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A KERNEL REGRESSION MODEL FOR PANEL COUNT

DATA WITH TIME-VARYING COEFFICIENTS
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Shanghai Jiao Tong University

Abstract: We propose using the local kernel regression method to estimate the

conditional mean function of a panel count model with time-varying coefficients.

A partial log-likelihood with a local polynomial is used for the estimation. Under

some regularity conditions, strong uniform consistency rates are obtained for the

local estimator. For a fixed time point, we show that the local estimator converges

in distribution to the normal distribution. Moreover, the Breslow-type estimation

of the baseline mean function is shown to be consistent. Simulation studies show

that the time-varying coefficient estimator is close to the true value, and that the

empirical coverage probability of the confidence interval is close to the nominal level.

Finally, we demonstrate the proposed method by applying it to analyze a clinical

data set on childhood wheezing.
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1. Introduction

Panel count data arise when events are observed at a finite number of time

points and the visit times vary between subjects. The exact event times between

two consecutive observation times are unknown. In reality, panel count data

are often encountered in clinical, demographical, and industrial research. For

example, in an observational study on childhood asthma, Tepper et al. (2008)

recorded the number of wheezing episodes experienced by each child between two

consecutive telephone interviews. Here, the event number may be greater than

one, but the exact time of each wheezing occurrence was unknown. The wheezing

event time analysis is a panel count data type. At the same time, the risk factors’

effects on the panel count outcome may vary over time, making it crucial that we

explore the temporal effects of the covariates. For example, interleukin-10 (IL-10)

was recorded in this study and assessed as having a significant effect on infection

in early childhood. Furthermore, its effect is not linear. A panel count model

with time-varying coefficients may reveal the varying effect of IL-10 at a young
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age, thus helping us to prevent asthma and explore optimal treatment programs.

Therefore, it is desirable to study a panel count model with nonparametric time-

varying coefficients.

In the past three decades, numerous works have studied the proportional

mean model for panel count data. In general, there are two main approaches:

the likelihood estimation method, and the estimating equation approach. For the

likelihood method, pseudo-likelihood functions have been constructed based on

the nonhomogeneous Poisson process assumptions; see Zhang (2002) and Wellner

and Zhang (2007). Zhu et al. (2018) developed a likelihood-based semiparametric

regression model for panel count data under the same assumptions. Lei, Ying and

Wanzhu (2014) proposed a sieve maximum likelihood method under the gamma

frailty inhomogeneous Poisson process assumption. For the estimating equation

approach, Hu, Sun and Wei (2003), Sun, Tong and He (2007), and Li, Sun and

Sun (2010) analyze semiparametric regression models for panel count data with

correlated observation times. He et al. (2007), Li et al. (2011), and Li et al. (2015)

proposed an estimating equation approach for regression analyses of multivariate

panel count data. All of these methods use a parametric covariate effect esti-

mation, which leads to biased estimators when the covariate effect changes over

time. Therefore, statistical methods that can deal with time-varying coefficients

for panel count data are much needed.

In this study, we focus on nonparametric time-varying coefficient estimations

for panel count data. For nonparametric regression models, two main approaches,

the kernel estimation and spline methods, are used to study survival data. For

example, Cai and Sun (2003), Tian, Zucker and Wei (2005), Cai et al. (2007), Yu

and Lin (2010), and Lin, Fei and Li (2016) discussed kernel-weighted likelihood

methods for the Cox model with time-varying effects. Buchholz and Sauerbrei

(2011), Perperoglou (2013), and Perperoglou (2014) proposed B-spline methods

for a time-varying effects model in a survival data analysis. Thus, the aforemen-

tioned methods are well documented for survival models. Nevertheless, few stud-

ies have examined nonparametric panel count models. Zhao, Tu and Yu (2018)

investigated a B-splines-based estimation for a time-varying coefficients model

and panel count data using the pseudo-likelihood method. Although splines are

easy to implement, selecting the number of knots and the locations is known to

be difficult, and they are often over smoothed; see Hastie and Tibshirani (1990)

and Härdle (1990). However, a local kernel method using a local approximation

can be derived conveniently and theoretically. To the best of our knowledge,

no studies have investigated using the local kernel method for panel count data.

