estimating β∗ in high-dimensional settings is

the Lasso (Tibshirani (1996)). The Lasso estimator is given by

β̂ = argmin
β

1

n
‖y −Xβ‖2 + λ‖β‖1, (2.1)

where ‖ · ‖1 is the `1 norm, and λ ≥ 0 is a regularization parameter. In our

problem, however, the individual-level data {X,y} are not accessible. Hence,

a direct application of the Lasso is not feasible. Note that several other im-
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portant penalized methods have been proposed, including the smoothly clipped

absolute deviation (SCAD) (Fan and Li (2001)) and minimax concave penalty

(MCP) (Zhang (2010)). We focus on the Lasso penalty below, although our

proposed approach can also be based on the other penalties.

We now describe our proposed REMI model with the Lasso penalty. Rewrite

(2.1) as

β̂ = argmin
β

1

n
(βTXTXβ − 2βTXTy + yTy) + λ‖β‖1

= argmin
β

1

n
βTXTXβ − 2

n
βTXTy + λ‖β‖1, (2.2)

where the second term only involves the inner product of the optimization variable

β and marginal information, say, ỹ = XTy/n, which we assume is available.

The difficulty comes from the first term, where XTX/n is unknown because X

is not observed. Motivated by applications in GWASs, we assume there exists

a reference nr × p data matrix Xr, where the rows of Xr are independent and

identically distributed (i.i.d.) and have the same distribution, with the covariance

matrix Σ as the rows of X. Therefore, both Σ̂ = XTX/n and Σ̂r = XT
r Xr/nr can

be viewed as estimators of Σ and we propose solving the following optimization

problem to estimate β∗:

β̂c = argmin
β

1

nr
βTXT

r Xrβ − 2βT ỹ + λ‖β‖1, (2.3)

where β̂c denotes the estimator using the reference covariance matrix. Clearly,

the above model (2.3) uses only the marginal correlation between X and y, with

the covariance matrix estimated using an external reference panel Xr.

2.2. REMI in GWAS

In the context of a GWAS, rather than have ỹ = XTy/n as marginal in-

formation, we may only have the summary statistics {β̂mj , ŝ2j}j=1,...,p from the

univariate linear regression:

β̂mj = (XT
j Xj)

−1XT
j y, ŝ2j = (nXT

j Xj)
−1(y −Xj β̂

m
j )T (y −Xj β̂

m
j ),

where the superscript m is used to denote marginal information, and β̂mj and ŝ2j
are the estimated effect size and its variance, respectively, for SNP j. Owing to

the polygenicity of many complex phenotypes, the standard errors can be well

approximated by ŝj ≈
√

(nXT
j Xj)−1yTy (Zhu and Stephens (2017)). Let β̂m =
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[β̂m1 , . . . , β̂
m
p ]T , ŝ2 = [ŝ21, . . . , ŝ

2
p]
T be the vectors collecting estimated effect sizes

and estimated variances, respectively, and let Ŝ be a p× p diagonal matrix, with

ŝj as its jth diagonal element. Furthermore, we introduce a p×p diagonal matrix

D̂ = diag(d̂j), with its jth diagonal element being the sample standard deviation

of Xj , that is, d̂j =
√

XT
j Xj/n, and a correlation matrix R̂ = [r̂jk] ∈ Rp×p,

with r̂jk = XT
j Xk/((X

T
j Xj)

1/2(XT
kXk)

1/2). Noting that d̂2j β̂
m
j = XT

j y/n and

n2d̂2j ŝ
2
j ≈ yTy, the REMI formulation (2.2) becomes

β̂ = argmin
β

1

n
βTXTXβ − 2

n
βTXTy + λ‖β‖1,

= argmin
β

βT D̂R̂D̂β − 2βT D̂2β̂m + λ‖β‖1,

≈ argmin
β

yTy

n2
βT Ŝ−1R̂Ŝ−1β − 2

yTy

n2
βT Ŝ−2β̂m + λ‖β‖1,

= argmin
β

βT Ŝ−1R̂Ŝ−1β − 2βT Ŝ−2β̂m + λ̃‖β‖1,

where λ̃ = (n2/(yTy))λ, and the approximation holds in the case of polygenicity.

