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S1 Proofs

S1.1 Side results

To prove (3.7), note that since ¢, € Ly([0, 1]), we can write py = > 272 | @q j1;.

Since I'xpr = Ay, we deduce that Y75 ) e (Vr, Dxt0i) Uk = N D200 0ok i

Multiplying both sides of this equality by v, and taking the integral we ob-
tain (3.7).

To prove (3.8), note that, using Fubini’s theorem and integration by
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parts, we have

(W Dxcty) / () (D) (1) dt = / ()X (8) di /01¢j(s)X’(s)ds}
- [Fwo [ ppeoxee s
= / V(D) / 1 ([E{y ()Y (5)}] — 0* min(s, 1) ) o (s) ds e
= [ [ Byoverse st - [uonoa

=Mjr—0 - 1{j =k},

where we used the fact that fol Ul (¢) fol min(s, t)y(s) ds dt = fo Ui (t);(¢) dt.
In order to provide a more general/ abstract view of a major step (S1.17)
in the proof of Theorem 4, we mention that the supremum of a statistical
risk Ey|0—0||2 over all § € © is estimated from below by a Bayesian risk with
respect to some a-priori distribution () on the parameter space ©. Therein
O is a subset of a separable Hilbert space with the norm || - ||. Moreover
impose that the data distribution has the density f(6;-) with respect to

some dominating o-finite measure p on the action space 2. In order to
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calculate the smallest Bayesian risk, consider the classical argument that

Eq Erlld — 0]} = / 10) = 012 6:)du0)dQ(0)

//H w) = 0) £ (6 )dpu()dQ(6)
> [[ 180) - 01 1(6:0)duie)dQ )
2 / (0),00) [ 1(6:0)Q(0) - [ 6£(6:)dQ(0) aute),
(SL.1)
where (-, -) denotes the inner product associated with || - || and the integrals

inside the inner product may be understood as Bochner integrals. Putting

i(w) = / 0£(6:0)dQ(6) / / £(6;)dQ(6) .

the last term in (S1.1) vanishes so that 6 is the Bayes estimator of 6 with

respect to @ and || - ||2. Thus the minimal Bayesian risk (Bayesian risk of
0) equals
Eq Eo |6 — 0|

//H/‘)f dQ"’//fﬁ” Q") — || £(6:)dn()dQ(6)

/H/e w)dQ(®") /fe” dQ@” /fewdQ( Jdp(w)
-2 / < / 0'f(0'; w)dQ(0), / 9f(9;w)dQ(9)>{ / f(&”;w)dQ(e”)} dp(w)

+ [ o2 / (6 Q(6).

v
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so that

EoEsllf — 6] = / 1612dQ(9)

- [ [ereaae)

This corresponds to the lower bound on the minimax risk which is applied

2/ { / f(‘9§w)dQ(‘9)}d,u(w).

in (S1.17).

S1.2 Proof of Theorem 1

Since the measure Py of V] is known, we can identify the measure Py from
the Radon-Nikodym derivative fy = dPy/dPy. Suppose there exist two
measures Py and ﬁX, each of which is a candidate for the true measure
of X;, and both of which lead to the same measure Py of Y7 = X; + V.

Consider the functional characteristic functions ¥ x, ¥y and ¥y, defined by

oxt) = [es{i [ tfu)e(u) du} dPs (o),
oxtt) = [e{i | tfu)ow du} dPy (o),
i) = [eni tfu)o(u) du} dPy(z).
wiv) = [eni tfu)o(w) du} dPy(z)

— e { - %(;2 /O 1 /0 " ) min o, o () dudu'},
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for any t € Ly([0,1]). It follows from the independence of X; and V; that
Ux(t) -y (t) = Yy (t) = Px(t) -y (t) for all t € Ly([0,1]). Since 1y does
not vanish anywhere, the above equality implies that ¥y = QZX. Now,
for u € [0,1], we put t(u) = tp(u) = hilz?ZflTj - K{(u—j/2m)/h},
where m > 0 is integer, the 7;’s are real coefficients, and for a bandwidth
parameter h € (0,27] and a kernel function K : R — R, which is non-
negative, continuous, supported on the interval [—1,1] and integrates to
one.