Panel count models fit data that include multiple unscheduled visits. This is
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especially useful for the analysis of electronic medical records and long follow-up

data. Therefore, it is desirable to develop a local kernel method for a panel count

model with time-varying coefficients, because the effects of the risk factors often

change in the event of a long-term follow up.

The remainder of this paper is organized as follows. Section 2 presents the

time-varying coefficients mean function model and the kernel-weighted local par-

tial log-likelihood used for estimation. Here, we also give cross-validation strate-

gies for the smoothing parameter selection. Section 3 derives the asymptotic

theoretical properties of the estimators based on modern empirical process theo-

ries. Section 4 describes the numerical results obtained from simulation studies

using the proposed model. Section 5 applies the proposed approach to a clinical

data set on childhood wheezing. Section 6 concludes the paper. The technical

details are presented in the online Supplementary Material.

2. The Mean Function Model and Local Partial Log-Likelihood

2.1. The conditional mean function model

We first introduce some notation. Let {Ni(t), t ≥ 0} be a counting process

of the cumulative number of events up to time t, for 0 ≤ t ≤ τ , where τ is the

maximum follow-up time. Without loss of generality, we assume that Ni(0) = 0,

for i = 1, 2, . . . , n. For subject i, the patient is followed at time {Til : 0 < Ti1 <

Ti2 < · · · < Tiki < ∞}, where ki and Til are random. We denote {Oi(t), t ≥ 0}
as the observation process, which is a point process Oi(t) =

∑ki
l=1 I(Til ≤ t),

for t ≥ 0, representing the cumulative visit numbers up to time t. Here, I(·)
is the indicator function. Let oi(t) = Oi(t) − Oi(t−), such that oi(t) denotes

whether subject i has a visit at time t. Suppose that Ci, for i = 1, 2, . . . , n, are

censoring times. In addition, Ni(Til) is not observed when Ci < Til < τ . Let

{Zi, i = 1, . . . , n} be d-dimensional covariates. For simplicity, we consider d = 1.

Suppose that given Zi, the mean function of Ni(t) is

E (Ni(t) | Zi = zi) = µ0(t) exp(β(t)zi), t ≥ 0, (2.1)

where the baseline function µ0(t) is unspecified, and β(t) is an unknown func-

tion. In this study, we assume that {Ni(t), Oi(t), Ci, Zi}, for i = 1, . . . , n, are

independent and identically distributed (i.i.d.). Furthermore, we assume that

Ni(t), Oi(t), and Ci are independent, given the covariate Zi.



1710 WANG AND YU

2.2. Kernel-weighted local partial log-likelihood function

Because the information about the recurrent process Ni(t) can be observed

at the visit times, we define a new counting process, Ñi(t), with respect to subject

i, conditional on the observation process:

Ñi(t) =

∫ t

0
Ni(u)dOi(u), t ≥ 0. (2.2)

The defined process only jumps at the observation times {Til, l = 1, . . . , ki}, and

the jump size is Ni(Til). Then, conditional on the observation process Oi(t) and

the covariate Zi, the mean of dÑi(t) is given as follows:

E
(
dÑi(t) | Zi = zi;Oi(u), 0 < u ≤ t

)
= µ0(t) exp(β(t)zi)dOi(t). (2.3)

Suppose that dÑi(t) is a nonhomogeneous Poisson process. Then, we can

construct the logarithm of the partial likelihood function using observed infor-

mation over [0, τ ] (τ > 0) by employing similar techniques to those of Lawless

and Nadeau (1995) and Hu, Sun and Wei (2003), as follows:

pln(β(u)) =
1

n

n∑
i=1

∫ τ

0
I(Ci ≥ u)

{
β(u)zi

− log
1

n

n∑
j=1

I(Cj ≥ u) exp(β(u)zj)oj(u)

}
dÑi(u). (2.4)

To estimate the time-varying coefficient, we employ the kernel likelihood ap-

proach. For each fixed time point t, using the Taylor expansion, we approximate

β(u) using the pth-order polynomial as:

β(u) ≈ β(t) + β′(t)(u− t) + · · ·+ β(p)(t)

p!
(u− t)p. (2.5)

Set β =
(
β0(t), . . . , βp(t)

)T
=
(
β(t), . . . , β(p)(t)/p!

