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Supplementary Material

In this supplementary material, we present the details for constructing the transformed data

matrix D and the detailed proof for Lemma 2.

S1 Details for Constructing the Transformed Data

Matrix D

In this section, we provide the details for the construction of the trans-
formed data matrix D from the original data matrix D. Actually, we only
need to show how to construct a upper triangular matrix D. Re-scaling D
is trivial.

Given the original data matrix D = (1,X,M,Y) in the classic medi-
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ation model, which is a column full rank matrix with rank(D) = 4, we
can always find an orthogonal matrix ) via the standard Gram-Schmidt
process to transfer D to an upper triangular matrix D = QTD. Please see
section 5.2.7 in Golub and Van Loan ([1996).
Below, we demonstrate the Gram-Schmidt process by a concrete nu-

merical example. Suppose

D=(1,XMY)=11 3 42 6.9

1 5 59 109

The Gram-Schmidt process contains the steps below. Firstly, calculate the

first columns of D and Q.

D(1,1) = |1]}, = V5,
Q(;,1) =1/D(1,1) = (1/v5,1/v5,1/V5,1/v5,1/V5).

Then, we can generate the k-th column of D and Q for k = 2,3,4 in turn



S1. DETAILS FOR CONSTRUCTING THE TRANSFORMED DATA MATRIX D

according to the following algorithm:

D1:k—1,k)=Q(:,1:k—1)D(; k),
2=D(,k) —Q(,1:k—1)D(1:k—1,k),

D(k, k) = [|2]]2,

Q(:, k) = z/D(k, k).

And the numerical results are:
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0.447 0316 —0.237 —-0.714 —0.365

0.447 0.632 —0.079 0.306  0.547

It’s easy to check that QTQ = I, i.e., Q) is an orthogonal matrix, and

D upper triangular matrix with positive diagonals.
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S2 Detailed Proof for Lemma 2

For simplicity of notation, we use 1, X, M and Y to represent the

transformed data matrices.
Here, we calculate LSE estimates a, l;, d and ¢
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S2. DETAILED PROOF FOR LEMMA 2
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where the symbol * stands for terms we are not interested in.

By projecting data matrix onto subspaces, we have

Ml = (mlaou"' 70)7 Ml,X == <m17m2707'” 70)7
Yl = (91,07'" ao)a YI,X = (yl7y270a"' 70)7 Yl,M,X = (yl7y27y3707"' aO)a
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Let 7 = sl /s, p = Il /3 0 = 12l /1, = D)/ = 2] and
Pra = [Atp—s(a)/(n — 3)]2. The rejection regions for a, b, ¢ and d are as

follows.
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