For any fixed m and 75, j = 1,...,2™—1, we have lim;_,, fol th(u)x(u) du
Zj:; Yrx(5/2m), for any © € Co([0,1]). By dominated convergence it

follows that tx(t,) = ¥x(ty) tend to the characteristic functions of the

random vector

X" = (X (1/2m), . X (2 - 1)/2m))

at 7 = (7y,...,Tem_1) under the probability measure Px and Py, respec-

tively, as h | 0. Since 7 can be chosen to be any vector in R?>"~! the

above mentioned characteristic functions are equal. It is well known that

the characteristic function of any random vector in R?"~! determines its
[m]

distribution uniquely so that the distributions of X, under the basic mea-

sure Py, on the one hand, and Py, on the other hand, are identical. Thus,
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for some arbitrary s € Cy([0, 1]), we have

Px ({z € Coo([0,1]) = x(j/2™) < s(j/2™), V)

1...,2"—1})

= Px({r € Coo([0.1)) © 2(j/2") < s(j/2"). ¥j =

=1,...,2" = 1}).

(S1.2)

The countable set Q = J,,,entk/2™ 1k =1,...,2™ — 1} is dense in the

interval [0, 1]. Hence the following events coincide:
{z € Cop([0,1]) : z(u) < s(u), Yu € [0,1]}
{z € Coo([0,1]) : z(u) < s(u), Vu € Q}

() {z € Coo([0.1]) : 2(j/2™) < s(j/2"), ¥j =1,...,2" —1}.

Therefore we obtain that

Px({z € Cop([0,1]) : z(u) < s(u), Vu € [0,1]})

nli_r}réoPX({x € Coo([0,1]) = z(j/2™) < s(j/2™), Vj = 1,.

L2 =1}

(S1.3)

The corresponding equality holds true for the measure Py.

Combining (S1.2) and (S1.3) we deduce that

Px ({z € C0([0,1]) : z(u) < s(u), Vu € [0,1]})

= PX({lE € Coo([0,1]) : z(u) < s(u), Yu € [0,1]}),

for any s € Cy([0,1]). The system of the sets

{z € Cop([0,1]) : z(u) < s(u), Vu € [0,1]}, s € Cy([0,1]),
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is stable with respect to intersection and generates the Borel o-field B(Cy o([0, 1])).
Therefore, by the uniqueness theorem for measures, we conclude that Py =

Px.

S1.3 Proof of Proposition 1

Let  and = be two realizations of the functional random variable X. Thanks
to Assumptions 1 and 2, we may impose that x(0) = Z(0) = 0 and that
max{||z’||2, |7'||2} < Cx1. Foranyty,...,t, € [0,1] we introduce the vector

F = (a(t;) — @(t;)),_, , and the matrix M = {EW (t;)W ()}

=1,...,

Jk=1,...n"

According to Proposition 7 in Hall et al. (2013), in order to prove privacy
it suffices to show that [M~Y2F| < oa/c(B), where we may put c(f3) =
v/210g(2/B) according to Proposition 3 in Hall et al. (2013). Without any
loss of generality we assume that ¢; < --- < ¢, since |(PM PT)~"/2(PF) ‘2 =

FTM—'F = |M_1/2F ? for any n x n-permutation matrix P. Then,

ty ty t1 - 4y
ty ty ty oo+ ity
M=14¢ t ty -+ 13
ty to ty --- t,

ertlng Aj = (F’] — F}'_l)/(tj — tj—l) if tj > tj—l and IE/(tj) — i’l(t]) if
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ti=ti—1;and Y; = A; — Aj4y, where we set Fy =ty =0 and A, ; =0, we

consider that

k—1 n k—1 k

ZtlYZ + Zthi = Ztl(Al — A1) Ay = A+ Z(tl +lh1)A = Fy,
=1 1=k =1 1=2

for all integer & = 1,...,n so that MY = F, where Y = (Y;)T_, . We

deduce that the left hand side of the above system of equations equals

(F; — Fj1)? .

FIM7'F=F"Y = zn:FjAj —zn:FjAjJrl = En: t— b
J J—

J=1 J=1 J=1

(S1.4)

AsFj—F;, = t’;’;l {#'(t)—&'(t)}dt for j = 1,...,n, the Cauchy-Schwarz

inequality in L ([0, 1]) yields that (S1.4) has the upper bound

n tj
Z/ |2/ (t) — & (t)|*dt < 4C%
=1 7ti—1

which completes the proof of the proposition. [l

Proof of Lemma 1: (a) Expanding X| in the orthonormal basis {¢;}; we
get
1 00 00 )
/0 Xi(6)dVi(t) = Y (X1,0) - Biays 1005 = D [(XL e
=1 j=1
where the infinite sums should be understood as mean squared limits.