Because λ̃ is a tuning parameter that scales λ with a constant factor (n2/(yTy)),

we slightly abuse λ for λ̃, and propose solving the following optimization problem:

β̂r = argmin
β

L(β) + λ‖β‖1, (2.4)

where L(β) = βT Ŝ−1R̂Ŝ−1β−2βT Ŝ−2β̂m, and β̂r denotes the estimates based on

the correlation information. Similarly to the REMI (2.3), in which the covariance

matrix Σ̂ = XTX/n needs to be estimated, the correlation matrix R̂ needs to be

estimated using samples from the reference panel Xr. We refer (2.3) as REMI-C,

and to (2.4) as REMI-R.

3. Algorithm and Practical Issues

3.1. Algorithm

Here, we adopt the widely used coordinate descent algorithm, which updates

one parameter at a time, say β̂cj , keeping all other parameters fixed at their

current values. Thus, the sub-problem for parameter β̂cj can be written as

β̂cj (λ) = argmin
βj

σ̂jjβ
2
j − 2

ỹj −∑
k 6=j

β̂ckσ̂jk

βj + λ|βj |, (3.1)
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Algorithm 1 Path algorithm to solve REMI-C (2.3) with a sequence of λ = (λ1, . . . ,
λD).

Output: Solution path for β̂c(λ).
for l = 1, 2, . . . , D do

Initialize β̂c(λl) = β̂c(λl−1), if l > 1; β̂(λl) = 0, if l = 1
repeat

for j = 1, 2, . . . , p do
ηj = ỹj −

∑
k 6=j β̂

c
k(λ)σ̂jk

β̂c
j (λ)← S(ηj , λ/2)/σ̂jj

end
until Convergence;

end

where σ̂jk is an element in Σ̂r = [σ̂jk] ∈ Rp×p. An efficient path algorithm

can be developed based on a warm start and some other tricks, as described

in Friedman, Hastie and Tibshirani (2010). In particular, we generate a sequence

of λ = (λ1, . . . , λD), equally spaced in logarithm form, with λ1 = λmax and

λD = τλmax, where λmax is the minimum λ that shrinks all parameters to zero,

and τ is usually set to 0.05. For each λ, we use the solution of (2.3) from the last

λ value as the warm start. The path algorithm is described in Algorithm 1.

Similarly to REMI-C, an efficient coordinate descent algorithm can be devel-

oped to solve REMI-R (2.4). The efficient path algorithm is given in Algorithm

2.

3.2. Reference panel

The REMI-R model in (2.4) involves a cohort-based estimated correlation

matrix. Based on the nature of the correlation patterns of the SNPs, R can be

approximated using a block diagonal matrix. Specifically, we first partition the

whole genome into L blocks (L = 1,703 for European ancestry, and L = 1,445 for

Asian ancestry) (Berisa and Pickrell (2016)). Then, we calculate the empirical

correlation matrix R̂emp for each LD-block. To ensure a stable numerical result,

we apply a simple shrinkage estimator to obtain R̂r = κR̂emp + (1 − κ)I within

each block (Schäfer and Strimmer (2005)), where we use κ = 0.9 as the default

(the estimate of β∗ is insensitive to κ, Pasaniuc et al. (2014)). Thus, similarly

to Zhu and Stephens (2017), the REMI methods and their individual-level-data

counterparts will produce approximately the same inferential results within a

region. After substituting Ŝ and R̂r into (2.4), we use the coordinate descent

algorithm to obtain β̂r(λ) (Algorithm 2).
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Algorithm 2 Path algorithm to solve REMI-R (2.4) with a sequence of λ = (λ1, . . . , λD).