)T
and zi(u) = zi

(
1, u −

t, . . . , (u−t)p
)T

. LetK(·) be a kernel function that can down weight the likelihood

contribution of remote time points, and let h be the bandwidth that regulates

the local neighborhood sizes. Then, by inserting localizing weights and using the

local polynomial equation (2.5), we obtain the local partial log-likelihood:

Ln(β) =
1

n

n∑
i=1

∫ τ

0
Kh(u− t)I(Ci ≥ u)

{
βTzi(u)
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− log
1

n

n∑
j=1

I(Cj ≥ u) exp(βTzj(u))oj(u)

}
dÑi(u), (2.6)

where Kh(·) = h−1K(·/h).

Let β̂ be the maximizer of (2.6) with respect to β. Then, β̂(t) = β̂0(t) is

the local kernel partial maximum likelihood estimator of β(t), which is the first

component of the vector β̂.

To obtain the maximizer of (2.6), we introduce some additional notation.

Let

S̃n,j(u,β) =
1

n

n∑
i=1

I(Ci ≥ u) exp(βTzi(u))oi(u)zi(u)⊗j , j = 0, 1, 2. (2.7)

Then, (2.6) can be modified as follows:

Ln(β) =
1

n

n∑
i=1

∫ τ

0
Kh(u− t)I(Ci ≥ u)

{
βTzi(u)− log S̃n,0(u,β)

}
dÑi(u). (2.8)

We derive the local kernel estimating equation,

L′n(β) =
1

n

n∑
i=1

∫ τ

0
Kh(u− t)I(Ci ≥ u)

{
zi(u)− S̃n,1(u,β)

S̃n,0(u,β)

}
dÑi(u), (2.9)

which is the gradient of Ln(β).

The Hessian matrix of Ln(β) is formed as

L′′n(β) = − 1

n

n∑
i=1

∫ τ

0
Kh(u− t)I(Ci ≥ u)

[
S̃n,2(u,β)

S̃n,0(u,β)
−

{
S̃n,1(u,β)

S̃n,0(u,β)

}⊗2]
dÑi(u).

(2.10)

Using the Cauchy−Schwarz inequality, we can check that the right-hand side

of (2.10) is negative as n → ∞. Thus, Ln(β) is strictly concave with respect to

β. Hence, there is a unique maximizer of the local likelihood Ln(β). Then, using

the Newton−Raphson algorithm, we obtain the local kernel estimator β̂. Here,

the (j + 1)th step of the Newton−Raphson algorithm is

β̂(j+1) ≈ β̂(j) − L
′
n(β̂(j))

L′′n(β̂(j))
,

where β̂(j) is the value at the jth iteration.

After obtaining β̂(t) = β̂0(t) at each observation time, we construct the
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Breslow-type estimator µ̂0(t) for the baseline mean function µ0(t) as µ̂0(t) =∑n
i=1 I(Ci ≥ t)Ni(t)oi(t)/

∑n
i=1 I(Ci ≥ t) exp(β(t)zi)oi(t) (Breslow (1974); Cox

(1992)). Substituting β(t) with β̂(t), we obtain the baseline estimator

µ̂0
(
t, β̂(t)

)
=

∑n
i=1 I(Ci ≥ t)Ni(t)oi(t)∑n

i=1 I(Ci ≥ t) exp(β̂(t)zi)oi(t)
. (2.11)

2.3 Cross-validation method for selecting the smoothing parameter

Data-driven methods are useful for bandwidth selection, which is an im-

portant part of the local kernel method. Here, relevant works include those of

Rice and Silverman (1991), Verweij and Van Houwelingen (1993), Hoover et al.

(1998), Cai, Fan and Li (2000), and Tian, Zucker and Wei (2005), who discussed

cross-validation techniques for choosing smoothing parameters. In this article,

we adopt the leave-one-out cross-validation procedure for bandwidth selection

in our panel count models. Similarly to Rice and Silverman (1991), Verweij and

Van Houwelingen (1993), and Hoover et al. (1998), we construct a cross-validated

log-likelihood, denoted as CV L, in which single subjects rather than the single

responses are deleted one at a time.

First, we define the contribution of individual i to the log-likelihood, as fol-

lows:

li(β) = L(β)− L(−i)(β), (2.12)

where L(β) is the local partial log-likelihood defined in (2.6), and L(−i)(β) is

the local partial log-likelihood when the ith subject is left out. Let β̂(−i) be the

maximizer of L(−i)(β) with respect to β.