Since, for any integer m, 2, is a subset of the o-field generated by Vi,
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we have that

B{fr () |2} = B exp (= /X’ ) dVi(t / X1 (6) dt ) |24 |

= p{lexp (5 ) By, ) exp (- HX{H%/(%?))\%}

2
o
j=1

1
= E{ exp (—2

o

NER

(X105} - Bay) - exp (= 1 XT13/(26)
'E{GXP<%Z< P J> 5\/13)
(X1,05) - Bia ) - exp (= IX113/(202)

H E{ exp( (X1, 905 ﬁ(/l,j) Xi}

ji>m

<.
Il
-

mm,)q}

)

Ms

1
= E{ exp (—
o2

.
Il
—

)

(S1.5)

holds true almost surely.

Applying, to the last term in (S1.5), the fact that

E{exp (t6)} = exp (£*/2), (S1.6)
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for all 6 ~ N(0,1) and t € R, we deduce that

1

o2

Ms

B{f (V1) |9} = B exp (25 D (XL - B ) - exp (= IX] 13/ (20%)

"}

J=1

1
- exp (@;HX{WF)

= E{ exp (gi zm:(X{, i) 'ﬁ(/l,j> * exp < - Ti_g Em: ‘<X17¢j>{2) ’Q[m}
ot o

[m] (ﬂv1 TR >B(/1,m)

almost surely, which completes the proof of part (a).

(b) Using the result of part (a) we have

‘ [m] Bvl,lv"wﬁ{/l,m) - fY(Vl)‘z
= E[E{| A Bl Bim) — VD)) | 20}

= E [var{fy(V1) | 2 }] . (S1.7)
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Using Fubini’s theorem, we get

B [var{ (Vi) | 2.}

) E{Var(/exp(1 Z< o)+ Bhg) - exp (— I1713/(20%) dPx ()2 )}
= [[ o (— sz + Doy 20%) B exp (Do + ) 4e,) )

7=1

. cov{ exp (% Z<x,17 ©5) - B(ﬁ,j)?e}{p (% Z<I2’ i) BVW)}

j>m j>m

Using (S1.6) again we deduce that

E{exp (o 21:14—:762@] B} = exp{Z‘x1+x2¢]}/20}
j=1 7=1

and that

cov{ exp (% 2@7/1, ©5) '5(/1,j>veXp (% Z<xl2’ #i) 'ﬁ(/lvj)}

j>m g>m
1
— E{ exp (; Z(x’l + @y, ;) - 5{/1,]')}
j>m

- [fon (St A )] [E{ow (S Senn )]
_eXp(2 2Z|x1+x2 ©5) ) (2 22“5{"1 ‘PJ| + [(5, %H)

j>m ji>m
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Plugging these equalities into (S1.8) we conclude that

B [var{ (V) | )] = [ [exo { = (Ut + 1l I + abl)/20%)}

1
—ep{ - ([ )|+ [(ah )| = (2t + 2, 0) ) | dPx (21)aPy (22)

= [[ {ew (et o) — exp (5 3o tet i )  dPxan) P ().

(S1.9)

Let X, denote an independent copy of X;. Then (S1.9) satisfies

B{ exp (167, Xp)/) — exp (2 (510X )) }

< B SUXL ) (X505

i>m

1
< = - eXp (C%1/0%) ( Z (s, Txpj)

J,j'>m

- exp (C’g(’l/az)

)1/2

where we used the mean value theorem and the Cauchy-Schwarz inequality.