Output: Solution path for β̂c(λ).
for l = 1, 2, . . . , D do

Initialize β̂r(λl) = β̂r(λl−1), if l > 1; β̂r(λl) = 0, if l = 1
repeat

for j = 1, 2, . . . , p do

ηj = β̂j
m
/ŝ2j − (1/ŝj)

∑
k 6=j β̂k

r
r̂jk/ŝk

β̂j
r
(λ)← S(ηj , λ/2)× ŝ2j

end
until Convergence;

end

3.3. Choice of regularization parameter λ

The REMIs have one regularization parameter, λ. Here, we briefly show

how to choose this parameter for REMI-R; it is straightforward to develop the

same strategy for REMI-C. Similarly to the Lasso solver (Friedman, Hastie and

Tibshirani (2010)), we generate a sequence of λ from λmax to τλmax, where λmax is

the minimum value of λ that shrinks all parameters to zero, and τ is prespecified

with a default value of 0.05. Note that λmax = max
{

2β̂mj /ŝ
2
j

}
j=1,...,p

. We search

for the optimal value of λ using they Bayesian information criterion (BIC),

BIC(λl) = L(β̂r(λl)) + log(n)df(λl). (3.2)

Zou, Hastieand and Tibshirani (2007) showed that the number of nonzero coeffi-

cients is an unbiased estimate for the degrees of freedom of the Lasso. We choose

df(λl) to be the number of nonzero coefficients, given λl. To fairly compare the

REMIs with the Lasso, we also use the BIC to select the regularization parameter

when individual-level data are accessible.

4. Theoretical Properties

In this section, we give nonasymptotic bounds on the estimation error ‖β∗A−
β̂c‖ and the prediction error ‖Xnewβ

∗
A − Xnewβ̂

c‖2/nnew, where A denotes an

index of significant entries of β∗, and β∗A denotes the vector supported on A.

In real applications using genetic data, the underlying signal is not exactly

sparse, but contains many small components. Here, we assume the target β∗ is

weakly sparse; that is, in addition to some significant components indexed by A,

there may be many nonzero entries in β∗ with very small magnitude, as indexed

by I = Ac. Let β∗I be the vector supported on I. It is reasonable to assume that
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s = |A| ≤ n, ‖β∗I‖∞ ≤ 2σε

√
log p

n
, (4.1)

because a signal with a magnitude smaller than this order is undetectable. Then,

ỹ = Σ̂β∗ + ε̃ = Σ̂β∗A + Σ̂β∗I + ε̃, (4.2)

where, ε̃ = XT ε/n. Let C1 ≥
√
‖diag(Σ)‖∞, C2 ≥ maxj=1,...,p{‖Σj‖1}, C3 ≥

‖β∗A‖1, and C4 ≥ ‖β∗I‖1. The restricted eigenvalue (Bickel, Ritov and Tsybakov

(2009)) of Σ̂r is defined as

φΣ̂r
= min

06=v∈CA,3

vT Σ̂rv

‖v‖22
,

where

CA,3 = {v ∈ Rp : ‖vI‖1 ≤ 3‖vA‖1}.

Theorem 1. Assume the rows of X and Xr are i.i.d sub-Gaussian samples drawn

from a population with mean 0 and covariance matrix Σ, Σ̂r satisfies the re-

stricted eigenvalue condition with φΣ̂r
≥ φ0 > 0, and the noise vector ε is mean-

zero sub-Gaussian with noise level σε, and n ≥ 4/C log p, nr ≥ 4/C log p. Take

λ ≥ 2λ0 = 4(((C1(C3 + C4))/
√
C)
√

log p/n + ((C1 +
√
CC2)/

√
C)σε

√
log p/n +

(C1C3/
√
C)
√

log p/nr).

(i) With probability at least 1− 3/p2 − 1/p3, we have

‖β̂c − β∗A‖ ≤
6

φ0

(
C1(C3 + C4)√

C

√
s log p

n

+
C1 +

√
CC2√
C

σε

√
s log p

n
+
C1C3√
C

√
s log p

nr

)
.

(ii) Suppose we observe Xnew ∈ Rnnew×p, the rows of which are sampled from the

same distribution as that of X. Then, with probability at least 1−3/p2−1/p3,

the prediction error satisfies

‖Xnew(β̂c − β∗A)‖22
nnew

≤O

((
σε

√
s log p

n
+

√
s log p

nr

)2)
(

1 + s2

(√
log p

nr
+

√
log p

nnew

))
.

