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S1 Proof of discrete-time characterization

We start with a discussion of an equivalent matrix representation used in

proofs of both discrete and continuous-time characterizations.

S1.1 Matrix equivalent representation

For every y ∈ [s]N, there exists an equivalent representation as a matrix

with an infinite number of rows and k columns M ∈ [s]N⊗k where the

first row M1,· = [y1, . . . , yk]. Let M·,i ∈ [s]N denote the ith column of

M (i.e., M = [M·,1 | . . . |M·,k]. Exchangeability of Y implies column ex-

changeability of M. That is, for a set of permutations (σ1, . . . , σk) such

that σi : N→ N for i = 1, . . . , k, we have

M = [M·,1 | . . . |M·,k]
D
= [Mσ1

·,1 | . . . |M
σk
·,k] = Mσ
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where
D
= stands for equivalent in distribution. We define this property

as column-wise exchangeable. Note exchangeability implies column-wise

exchangeability but not vice versa. Restriction acts column-wise

M[n] = [M
[n]
·,1 | . . . |M

[n]
·,k ]

with such matrices in one-to-one correspondence with elements in [s][n·k].

We define an action of the matrix representation A on y ∈ [s]N by

A(y) = (A1,y1 , A2,y2 , . . .). In other words, the ith row of A, Ai,·, acts on yi

by sending it to Ai,yi . The identity map I is defined by each row Ii,· being

equal to [12 . . . k]; then I(y) = y for all y ∈ [s]N. The equivalent vector

representation of I is defined as id ∈ [s]N.

We express the asymptotic frequency ofA by k-vector |A|k = (|A1|, . . . , |Ak|)

assuming |Ai| exists.

The proofs below are for the complete graph case. As G is simply a

restriction of the measure to a particular subset of transition matrices PG,

the proofs below yield the desired results.

Proof of Theorem 1. By Kolmogorov consistency, Y[n] is a Markov chain

governed by transition probability rules pr(Y(t) = y′ |Y(t − 1) = y). Re-

striction to [n] yields a transition rule for y, y′ ∈ [s][n]:

prn(Y[n](t) = y′ |Y[n](t− 1) = y) = pr(Y(t) = R−1
n (y′) |Y(t− 1) = y?)
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where Rn is the restriction operation so R−1
n (y′) = {y ∈ [s]N s.t. Rn(y) =

y′} and y? ∈ R−1
n (y). Without loss of generality, we focus on time t = 1.

We define a measure η by

η(·) := pr(· | id)

Via the matrix representation, we can think of η as a measure on matri-

ces A ∈ [s]N⊗k. Restriction to [n] yields A[n] ∼ η[n](·) = prnk(· | idnk). The

action of A[n] on x ∈ [s][n] is then given by

A[n](x) = η[n](x) = prn(· | In(x)) = prn(· |x)

as we require.

The above argument shows that there exists a measure η such that Y?

defined by

Y?(t) = (At ◦ At−1 ◦ . . . A1)(Y ?
0 )

is equivalent in distribution to Y. Here At are independent, identical dis-

tributed draws from η for each time t ∈ N.

Proof of Corollary S1. Consider the recurrent event process Y up time τ <

∞. Then Y? = τ ∧Y is a version of Y on t ∈ 0, 1, . . . , τ . Let ητ to denote

the measure associated with Y?. For P ∈ Pτ , let Rτ ′,τ (A) be the restriction
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of this Pτ ′ . Then for τ ′ < τ

ητ ({P ∈ Pτ |Rτ ′,τ (P ) = P ?}) = ητ ′({P ?})

So we have consistency across τ > 0. We define the measure η on P∞ by

η(·) = lim
τ↑∞

ητ (·)

is the unique measure such that Y? is a version of Y.

S2 Proof of continuous-time characterization

Again the proof below is for the complete graph case. As G is simply a

restriction of the measure to a particular subset of transition matrices PG,

the proof below yields the desired result.

Proof of Theorem 2. Like in the discrete-case, we construct the measure η

from the transition rule which governs Y. This will connect Y? to Y such

that they are equal in law.

Since Y[n] is a Markov process on [s][n], it is governed by a transition

rate function

Qn(y, y′) = lim
t↓0

1

t
pr(Y[n](t) = y′ |Y[n](0) = y).