S1.4 Proof of Theorem 2

Let V' ~ Py denote a functional random variable which is independent of
Xiyeoo, X and Wi, ..., W, and let 8, = [ ;) dV(#). Since fi""(V)

is measurable in the o-field generated by 8y, ..., 8y, Y1,..., Y, and as

Vn](ﬁvu---aﬁ(/m E{fy ‘ﬁ‘”"'"ﬁ(/’m}

—E{fy |/BV1?"‘7/8(/7m7}/1""7Yn}7
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a.s., by Lemma 1(a), we have

RN, fyv) = BN V) = ()]
E[E{ " V) = W) Bias s Bis Vi, Y]
__z;[var{fy |5V1,..,5&ww13,~.7&;}}
+ B[R0 = A B B[
= B [var{fy (V) | Bysr- B} ] + B0 = B0, B

m, m 2
<D+ BNV = 1B Bl

, (S1.10)

using also Lemma 1(b). Using the definition (3.6) of the estimator f,[/mK]

and Parseval’s identity with respect to the orthonormal basis of the Hy,

,,,,, km
in Ly g (R™), we get
BIAIW) = B B = B X Wk 4k < K
ki,...;km>0
liH / / o _elml |
’ n ki,... km(ﬁYj,l/ga T ’ﬁYj,m/0-> C Ak Em Y (U) 0
j=1
= Y Uki++k, <K}
k1 s >0
1 n
E’_ZHkl 77777 (/Bgfj,l/o-’ 7/8Y m/a) < }(O— )7Hkl 77777 km>gl + B
j=1
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Since, from (3.5),

1 m
E{EZHICI ..... km(ﬁgm/aamaﬁ'yj,m/a)} = (o), Hy,.... b ) gy

1 - / / [m] 2
E‘EZHIQ ..... kM(ﬁyjﬁl/U““JBYj,m/O—)_<fy (U')’Hkl .... km>gl
j=1
1 n
= var(— » H { LB )
Var<n; Kk (By; 1/ 05 -3 By, 1 0)
1

S HEHkl """" (ﬂYl 1/0- 6;/1,771/0-)

Using the fact that the Hermite polynomials form an Appell sequence

(see e.g. Appell, 1880) we deduce that

B{HE o (a0 B/} = B[ TLEAHE (B, /o + Binifo) | X2
=1
=E[ﬁ%E{(Z V(") i) )]
{1 {s 32, v () (1) o

=1 j]’ 0

ky

[T () o)
TS

J

< E[H{1+ (5;(17l/g)2}’“l] < exp (KC%,/0%) (S1.12)
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using the orthonormality of the Hy, j, with respect to (-,-),. Using

elementary arguments from combinatorics, we also have

K +
#{(k1,... . km) ENg : ki 4+ 4k, <K} = ( Km)'
Combined with (S1.12), this implies that the first term in (S1.11) is bounded
from above by V. Combining this with the other derivations above com-

pletes the proof of the theorem.

S1.5 Proof of Theorem 3

The next lemma gives an upper bound on the term B defined in Theorem 2.

It will be used to prove the theorem.

Lemma 1. Under Assumptions 1 and 2, the term B in Theorem 2 satis-
fies B = O{(Cx1/0)*(2Cx /0 + V2)* /(K + 1)1}, where the constants

contained in O(---) only depend on Cx 1 and o.

Proof of Lemma 1: By Taylor expansion we can write f}[,m} =Tnrk+ Rnk

where R,, i is a remainder term that will be treated below, and

K m m
1 k 1

Tk (S1y.y8m) = E{ Z Ea 2’“(263(1,]- . sj) exp ( ~ 5.2 253(1,]'2)}
k=0 j=1 Jj=1
K 1 m k k 1 m

_ 2

= qe X (Ilsa) - #{ (I o) e (= 552 o 8%°) |

k=0 j j =1 =1 j=1

J1yeenjk=1

Assumption 2 guarantees integrability of the above terms). Now T, k(o
g b

is an m-variate polynomial of degree < K, so that T}, x(o-) is contained in
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the linear subspace H,, x of Lo 4 (R™). It follows from there that
2
B < [|Rpx(o)]],, - (S1.13)

Next, using the Lagrange representation, the remainder term R, x has

the following upper bound:

K+1

‘Rm,K(Sla"'7 ‘ = (K+1 [)0225)(1]
1 m
- max { exp < = Zﬁgﬁ,j . sj>, 1} exp ( ~ 92 Zﬁ;ﬁfﬂ ,
j=1 j=1
so that, by Jensen’s inequality;,

K+1)

1R (0)]];, <[(KT H Zﬁxlg ﬁw

.max{exp ( > Zlﬂ%u ﬂ(/j), 1} exp ( — %iﬁg{lfﬂ .
(S1.14)