Remark 1. The assumption that Xr are i.i.d sub-Gaussian samples drawn from

a population with mean 0 and covariance matrix Σ implies that the restricted
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eigenvalue condition φΣ̂r
≥ φ0 holds for some positive φ0 with high probabil-

ity, as long as nr ≥ O(s log p) (Van De Geer and Bühlmann (2009); Vershynin

(2010); Huang et al. (2018)). As shown in Theorem 1, with the help of a refer-

ence panel, we can obtain an accurate estimator using (2.3), even if we have only

marginal information in a high-dimension setting, as long as n ≥ O(s log p) and

nr ≥ O(s log p). Furthermore, the estimation error of the REMI model in (2.3)

achieves the minimax optimal rate of the Lasso (Raskutti, Wainwright and Yu

(2011)) if the number of samples in the reference panel nr is of the same order as

the number of individual-level samples n. Moreover, if the magnitude of the sig-

nificant entries is larger than O(σε
√
s log p/n+

√
s log p/nr), then the estimated

support supp(β̂c) coincides with the true significant set A.

5. Numerical Studies

5.1. Simulation studies

In our simulation studies, we compare the REMI-C (2.3), REMI-R (2.4),

and Lasso using individual-level data. To avoid unrealistic LD patterns in the

simulations, we used the genotype data X from the RPGEH data set (Hoff-

mann et al. (2011)). The RPGEH data set provides 657,184 genotyped SNPs for

62,313 European individuals. We perform strict quality control on the data using

PLINK (Purcell et al. (2007)). We exclude SNPs with a minor allele frequency

of less than 1%, those with missing values in more than 1% of individuals, and

those with a Hardy–Weinberg equilibrium p-value below 0.0001. Moreover, we

remove one member of pairs with genetic relatedness larger than 0.05. Finally,

there remained 53,940 samples for 550,482 SNPs.

Because individual-level-based analyses often suffer from limited sample sizes,

owing to restricted access to individual-level data, summary-level-based analyses

may have advantages because their sample sizes are often much larger. To sim-

ulate this situation, we pre-fixed the sample size for the individual-level-based

analyses at nind = 3,000. Specifically, we randomly selected nind of the 53,940

individuals in the RPGEH data set to form the genotype matrix X ∈ Rnind×p,

where p = 19,865 is the total number of genotyped SNPs on chromosomes 16,

17, and 18. Then, the phenotype vector y was generated as y = Xβ∗ + ε, where

ε ∼ N (0, σ2ε ), and the heritability (h2 = Var(Xβ)/(Var(Xβ∗) + σ2ε )) was con-

trolled at 0.2, 0.3, 0.4, and 0.5. Here, β∗ is the vector of the true effect size, with

sparsity α; that is, α× p entries in β∗ are nonzero and sampled from N (0, 1). In

our simulation study, we varied α in {0.001, 0.003, 0.005, 0.007, 0.01, 0.02}. With

{X,y} at hand, the standard Lasso can be applied, serving as a reference for the
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individual-level data analysis.

To generate summary-level data, we varied the sample size n from 3,000 to

50,000. We generated individual-level data as described above, and then ran a

simple linear regression on {Xj ,y}, for j = 1, . . . , p, to obtain {β̂(m), ŝ2}. Then,

we pretended that we did not have individual-level data {X,y}, using only XTy

and {β̂(m), ŝ2} as the inputs for REMI-C and REMI-R, respectively. We used 379

European samples from the 1000 Genome Project data as the reference panel to

estimate the covariance matrix (REMI-C) and correlation matrix (REMI-R), as

discussed in Section 3.2. For each replication, we used 200 independent samples

to evaluate the prediction accuracy. Finally, we summarized our results based on

50 replications for each setting.

We compare the performance of the REMI-C, REMI-R, and Lasso using

individual-level data in terms of their variable selection and prediction. Specifi-

cally, we use the partial area under the receiver operating characteristic (ROC)

curve (partial AUC) for the variable selection performance, and use the Pearson

correlation coefficient between the predicted and the observed phenotypes for the

prediction performance. The results of this simulation study are shown in Fig-

ure 1 and Figure 2. First, we observe very little difference between REMI-C and

REMI-R. This justifies the approximation made in REMI-R. Second, when the

sample size (n = 3,000 or 5,000) of the summary-level data is similar to that of

the individual-level data (nind = 3,000), REMI-C and REMI-R perform similarly

to the Lasso in terms of variable selection and prediction. Third, the REMIs

gradually outperform the Lasso as the sample size increases from 5,000 to 50,000

for both variable selection and prediction. This clearly indicates that the REMIs

have an advantage over the Lasso when the sample size of the summary-level

data becomes much larger.