We start by describing the key characteristics of the transition rate function
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1. The transition rate function exhibits finite activity:

∑
y′ 6=y

Qn(y, y′) <∞

2. The transition rate function is exchangeable. That is, for any σ : N→

N and y 6= y′:

Qn(y, y′) = Qn(yσ, (y′)σ).

3. The transition rate functions are consistent. That is, for y, y′ ∈ [s][m]

and m ≤ n,

Qm(y, y′) = Qn(y?, R−1
m,n(y′))

where R−1
m,n is the inverse of the restriction operator from [n] to [m]

and y? ∈ R−1
m,n(y).

We then define the measure for A ∈ [s][n]×s\{idk,n} as

ηn(A) = Qn(idk,n, A)

This measure is is column-wise exchangeable by exchangeability of Q and

satisfies

ηn(A) = η
(
{A? : [s][n]×s | (A?)[n] = A}

)
(S2.1)

for all m ≤ n and A ∈ [s]N×s by consistency of Q.

The measure η(A) = Qn(idk, A) is also column-wise exchangeable and

satisfies
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� η({idk}) = 0 (i.e., a transition must occur) and

� η({A |A[n] 6= idk,n) <∞ (i.e., finite, restricted activity)

Following Pitman [2003], we construct a process Y? = (Y?(t), t ≥ 0) via its

finite restrictions Y?
[n] = (Y?

[n](t), t ≥ 0). Let A = {(t, A) ⊂ R+× [s]N⊗k} be

a Poisson point process with intensity dt⊗ η. Given an initial state Y?(0),

for each t > 0 if t is an atom of A then

� if A
[n]
t 6= idk,n, then set Y?

[n](t) = A
[n]
t (Y?

[n](t−))

� otherwise Y?
[n](t) = Y?

[n](t−)

The difference between the continuous and discrete-time setting is the

random time between jumps and that the jumps (1) occur for an infinite

fraction of the units as n → ∞, or (2) occur for a single unit u ∈ N. By

construction for m ≥ n, the restriction of Y ?
[m] to [n] is consistent with Y ?

[n]

so we have Y? is a unique [s]N-valued process.

Lemma S1. The process Y? is a Markov, exchangeable state-space process.

Proof. Consistency is given by the above argument; the process is Marko-

vian by construction and the assumptions on Y. Exchangeability is due to η

being a column-wise exchangeable measure since η[n] are finite, column-wise

exchangeable measures.
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The final concern before showing that Y? is stochastically equivalent to

Y is the uniqueness of the measure η related to the restricted measures ηn.

Lemma S2. There exists unique measure η on [s]N⊗s which satisfies (1)

η({idk}) = 0, (2) η({A ∈ [s]N⊗s |A[n] 6= idk,n}) <∞, and

η({A? ∈ [s]N⊗s | (A?)[n] = A}) = ηn(A) (S2.2)

for all n > 0 and A ∈ [s][n]⊗s.

Proof. The sets

{A? ∈ [s]N⊗s | (A?)[n] = A}

are a π-system generating the σ-field on [s]N⊗s. The above discussion proves

equation S2.2; and the measure is additive. Therefore, uniqueness is a

consequence of any measure extended to a σ-algebra being unique if the

measure is σ-finite.

Lemma S3. Y? is a version of Y.

Proof. First, the finite restrictions ηn satisfies

ηn({A ∈ [s][n]⊗s |A(y) = y′}) =
∑

A:A(y)=y′

Qnk(Ik,n, A)

= Qn(Ik,n(y), A(y)) = Qn(y, y′).
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And has finite activity:

ηn({A ∈ [s][n]⊗s |A(y) = y}) =
∑
y′ 6=y

Qn(y, y′) <∞

Therefore (Y?)[n] is an Markov, exchangeable process with jump ratesQn(·, ·).

By Kolmogorov’s extension theorem, the unique process Y? is a version

Y.

We still need to show η can be decomposed into the respective compo-

nents:

� Dislocation measure: measure on s×s transition matrices∼ Σ which

satisfies

Σ({Ik}) = 0∫
Pk

(1− Pmin)Σ(dP ) <∞

where Pmin = mini Pi,i.