Conditionally on X7, the random variable » ™", 8%, ;- f,;/o? is nor-
mally distributed with mean 0 and variance 2, = Y™, B */o?. Thus,

the right hand side of (S1.14) can be expressed as

1
{(K+1)!}2

m

E(%%K“) exp (= 7,) B[675D - max { exp (26,1} | Xﬂ) ’

where § ~ N(0,1) and X are independent. Thus (S1.14) has the following
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upper bound:

1 2(K+1) 2 2(K+1)
T T P e () B}

+ BT i 1)!}2E[H%K+l) exp (— x2,) B{6* " exp (2k,m0) | X{}}
1

- WE{I{%K—H) exp (— Kgl)} OKHD(K +3/2)/v/7

+ mE{,@%K—H) exp ( — /i%n) /82(K+1) exp (2/£ms _ 82/2) ds}/\/%

< O{(2Cx.1 /o))" /(K + 1)!}

+ mE{K%K—H) exp ("{7271) /(5 + 2/{m)2(K+1) exp ( o 82/2> ds}/\/%

< 0{(2Cx1/0)* /(K + 1)1}

+ mE{K%KH) exp (2) (V2 + 26) " b max { 1,1 (K +3/2)/v/7 |

= O{(Cx.1/0)* (2Cx 1 /o + V2 (K + 1)1},

where we have used Assumption 2, which guarantees that x,, < Cx1/0;
the fact that E§* K+ = (K + 3/2)2K+! /\/7 and Minkowski’s inequality.

O

Proof of Theorem 3. Since Assumption 2 holds, we can apply Theorem 2.

First we consider the variance term V. Using Stirling’s approximation, we
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have

exp (KC'E(J/JQ) (K ;; m)

~
—~

<

1
\ 2T

since m > K for n sufficiently large. We deduce that

\/12_7r exp (KCx/) \/% (1+m/K)" (14 K/m)"

-exp {K(1 +C)2(71/a2 +1log2)} - (m/K)*

limsup sup (logV)/logn = ~v(1/y—1)—1 = —~.

n—oo Px€eFx

Using Lemma 1, an upper bound for logB is given by const. - K —

Klog K, where the constant is uniform over all Py € Fx, so that

limsup sup (logB)/logn = —v.

n—oo Px€&eFx

Finally, under Assumption 3, D = O(n=¢*3C/2) uniformly over all

Px € Fx. The assumption Cj; > 2/Cx 3 guarantees that D is asymptoti-

cally negligible.

S1.6 Proof of Theorem 4

We define

frc(x) = KK/Q(m—K)(m_K)/Q{ H f(\/ka)}{

ke

-----

]
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for all x € R™, any integers m > K > 0, any subset K C {1,...,m} with

#K = K and f = 1(0,1/29) — 1[=1/2,0)- Then we introduce the functions

Joz) = (Z) Z’fic ( ) Zeicfic

for any vector 0 = {0} with O € {—1,1}. All fy’s are m-variate Lebesgue
probability densities. Then we define the probability measure P on B(R™)
by

PuB) = (1= 1600) 41 [ fio)ds. B eBERY),

for some 7 € (0,1) still to be selected. Now let X = (X1, ..., X,,) be some
m-dimensional random vector with the measure Py. Then Px ¢ denotes the

image measure of the functional random variable X; on B(Cy ([0, 1])) with

Now we show that Pxy € Fx for all vectors 6. As the ¢;’s are contin-
uously differentiable, Assumption 1 holds true. Moreover, the support of
each fi is included in the m-dimensional ball around zero with the radius
1. Therefore the measure Py is also supported on a subset of this ball so
that || X2 = |X]? < 1, a.s.. Hence Assumption 2 is satisfied. We

have that

1 —_—
/ 24(s) (Dxpy ) (s) ds = U max{j j'} <m}-EX, Xy = 1{j = < mp-=L-,
0
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for all K > 3 where we have used the fact that f is an odd function. Putting

n = 6v/my/Cxs-exp(— Cxzm’/2), (51.16)

for m sufficiently large, Assumption 3 is satisfied as well.

Following a usual strategy for the proof of lower bounds, we bound the
supremum of the statistical risk from below by the Bayesian risk where
the a priori distribution of  is such that all 0¢’s are i.i.d. {—1, 1}-valued
random variables with P(fx = 1) = 1/2. Applying the standard formula

for the minimal Bayesian risk we deduce that

sup R(fu, fv) >E9/|fye ‘dPV

PxeFx
- / / | Ep fyo () £E00) APy () By £ (0) AP ()

(S1.17)

where fyy denotes the density of Y; with respect to Py when X; ~ Pxp,
and P‘(/n) and f%) denote the n-fold product measure and product density
of Py and fyg, respectively. Note that Pg;) is the measure of the observed
data. For details on the proof of (S1.17), see Section S1.1.