5.2. Real-data analysis

To demonstrate the utility of the REMIs, we first compare the Lasso and

the REMIs using the GWAS data set from the Northern Finland Birth Cohorts

program (NFBC1966) (Sabatti et al. (2009)). The NFBC1966 data set contains

information on 5,402 individuals, with a selected list of phenotypic data related

to cardiovascular disease, including high-density lipoprotein (HDL), low-density

lipoprotein (LDL), total cholesterol (TC), triglycerides (TG), C-reactive protein

(CRP), glucose, insulin, body mass index (BMI), systolic (SysBP), and diastolic

(DiaBP) blood pressure. For each individual, 364,590 SNPs are genotyped. We

perform strict quality control on the data using PLINK (Purcell et al. (2007)).

We first exclude those individuals with discrepancies between their reported sex
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Figure 1. A comparison of the variable selection performance of the REMIs (REMI-R
and REMI-C) using summary-statistics data with the Lasso using individual-level data,
with sample size 3,000. The sample size used to produce the summary statistics was
varied and denoted as n ∈ {3000, 5000, 10000, 20000, 50000}. We use the partial AUC to
measure the variable selection performance.

and the sex determined from the X chromosome. We also exclude SNPs with a

minor allele frequency of less than 1%, those with missing values in more than

1% of individuals, and those with a Hardy–Weinberg equilibrium p-value below

0.0001. In particular, we select well-imputed variants from the HapMap 3 refer-

ence panel (The International HapMap 3 Consortium (2010)). After the strict

quality control, 5,123 individuals with 310,975 SNPs in NFBC1966 remained for

further analysis. Because we have the individual-level data, it is possible to run

the REMI-C, REMI-R, and Lasso for all these traits. The solution paths using

the three methods for the 10 metabolic traits in the NFBC1966 data set are pre-

sented in Figure S1. The dotted vertical bars indicate the corresponding selected

tuning parameters based on the BIC. As shown, there are only minor differences

between the solution paths for the three methods, which is consistent with the

results of our simulation studies discussed in Section 5.1.
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Figure 2. The prediction accuracy of the REMIs using summary-level data with the Lasso
using individual-level data, with a sample size 3,000. The sample size used to simulate
the summary statistics varies as n ∈ {3000, 5000, 10000, 20000, 50000}. The prediction
accuracy is measured using the Pearson correlation coefficient between the predicted and
the observed phenotypes.

In the released GWAS summary-level data sets, it is often the case that

{β̂(m), ŝ2} rather than the inner product XTy is available. Therefore, we apply

the REMI-R to analyze summary statistics for 10 GWASs of complex pheno-

types. The source of each GWAS is given in Table S1. Because the individuals

that make up the summary-level data sets are all from European ancestry, we

use 379 European-ancestry samples from the 1000 Genome Project (The 1000

Genomes Project Consortium. (2012)) as a reference panel to estimate the cor-

relation matrix. Owing to the quality of the SNPs in the summary statistics,

we restrict our analysis to a set of common and well-imputed variants from the

HapMap 3 reference panel (The International HapMap 3 Consortium (2010)),

which includes 1,197,724 SNPs in total. Figure 3 shows the Manhattan plots of

the summary statistics for height (Ht), including − log10(p-value), |β̂m|, and |β̂r|.
The Manhattan plots of the absolute effect sizes from the REMI-R for the other
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Figure 3. Manhattan plots of analysis results for human height: -log10p-value, |β̂m| from

the marginal analysis, and |β̂r| from REMI-R.

nine traits are shown in Figure S2.

In addition to the effect size estimation, we evaluate the prediction perfor-

mance using 5,123 samples from the NFBC1966 (Sabatti et al. (2009)). To make

a fair comparison with the Lasso, we first split all 5,123 samples into 10 folds.