We define the cross-validated log-likelihood CV L as

CV L(h) =

n∑
i=1

li(β̂(−i)). (2.13)

Then, our cross-validated smoothing parameter, the bandwidth h, is the maxi-

mizer of CV L(h).

The proposed estimation and bandwidth selection can lead to solving hun-

dreds of local partial log-likelihood equations. To reduce the computational costs,

we approximate β̂(−i) associated with β̂ using a Taylor expansion, as follows:

β̂(−i) = β̂ +

{
∂2L
∂β2

(β̂)

}−1 ∂li
∂β

(β̂). (2.14)

Then, from (2.13) and (2.14), we carry out an alternative expression of CV L,
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CV L(h) = L(β̂) + tr

[{
∂2L
∂β2

(β̂)

}−1 n∑
i=1

{
∂li
∂β

(β̂)

}{
∂li
∂β

(β̂)

}T
]
, (2.15)

where tr denotes the trace of a matrix. For further details on the derived proce-

dures, see the Supplementary Material. For the above cross-validated likelihood

CV L(h), we only need the estimator β̂, rather than β̂(−i), which helps speed up

the computation and avoids difficult technical issues. We use simulations to eval-

uate the performance of the cross-validation for bandwidth selection, as discussed

in Section 4.

3. Asymptotic Properties

3.1. Strong uniform consistency and asymptotic normality

In this section, we present the asymptotic theoretical properties of the pro-

posed estimator. For simplicity of presentation, we first introduce some notation.

Let u =
(
1, u, . . . , up

)T
, Ω1 =

∫
K(u)u⊗2du, and Ω2 =

∫
K2(u)u⊗2du. Set

H = diag
(
1, h, . . . , hp

)
, u − t =

(
1, (u − t)/h, . . . , (u − t)p/hp

)T
, and the true

value β∗ =
(
β(t), β′(t) . . . , β(p)(t)/p!

)T
. Furthermore,

p1(t | z) = pr
(
C ≥ t | Z = z

)
, p2(t | z) = pr

(
o(t) | Z = z

)
,

µ(t | z) = µ0(t) exp(β(t)z), σ(t | z) = µ20(t) exp(2β(t)z),

qj(t) = E
(
p1(t | z)p2(t | z)µ(t | z)zj

)
, j = 0, 1, 2.

Let T =
{
t : t ∈ [0, τ ]

}
. Define

σ1(t) = q2(t)−
q21(t)

q0(t)
,

σ2(t) = E

(
p1(t | z)p2(t | z)

(
z − q1(t)

q0(t)

)2

σ(t | z)
)
.

The following regularity conditions are required for the theorems and lemmas.

C1 The kernel function K(·) ≥ 0 is a symmetric density function with compact

support [−1, 1] and with bounded variation, taking the value zero at the

boundaries;

C2 The processes N(·) and O(·) are bounded, E
(
N2(·) | Z = z

)
exists, and

E(Zλ)1/λ <∞, for 2 < λ <∞;

C3 The function β(t) is (p+1)th-order continuously differentiable, with bounded

variation in T ;
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C4 The functions µ0(t), p1(t | z), and p2(t | z) are positive and continuous in T ;

C5 The functions q0(t) > 0, q1(t), q2(t), σ1(t), and σ2(t) are continuous, and

inf σ1(t) = M1 <∞, sup{q1(t)/q0(t)} = M2 < 1, and sup q0(t) = M3 <∞.

Remark 1. The above conditions are used to prove the strong uniform consis-

tency and pointwise asymptotic normality of the proposed estimator. C1 to C3

are technical and regularity conditions. C4 and C5 are necessary to derive the

uniform convergence result. We assume p1(t | z) > 0 and p2(t | z) > 0, which en-

sure there is at least one event on each t ∈ T as n becomes sufficiently large. This

is crucial to the theoretical demonstration of the asymptotic properties. Next,

under the aforementioned conditions, we state the main results of this study. The

detailed proofs are relegated to the Supplementary Material.

Theorem 1. Under C1−C5, assume that the bandwidth h satisfies the following

conditions:

h→ 0,
nh

log n
→∞, and h ≥

(
log n

n

)1−2/λ
, for λ > 2.