By Lemma 1 and Equation (3.5), the Lo( Py )-inner product of fy and
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fyvor equals
/ Py () frgn (V)P (0) = EFEDBrnts- s B e (B 1 s B

= [{ [ onts=orabu@} { [ auls = )aPota)} a(s)ds

— [[{ [ a5 =21 9u(s = ) 55) s}y aPe) a P
_ / / exp (e’ Jo?) dBy () dBy (')

= <ﬁ9/,p9//> (8118>

exp’
for all @',6" € {—1, 1} since X coincides with the vector (B, 15+ B%m)
from (3.1). Note that (-,-)exp represents an inner product on the linear
space of all finite signed measures @ on B(R™) such that the support of
the measure |@Q] is included in the m-dimensional closed unit ball around 0.
By a slight abuse of the notation we write (fi, fi)exp for the corresponding
inner product of the signed measures which are induced by the functions
fic and fx:. We show that the fi form an orthogonal system with respect

to this inner product; precisely we have that
(fics ficrhesp = / / exp (212'/0?) fic(z) fior(a') da da’
1=} [ [[ e {st/(a" K0} 1) st dsat]
[ [[ e tstr(om = k)Y @@ asar] "

= K=K} (160°K) " - {1+0(1)}, (S1.19)
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if K and m — K tend to infinity as n — oo.
Combining (S1.18), (S1.19) and the fact that the Ox’s are centered

random variables we deduce that the first term in (S1.17) equals

-2
B [P ar) = 151, + 7 () Sl 120
K

where || - ||exp stands for the norm which is induced by (-, -)exp and the

measure S on B(R™) is defined by

s = =010 + o) X [ Il Ben@En.
x YB
The second term in (S1.17) is
Evar [ { [ et frand P ) |15 0) 150, 0) A Eat ()00 }aPE o)
= [ISI%, + 7 (Z) Sl - / {Eob 5 (0)} ) Bo £y (0)dPY (v)
K

where, here, #' and 6" denote two independent copies of 6. There we have

used the fact that

n n n 1 n 1 n
Ee/fx(/,a)(v) dPx(/)(U) =1, E9‘91Cf1(/,9) = §E9f1(/,9)(ic,+) - §E9f§,9)(1c,7)7
(S1.21)

where 0(K, +) denotes the vector 6 with fx replaced by +1; hence,

/ Eobic f2)(0) AP (v) = 0.
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Together with (S1.20) this implies that the right hand side of (51.17) equals

2 () Sl 1= [ (e o ar o]

(S1.22)

Using (S1.21) and the fact that EGfi(/tle) = 1E9f ey T 1E9f%)(,cﬁ), we
establish that
- / {Bab fE)0) V2 B f) (0)aP ()
> 9 / VE ke O Bo fe (0) PP () — 1
2E0/\/ (n)lc+) \/fye(ic v)dP(v) = 1
= 2E9(/\/fY01C+) \/fye(/c v) dPy (v ))n -1,

(S1.23)

v

by the Cauchy-Schwarz inequality. The Hellinger affinity between the den-

sities fyoc,+) and fygc,—) is bounded from below by the corresponding

2 . .
x“-distance, i.e.

/\/fye(ic+ Tyoc,—)(v) dPy(v) > 1—%XQ{fY,e(ic,+)7fxe(ic,—)},

where X*(f,9) = [(f—9)*/f dPy. We refer to the book of Tsybakov (2009)

for an intensive review on these information distances. We deduce that

Froveny (Vi) = A (Biats- - Biam) = 1—1, as..
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Equipped with this inequality and (S1.18) we consider that

1

(oo o) < — [Py — By [ < < (™) e
X \Uve+), Jyok,—-)) > 1—1 9(KC,+) O lexp = -5 \K Kl exp -

Combining this with (S1.19), (S1.22) and (S1.23) we obtain that
~ m -1
sup R(fu, fy) = 1° <K) (160°K)~"

{1Eo(1)}- (1 - 122277 (}?) _2(1602K)‘K {1+ 0(1)}>

(S1.24)

n

Now we take m = |(Dyslogn)??| and K = | Dg(logn)/log(logn)| for
some constants Dy, D > 0. Whenever —DyCx 3—2Dg(1/y—1)—Dg <