First, we apply REMI-R to the summary statistics for the lipid traits listed in

Table S1. Again, we used 379 European-ancestry samples from the 1000 Genome

Project as a reference panel. For each of 10 folds in the NFBC1966 data set, we

calculate the predicted phenotypic values and evaluate the Pearson correlation

coefficients between the predicted and the observed phenotypic values. Then, we

fit the Lasso on the individual-level NFBC1966 data using the same 10-fold data

for cross-validation. Specifically, we randomly select nine folds of the individual-

level data as the training set to fit the Lasso, and evaluate the prediction ac-

curacy of the fitted model using the remaining one fold. Note that we use the

same remaining fold to evaluate the prediction accuracy of the fitted REMI-R

model. The prediction performance of the REMI-R and Lasso methods is shown

in Figure 4. Clearly, the REMI-R outperforms the standard Lasso in terms of

prediction performance. This is because the sample size of the summary statistics

for these lipid traits is around 100,000, whereas the individual-level data contain

only 5,123×9/10 samples. These real-data results indicate the advantage of the

REMI over the Lasso for risk prediction.

6. Conclusion

We proposed a novel approach for high-dimensional regression analyses when

only marginal regression information and an external reference panel data set

are available. Our work is motivated by combining information from multiple

GWASs. To date, a large number of GWASs have been conducted to find genetic

factors associated with complex traits. Owing to the need for privacy protection
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Figure 4. The prediction accuracy (measured by the Pearson correlation coefficients) of
the REMI-R and the Lasso for HDL, LDL, TC and TG in the NFBC1966 data sets, where
the REMI-R was fitted using independent summary-level data, and the Lasso was fitted
using individual-level data from NFBC1966. The prediction accuracies are evaluated on
1/10 of the NFBC1966 data set retained for testing.

and issues related to the sharing of individual-level data, it is important to make

full use of the summary statistics from separate studies. In contrast to the limited

sample sizes in GWAS analyses based on individual-level data, a prominent fea-

ture of a summary-level data analysis is that it uses multiple data sets effectively,

which leads to a much larger combined sample size.

Under mild conditions, we prove that the REMI estimator (2.3) based on the

marginal information and the reference panel achieves the minimax optimal rate

estimation error under reasonable conditions. In particular, the requirement on

the size of the reference panel data is quite mild, only in the order of the loga-

rithm of the model dimension. Our theoretical result successfully explains why

a relatively small reference sample can be good enough for accurate estimation

and prediction in real applications. We conducted comprehensive simulations

and a real-data analysis to demonstrate the utility of the REMI method. The

experiment results show that the REMI performs similarly to the Lasso when

the sample sizes of the summary-level and individual-level data are the same.

In genetic analyses, summary-level data sets are much easier to access and their

sample sizes are often orders of magnitude larger than those of individual-level

data sets. Consequently, the REMI method can be superior to existing methods

that require complete data by taking advantage of the larger sample sizes, as

demonstrated in our real-data example. In summary, our theoretical and real-

data results provide solid support for summary-level-based analyses. As a result,
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the polygenic risk score of complex disease can be obtained using summary statis-

tics, with theoretically guaranteed performance.

Supplementary Material

The online Supplementary Material contains technical details and supple-

mentary figures and tables.

Acknowledgments

This work was supported in part by the National Science Funding of China

(61501389, 11871474), the Hong Kong Research Grant Council (22302815, 12316

116, 12301417, and 16307818), The Hong Kong University of Science and Tech-

nology (startup grant R9405), Duke-NUS Medical School WBS (R-913-200-098-

263), and the Ministry of Education, Singapore (MOE2016-T2-2-029, MOE2018-

T2-1-046, MOE2018-T2-2-006). All computational work for this study was per-

formed using the resources of the National Supercomputing Centre, Singapore

(https://www.nscc.sg).

References

Berisa, T. and Pickrell, J. K. (2016). Approximately independent linkage disequilibrium blocks

in human populations. Bioinformatics 32, 283.

Bickel, P. J., Ritov, Y. and Tsybakov, A. B. (2009). Simultaneous analysis of Lasso and Dantzig

selector. The Annals of Statistics 37, 1705–1732.
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