Then, there exists a sequence of solutions
{
β̂ =

(
β̂0(t), . . . , β̂p(t)

)T}
to equation

(2.9), such that, for each k = 0, . . . , p, almost surely,

sup
t∈T

∣∣∣∣β̂k(t)− β(k)(t)

k!

∣∣∣∣ = O

(
h−k

[{
log n

nh

}1/2

+ h

])
as n→∞. (3.1)

In particular, when the local linear approximation is used (p = 1), we have, almost

surely,

sup
t∈T
|β̂(t)− β(t)| = O

({
log n

nh

}1/2

+ h

)
as n→∞. (3.2)

Theorem 1 shows that the proposed estimator is strongly uniformly con-

sistent. Thus, the local estimator is uniform and asymptotically unbiased as

n → ∞. Under more stringent conditions, the strong uniform consistency rate

of the proposed estimator is similar to those of Zhao (1994) and Claeskens and

Van Keilegom (2003), who discussed the strong uniform convergence rate for the

nonparametric location regression problem. Here, we develop the strong uniform

consistency of the proposed estimator for a nonparametric panel count model. In

particular, the supremum of the local kernel estimating equation (2.9) is derived

under some conditions, which play a crucial role in the proof of Theorem 1. The

detailed proofs are presented in the Supplementary Material.
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Theorem 2. Under C1−C5, assume that the bandwidth h satisfies the following

conditions: h → 0, nh → ∞, and nh2p+3 is bounded. Then, the asymptotic

distribution of β̂ satisfies

√
nh

{
H(β̂−β∗)−Ω−11 bh

p+1β
(p+1)(t)

(p+ 1)!

}
→ N

(
0, σ−21 (t)σ2(t)Ω

−1
1 Ω2Ω

−1
1

)
, (3.3)

where b =
∫
up+1uK(u)du.

The result in Theorem 2 demonstrates the asymptotic normality of the pro-

posed estimator, under general conditions. Here, β̂ converges in the optimal rate

of kernel estimators and is analogous to the spline estimator. The bias is of order

hp+1 and is related to the (p + 1)-derivative of the real function β(t). Hence,

it tends to zero when the bandwidth gets to zero. The theorem also gives the

joint asymptotic normality of the estimator for the derivatives. In particular, the

variance and bias of β̂(r)(t) = β̂r(t) can be obtained using the rth component of

(3.3). The detailed proofs of the main results are presented in the Supplementary

Material, together with several lemmas that are key to the proofs of Theorem 1

and Theorem 2. When the local linear approximation is used (p = 1), we have

the following corollary:

Corollary 1. Under C1−C5, assume that the bandwidth h satisfies the follow-

ing conditions: h → 0, nh → ∞, and nh5 is bounded. Then, the asymptotic

distribution of β̂(t) satisfies

√
nh

{
β̂(t)− β(t)− µ2h2

β′′(t)

2

}
→ N

(
0, ν0σ

−2
1 (t)σ2(t)

)
, (3.4)

where µ2 =
∫
u2K(u)du, ν0 =

∫
K2(u)du.

The estimator of the nonparametric β(t) is asymptotically normal. The bias

is of order h2, and is related to the second derivative of the time-varying func-

tion β(t). As consequence of (3.4), by minimizing the weighted mean integrated

squared error, ∫ τ

0

{
4−1µ22h

4β′′2(t) +
ν0σ
−2
1 (t)σ2(t)

nh

}
w(t)dt, (3.5)

we can derive the theoretical optimal bandwidth for β̂(t), as follows:

hopt =

[
ν0
∫ τ
0 σ
−2
1 (t)σ2(t)w(t)dt

µ22
∫ τ
0 β
′′2(t)w(t)dt

]1/5
n−1/5. (3.6)
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3.2. Estimation of covariance matrix

We propose a covariance estimator of β̂ based on its asymptotic covariance

by substituting the estimated β into the covariance in (3.3), as follows:

Σ̂(t) = Σ̂−11 (t)Σ̂2(t)Σ̂
−1
1 (t), (3.7)

where

Σ̂1(t) =
1

n

n∑
i=1

∫ τ

0
Kh(u− t)(u− t)⊗2I(Ci ≥ u)V1(u, β̂)dÑi(u), (3.8)

Σ̂2(t) =
1

n

n∑
i=1

∫ τ

0
hK2

h(u− t)(u− t)⊗2I(Ci ≥ u)V2(u, β̂)µ̂20(u, β̂(u))

exp(2β̂Tzi(u))oi(u)du, (3.9)

with

V1(u, β̂) =
Sn,2(u, β̂)