—1, the inequality (S1.24), together with (S1.16), yields that

liminf sup {logR(fn,fy)}/logn > —DyCx3— Di/7v.

n—o0  pyeFx
We may choose Dg = /(2 — ) and Dy, > 0 arbitrarily close to 0, which

completes the proof of the theorem. O

S1.7 Proof of Theorem 5

The proof follows a usual structure of adaptivity proofs for cross-validation
techniques, see e.g. Section 2.5.1 in the book of Meister (2009) for a related
proof in the field of density deconvolution.

Let (m,, K,) be defined as in the statement of Theorem 3 and define



S1.
the set

PROOFS

G = {(mK) € G+ RO, ) > 2R, 1)}
Using the notation ||g||3, = [|g

|2?dPy (z), for any g € Lo(Py), we need
to prove that lim,_,e supp, cr. P (07| fy flinKl

By Markov’s inequality we have

A, K
P A7 = fy%, > nd)

< > PN

(m,K)eG\G'

= frlliy > ") + P00, K) € &
(#G) - R, ) +

> Pih=mK=K).

(m,k)eG’

(S1.25)
By Theorem 3, the first term in (S1.25) converges to 0 as n — oo uniformly

over Py € Fx. It remains to study the second term

On the event {m = m, K = K}, we have CV(m, K) < CV(m,, K,)
and, hence also

[mK H
Py

A[Tnn:[(n

BllA M,
] 2
HPV o

— 2A1 (m
<

K) — 489(m, K) + R(A5 fy)

M, Kn
% 1||PV — 20 (M, Ky) — 405(my, K,)

+ RS f) L (S1.26)
where Ay(m, K) = {n(n — 1)} 320 D ek K =(i,m, k) - Z(7', m, k)
AQ(mv K) =n"! Z?:l ZkelC(m K {EE(17 m, k)} ’

=(i,m, k), K(m, K)
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{k eNP k14 4k, < K}, =(j,m,k) = Hk(ﬁgfj71/a,...,ﬁ§/j7m/a) and
E(]a m, k) = E(]am>k) - EE(jam7k)
The first terms of both sides of the inequality at (S1.26) can be repre-

sented as follows, using the orthonormality of the Hy’s:

m,K m,K
[N ]HPV—EH[ ez

— ’— (i,m,k) 2}
kGIC(mK
Z—Z S {EGmKEE, m k) - EZ(i,m, k)=, m,k)}
i, kekK(m,K)

= (1= 1/n){Ai(m, K) + 2A5(m, K)} + Asz(m, K),

where Ag(m, K) =172 300 Y 12°(6,m, k) — EZ*(i,m, k) }. To-
gether with (S1.26) this implies that, for (m, K) € G', R(fl[/m’K], fy)/2 <

Ay(m, K, m,, K,), where

Ag(m, K, ma, K,) = (14 1/n){|A1(m, K)| + | A1 (ma, K,)]

+2|Ag(m, K) — As(my, K|} + |As(m, K)| + [As(m, K,)| -

Hence the second term in (S1.25) has the following upper bound:

1/2

2 3 {R(A™ A} T BA N, K ma, K} (S1.27)

(m,K)eG’
In order to bound (S1.27), we need a lower bound on R(f[m K] fy).

Theorem 2 provides only an upper bound to this term but an inspection of
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the proof of this theorem — in particular (S1.10) to (S1.12) — yields that
R(A™M fy) > Bim, K) + Vi(m, K) +D*(m || So)]]7, ) (S1.28)
where B(m, K) is the term B from Theorem 2 and

D*(m) = Evar{ fy(Vi)2n}, Vi(m, K) — %(K;m).

Here we have used the fact that E{HZ . (8.1/0,..., 0% m/0)} > 1,

,,,,,

which comes from the first lines of (S1.12).
In order to bound (S1.27), we also need an upper bound for EA%(m, K, m,,, K,,),
which involves Ay to As. For A; we have

2 2 - - Y12
E|Ay(m, K)|” = ") kkIEKZ(mK) [cov{Z(1,m,k),Z(1,m,X)}]

— s Y (e He o),

n(n—1) k. k' €k(m,K)
— (Hy, ()
LY (o),

n(n —1) kK €K (m,K)

(Hie, £ (0)),]°

91

IA

(8 (o)

n(n —1) keK(m,K)

IN

s Y el + s A

n(n—1) K ek (m,K)

IN

4 4 m
T @, - s Vil £+ e A )Y,

(S1.29)
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where we have used Parseval’s identity with respect to the orthonormal
system Hy.