� Erosion measures: Let A ∈ [s]N×s then we call this A = id and we

flip a single unite u ∈ N (i.e., Au,i = i′). Let µui,i′ be this point mass

measure. Define

µi,i′ =
∑
u∈N

µui,i′

� The combined measure is given by:

ηΣ,c(·) = µΣ(·) +
∑

i 6=i′∈[s]

cii′µi,i′(·)
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Lemma S4. The measure ηΣ,c is a column-wise exchangeable measure sat-

isfying the necessary constraints.

Proof. We prove this for each component of ηΣ,c. First, µΣ({idk}) = 0 by

construction. Moreover, for P ∈ Pk

µP ({A |A[n] 6= ids,n}) ≤ µP ({A |A[n] 6= ids,n)

≤
s∑
j=1

µP ({A |A[n]
u,j 6= jfor all u ∈ [n]})

≤ k(1− pnmin) ≤ n · k(1− pnmin)

which implies

µΣ({A |A[n] 6= ids,n}) ≤ n · k
∫
Pk

(1− pmin)Σ(dP ) <∞

by the above assumptions.

Second, µi,i′({idk}) = 0 by construction. Moreover,

∑
i 6=i′∈[s]

cii′µi,i′({A |A[n] 6= ids,n}) ≤ cmax

∑
i 6=i′∈[s]

∑
u∈[n]

µui,i′({A |A[n] 6= ids,n})

≤ cmax

(
s

2

)
n <∞.

So we have that Y? is a version of Y and for any Σ and c the measure is

µΣ,c is column-wise exchangeable satisfying necessary constraints. It rests
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to connect show that the measure η can be decomposed such that there

exists Σ and c such that η = µΣ,c.

Lemma S5. For η constructed from Q, η-almost every A ∈ [s]N⊗s possesses

asymptotic frequencies |A|s ∈ Ps.

Proof. The η by construction satisfies the necessary conditions. We set ηn =

η on {A |A[n] 6= ids,n}. Then ηn is column-wise exchangeable for (σ1, . . . , σs)

such that σi : N→ N fixes [n].

We can find a column-wise exchangeable measure by simply considering

ignoring the first n rows. Let η′n be measure obtained from η after applying

the n-shift function φn : A → A′. Then ηφn is column-wise exchangeable

and therefore has asymptotic frequencies. But asymptotic frequencies only

depend on such an n-shift for every fixed n > 0 (i.e., |A|s = |φn(A)|s);

therefore, ηn-almost every A has asymptotic frequencies.

To prove η-almost every A has asymptotic frequencies we simply note

that ηn ↑ η and therefore the monotone convergence theorem completes

proof.

Lemma S6. There exists a measure Σ such that the restriction of η to

{|A|s 6= Is} is equivalent to µΣ.
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Proof. Let φn(A)[m] denote the restriction of φn(A) to [m]. Then

ηn({φn(A)[2] 6= ids,2} | |A|s = P ) = ηφn({φn(A)[2] 6= ids,2} | |A|s = P )

= ηφn({A[2] 6= ids,2} | |A|s = P )

= µP ({A[2] 6= ids,2})

≥ 1− p2
min ≥ 1− p

⇒ ηn({A[2] 6= ids,2}) ≥
∫
Pk

(1− pmin)Σn(dP )

with Σn = ηn1[|A|k 6= Ik]. As n→∞ this yields,

∞ > η({φ(A)[2] 6= ids,2}) ≥
∫
Ps

(1− pmin)Σ(dP )

and Σ({ids}) = 0 by construction.

It rests to show that µΣ = 1[|A|s 6= ids]η. We have

η({A[n] = A?, |A|s 6= ids}) = lim
m↑∞

ηm({A[n] = A?, A[m] 6= ids,m, |A|s 6= ids})

The right hand side is equivalent to

ηφm({A[n] = A?, |A|s 6= ids}) =

∫
Ps

µP ({A[n] = A?})|ηφm|(|A|s ∈ dP )

=

∫
Pk

µP ({A[n] = A?})Σ(dP )

= µΣ({A[n] = A?})
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Lemma S7. There exists a set of constants {ci,i′}i 6=i′∈[s] such that the re-

striction of η to {|A|s = Is} is equivalent to µc(·) =
∑

i 6=i′∈[s] cii′µi,i′(·).

Proof. We restrict our attention to the set of A where A[2] 6= ids,2 but

φ3(A) = ids. This set B contains all single unit transition. As the measure

ηφ3 is proportional to the point mass at ids, then η restricted to the event

{A[2] 6= ids,2, φ3(A) = ids, |A|s = ids} is the sum

∑
A∈B

cAδA(·).

If A contains more than a single unit transition, exchangeability forces cA =

0 since η({A |A[2] 6= ids,2}) < ∞. The same argument shows A ∈ [s]N⊗s

such that |A|s = Is and cA > 0 implies A is a single unit transition.

This concludes the proof.

S3 Examples

Here, we describe several important examples that motivate the current

study of multi-state survival processes.

Example S1 (Survival process). A survival process has state space { Alive,

Dead } with transitions governed by the simple graph shown in Figure S1.

In this case, s = 2 and the edge-set is the singleton {(1, 2)}; because the
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state “Dead” is absorbing, the space PG is equivalent to the one-dimensional

space p ∈ [0, 1). Restricting to [n], suppose that all individuals at time t

are still at risk. In discrete-time, the probability of d individuals passing

away between times t and t+ 1 is equal to∫ 1

0

pn−d(1− p)dΣ(dp)

where Σ is a probability measure on (0, 1]. The marginal distribution of the

survival time for each patient is geometric. Letting Σ(dp) be the conjugate

prior ν ·pα−1(1−p)β−1dp with α, β > 0 yields a discrete-version of the “beta-

splitting” process [Aldous, 1996]. The marginal geometric distribution in

this case has parameter β/(α + β).

Figure S1: Graph representation of survival process

In continuous-time, the probability of d individuals passing away be-

tween times t and t+ 1 is proportional to∫ 1

0

pn−d(1− p)dΣ(dp) + δ(d = 1)c1,2

where Σ is a measure on (0, 1] satisfying
∫

(1−p)Σ(dp) <∞. In continuous-

time, the marginal distribution is exponential. The conjugate prior now re-

laxes the constraints to β > −1. Considering choice of measure, Dempsey
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and McCullagh 2017 suggest choosing measure with β = 0 – called the har-

monic process. The harmonic process is the only family of Markov survival

processes with weakly continuous predictive distributions – a key property

in applied work. The chance of singleton events is set to zero (i.e., c1,2 = 0).

Example S2 (Illness-death process). The illness-death process has state

space { Healthy, Unhealthy, Dead} with transitions governed by the simple

graph shown in Figure S2. The state “Dead” (i.e., s = 3) is absorbing,

the space PG is equivalent to a three-dimensional space. The bi-directional

illness-death process includes the additional edge (Unhealthy,Health), al-

lowing the patient to recover. Both processes can be viewed as refinements

of the survival process.

Figure S2: Graph representation of the illness-death process

An issue arises for the bi-directional illness-death process when the def-

initions of “Healthy” and “Unhealthy” are arbitrary (i.e., have no scientific

value). Potentially the labels are exchangeable and, if so, the process is a

Markov exchangeable survival process. Such considerations lead to natural

constraints on the choice of measure – see section 6 for a discussion.
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Example S3 (Comorbidities). Comorbidities are multiple stochastic pro-

cesses experienced simultaneously by the same patient. Figure S3, for ex-

ample, represents L binary risk processes each with an absorbing state. In

general, Y (i, t) = (Y1(i, t), . . . , YL(i, t)) is an L-vector state-space process.

Figure S3: Graph representation of co-morbidities process

An example of comorbidities is provided by Aalen et al. [1980] where

two events (onset of menopause, and occurrence of chronic skin disease)

were studied. Patients could also experience a third event, death. In this

case, we have L = 2 binary risk processes each with absorbing states and

then a final absorbing state of death.

Example S4 (Competing risks). A patient may experience failure for a

multitude of reasons. Figure S4 shows a setting where failure can be caused

by L risks. Unlike comorbidities, a patient may only experience one of the

competing risks.