For the term involving A, we have

E|Ag(m, K) — Do(my, K,)|”

S%E[ Y E(Lm {EE(1m k)

ke (m,K)
2
- ¥ E(l,mn,k){EE(l,mn,k)}}
kEK(mn,Kn)
1 _ o _ o 2
_ EE[ 3 {Lcrm o) () — 1,Cﬁ(mmKn)(k)}:(1,m,k){E:(l,m,k)}]
keNy"
1
— E Z {11Cm(m,K) (k) — 1ICW(mn,Kn)(k>}{1lCm(m,K) (k/) — 1Kﬁ(mn,Kn)(k/)}
Kk

- (Hie, ™0 g1 (Hies i7™(0)) g0 (Hies Hho K7(0)),

(S1.30)

with m = max{m,m,} and K™(m,K) = {k € K(m,K) : k =0,V >
m} . Here we have used the fact that Hy = 1 and E{fi[/m] (Bt By m) |
QIm} = fx[/m] (Bvy 15 Bvym) as., which follows from Lemma 1(a).

Applying the Cauchy-Schwarz inequality and Parseval’s identity, we get
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that the right hand side of (S1.30) has the following upper bound:
1 m
- (D [t ser () = Lron, 10y ()| (H, 7 0)2,)

K

(X e @)

kek(m,K)

2
g1

2

+ ||7771¢(mn,lr<n)J‘}[/m(‘7')Hg1

< VoK) - { | Prmsc " (0]

— 2| Prmier i ()|}

91
= —1/2
()P max (LI s € Km )
(S1.31)
where K = max{K, K,,}, m = min{m, m,,}, K = min{K, K,,} and Py m.r)
denotes the orthogonal projector onto the linear subspace H(m, K') of Lo ,, (R™).

Since

2
g1

1Psmior S0, = A (@), — Blm, K)

= Elfy(V)" = D*(m) — B(m, K) ,

then using Lemma 1(a), the right hand side of (S1.31) has the following

upper bound:

m+ K\
m

3Vi(m, K) - {D*(m) 4+ D*(my,) + B(m, K) + B(my,, K,,) } - <

AT o)1 mas (| HEN2 < € K(m, K}

(S1.32)
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since B(m, K) decreases as K increases.

Finally, for the term involving As we have

E|As(m, K)[* < n’?’E{ 3 52(1,m,k)}2

kek(m,K)
1 m
< Wi, KO F [{A @)}, - max {1, =k € K(m. K)}

(S1.33)
In order to bound the terms (51.29), (S1.32) and (S1.33), we need some

technical results. Using the explicit sum representation of the Hermite

polynomials we write

1
/Hﬁ(f)ﬁ exp(—a”/2)dx
Lk/2] /2 i
(kD)= (=2)™ ¢ / k=261 ++ig) 1 )
- et oxp(—2%/2)d
Z_Ozj!---ig!-(k—22‘1)!---(k‘—2i5)! . oz xp(=a/2)dz

11 4eeeyl]=
L k/2] .
e D(RE/2 412 — )
< 27 (k)2
- ; (k) il(kl — 21)!

i k0 — 2i
< Z (zlzg) (k—2z’1,...,k—2z’5)/ﬁ
11+ +1p=1
(k2]

< Z 271. (k£/2>£kzi < (62 +£/2)k€/2,

- 1
=0

for any k € Ny and any even integer ¢ > 0. Furthermore we have
m 2 4
KA @)Y = E|E{r (V)" < ER (W)

< o (- 2 [ xora) e oo (5 [ xio@io)x)

< exp {(8/0") CX.1},
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where we used (S1.6) and Assumption 2. Applying these results to (S1.29),
(S1.32) and (S1.33) and recalling (S1.28), we deduce that (S1.27) has the

upper bound

SR 7}
7 lm - m+ K
(om0 O [{nR(E 50} 4 () .

for some global finite constant Dy > 0, so that (S1.27) converges to zero

uniformly over Px € Fx. This completes the proof of the theorem. OJ
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