Example S5 (Recurrent events). Recurrent events are events that occur

more than once per patient. Examples include recurring hospital admis-
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Figure S4: Graph representation of competing risks process

sions, tumor recurrence, and repeated heart attacks. For recurrent events,

the state-space is countably infinite; however, the state-space is structured.

We can assume all patients initial values are zero (i.e. Y (u, 0) = 0) and

given Y (u, t) = k then the transition at the next jump time must be to k+1.

This structure allows us to provide the following discrete and continuous-

time characterizations of the exchangeable, Markov recurrent event pro-

cesses – extending Theorems 1 and 2.

Corollary S1 (Discrete-time characterization). Let Y = (Y(t), t ∈ N) be

a discrete-time Markov, exchangeable recurrent event process. Then there

exists a probability measure Σ on [0, 1]N such that Y?
Σ is a version of Y.

Proof of Corollary S1. Consider the recurrent event process Y up time τ <

∞. Then Y? = τ ∧Y is a version of Y on t ∈ 0, 1, . . . , τ . Let ητ to denote

the measure associated with Y?. For P ∈ Pτ , let Rτ ′,τ (A) be the restriction

of this Pτ ′ . Then for τ ′ < τ

ητ ({P ∈ Pτ |Rτ ′,τ (P ) = P ?}) = ητ ′({P ?})
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So we have consistency across τ > 0. We define the measure η on P∞ by

η(·) = lim
τ↑∞

ητ (·)

is the unique measure such that Y? is a version of Y.

Corollary S2 (Continuous-time characterization). Let Y = (Y(t), t ∈ R+)

be a continuous-time Markov, exchangeable recurrent event process such that

Yu(0) = 0 for all u ∈ N. Let I denote the infinite identity matrix. Then

there exists a probability measure Σ on [0, 1]N satisfying

Σ({I}) = 0 and

∫
[0,1]N

(1− Pmin)Σ(dp) <∞ where Pmin = min
i∈N

Pi

and a set of constants c = {ci,i+1 | i ∈ N} such that Y?
Σ,c is a version of Y.

A similar proof can be constructed for the continuous-time setting and is

therefore omitted.

S4 Details on choice of measure

Let Z be a positive, stationary Lévy process on R+. As these processes are

positive, it is natural to work with the cumulant function

K(t) = log
(
E
[
e−Z(t)

])
= log

(
E
[
e−tX

])
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for t ≥ 1 and X = Z(1) is an infinitely divisible distribution. The Lévy-

Khintchine characterization for positive, stationary, Lévy processes implies

K(t) = −
[
γt+

∫ ∞
0

(1− e−ty)w(dy)

]
for some γ ≥ 0 and measure w(·) on R+, called the Lévy measure, such

that the integral is finite for all t > 0.

Dempsey and McCullagh [2017] showed that every exchangeable, Markov

survival process can be generated via a Lévy process construction. The

proof stems from connecting γ to the erosion measures (i.e., c ≥ 0 in The-

orem (2)) and the Lévy measure to the dislocation measures (i.e., Σ(·) in

Theorem (2)). For instance, the harmonic process can be constructed via a

Lévy process with γ = 0 and w(dy) = νe−ρydy/(1− e−y)).

Now consider the proportional conditional hazards model as described

by Kalbfleisch [1978], Hjort [1990], and Clayton [1991]. In the propor-

tional conditional hazards model, the hazard for individual i is wiZ(t)

for some wi > 0 typically wi = exp(x′iβ) depending on a set of base-

line covariates xi. Then the conditional survival density for particle i is

exp
(
−wi

∫ t
0
Z(t)

) (
1− e−wiZ(t)

)
. Assume there is a single covariate that is

a factor with a finite number of levels (i.e., xi ∈ {1, . . . , k} := [k]). Then

wi = wxi ; that is, there are a finite set of weights. The joint marginal

density can be derived in a similar way as before. Here, however, the non-
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normalized transition rules are

λ(R,D) = E

(
e−Z(t)

∑
i∈R wxi

∏
i∈D

(
1− e−wxiZ(t)

))

= E

(
k∏
j=1

(exp(−Z(t))wj)rj (1− exp(−Z(t))wj)dj

)

=

∫ 1

0

k∏
j=1

(pwj)rj (1− pwj)dj Σ(dp)

where rj = #{i ∈ R s.t. Xi = j}, dj = #{i ∈ D s.t. Xi = j}, and Σ(·)

is the dislocation measure. The final equality is due to the connection be-

tween the Lévy measure and the dislocation measure. It is clear from above

that the proportional conditional hazards model corresponds to a particu-

lar choice of the dislocation measure. Namely, the proportional conditional

hazards model corresponds to pi → pwxi . So on the [0, 1]-scale, the model

is conditionally proportional on the log-scale. That is, log(pi) = wxi log(p).

Alternative choices exist. For example, the model may be conditionally pro-

portional on the logistic scale; that is, log (pi/(1− pi)) = wxi log (p/(1− p)).

We do not pursue such alternatives in this paper.

S5 MCMC simulation example: details

Below we describe the simulation example in detail. We set parameters as

follows: first, we assume that marginally a healthy participant transitions to
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ill and dead after 2 and 5 years respectively (on average); ill participants to

both healthy and dead on average every 3 years respectively. Both healthy

and ill participants took on average 3 years to transition to failure. We

assume a sample of N = 250 individuals, with 150 initially healthy and 100

initially unhealthy, were generated.

Maximum Likelihood Posterior distribution

Parameter True Value Estimate Lower CI Upper CI Mean 5% Quantile 95% Quantile

ν11 0.50 0.53 0.43 0.64 0.15 0.09 0.23

ν12 0.20 0.19 0.13 0.25 0.20 0.15 0.25

γ21 0.70 0.75 0.64 0.86 0.85 0.67 1.07

γ22 1.71 1.71 1.28 2.13 1.23 1.62 2.09

Table S1: Parameter estimation

First, assume all transitions are observed. Maximum likelihood estima-

tion is performed. Next, assume the state of each individual is observed

annually, with the transition time to failure observed. Traceplots in Fig-

ure S5a suggest convergence of the MCMC procedure after the first 100

iterations. The MCMC sampler gives posteriors for the parameters. Ta-

ble S1 contains these estimates. We see good performance for ν12, γ21, and

γ22. The posterior for ν11 reflects the observation schedule; indeed, increas-

ing the frequency of observation significantly improves these posteriors. In
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particular, under complete observations, the posterior distributions are ap-

proximately equal in distribution to the asymptotically normal confidence

intervals.

We show 1000 iterations of the MCMC procedure where the latent

process updates runs every 25 iterations has similar performance as the

standard MCMC procedure with significant decrease in overall runtime.

(a) Traceplots for Gibbs sampler (b) Approximate posterior density

Figure S5: MCMC traceplots and densities for simulation example

Removing the first 100 iterations as burn-in, posterior distributions are

presented in Figure S5b. Black curves are the MCMC sampler procedure;

grey curves are the approximate MCMC sampling procedure with latent

process updates every 25 iterations. We see distributions are approximately

equal in all cases, with largest errors for ν11. This supports the aforemen-
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tioned difficulty in estimating ν11 due intermittent observations. This is a

consequence of the observation schedule being infrequent compared to the

underlying stochastic dynamics. Complete observations (i.e., more frequent

observations) significantly improves estimation of ν11.

Figure S6: Survival functions given baseline state; median (black), 5% and 95% quantiles

(dotted black), and true survival function (grey)

Beyond posterior distributions for parameters, one is typically inter-

ested in posterior distributions of the survival functions. Note, there are

two distinct sources of variation – (1) intermittent observations and (2) pa-

rameter uncertainty. The MCMC sampling procedure accounts for both,

allowing for survival functions to be constructed for each iteration of the

MCMC sampler using each iterations’ latent process and parameters. Fig-

ure S6 presents the point-wise median, 5%, and 95% survival at every time

since recruitment when the individual is healthy and ill at baseline respec-

tively. The grey curves are the true survival function given healthy/ill at



S23

baseline. We see that the posteriors for survival functions are almost exactly

equal, suggesting intermittent observations did not significantly impact our

ability to predict survival of future patients.

S6 Code repository

All code related to the CAV analysis and simulation study can be found at

https://github.com/wdempsey/multi-state.
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