Sn,0(u, β̂)
−

{
Sn,1(u, β̂)

Sn,0(u, β̂)

}2

, (3.10)

V2(u, β̂) =

{
zi −

Sn,1(u, β̂)

Sn,0(u, β̂)

}2

, (3.11)

Sn,j(u, β̂) =
1

n

n∑
i=1

I(Ci ≥ u) exp(β̂Tzi(u))oi(u)zji , j = 0, 1, 2. (3.12)

We show that the estimators Σ̂1(t) and Σ̂2(t) converge in probability to

Σ1(t) and Σ2(t), respectively. The detailed proofs are relegated to the Supple-

mentary Material. Therefore, the estimator Σ̂(t) of the asymptotic covariance

Σ(t) = σ−21 (t)σ2(t)Ω
−1
1 Ω2Ω

−1
1 in (3.3) is consistent. Moreover, the finite-sample

performance of the variance estimation is validated using simulation studies.

3.3. Asymptotic properties of baseline mean function

As introduced in Section 2.2, we use the Breslow-type estimator to evalu-

ate the baseline mean function at each fixed time point. Here, we discuss the

asymptotic properties of the estimator µ̂0(t, β̂(t)).

Theorem 3. Under C1−C5, assume that the bandwidth h satisfies the following

conditions: h→ 0, nh→∞, and nh5 = o(1). Then, the asymptotic distribution

of µ̂0(t, β̂(t)) satisfies

√
nh
{
µ̂0(t, β̂(t))− µ0(t)

}
→ N

(
0,Σ3(t)

)
, (3.13)
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where Σ3(t) = ν0q
−2
0 (t)q21(t)σ−21 (t)σ2(t), and ν0 =

∫
K2(u)du.

The detailed proofs are presented in the Supplementary Material. Further-

more, the rate of convergence for µ̂0(t, β̂(t)) is (nh)1/2, which is the same as the

rate of β̂(t). Next, we demonstrate the finite-sample performance of the estimator

using simulation studies.

4. Simulation

In this section, we evaluate the finite-sample performance of the proposed

local kernel estimator using a numerical study. In each simulated data set, we

generate n i.i.d. random variables {Ki, Ti, Ni, Zi}. For each individual i, the

number of observations Ki is generated from a discrete uniform distribution

on {1, 2, . . . , C}, where the number C is finite. The follow-up time intervals

∆Ti = (∆Ti1, . . . ,∆TiKi
) are generated from an exponential distribution. The

covariate Zi is generated from the uniform distribution U(0, 1). Given the time-

varying coefficient β(t), we generate the recurrent event Ni from a nonhomoge-

neous Poisson process with mean function µ0(t) exp(β(t)zi). That is, the event

number between two consecutive observation times is generated from a Poisson

distribution with the mean µ0(Ti,j) exp(β(Ti,j)zi) − µ0(Ti,j−1) exp(β(Ti,j−1)zi),

and

Ni,j −Ni,j−1 ∼ Poisson
(
µ0(Ti,j) exp(β(Ti,j)zi)− µ0(Ti,j−1) exp(β(Ti,j−1)zi)

)
.

We consider the mean function model under two parameter settings. For

each setting, we perform the estimation at 100 equally spaced grid points on

the time interval. We used the Epanechnikov kernel to estimate the local kernel

estimator with an invariant bandwidth, and with a bandwidth at each time point

chose using cross-validation. We perform the simulation with sample sizes 300

and 500. For each setting, we generate 500 data sets. In this section, we show

only the results under the sample size of 300; the results for the sample size of 500

are presented in the Supplementary Material. The maximum number of observed

times per individual is C = 10, and the maximum follow-up time is six.

In the first setting, we set the regression function as β(t)=0.5{Beta(t/12,

4,4)+Beta(t/12,5,5))}, where Beta(·) is the beta density function, and the base-

line function as µ0(t) = 2 + 2t3. We use a local linear approximation (p = 1).

The results are shown in Figure 1. Panels a1 and b1 of Figure 1 present the

true curve β(t) and the average of the local kernel estimator β̂(t), with h=0.5

and the cross-validation selected bandwidth (hcv), respectively. In general, the

estimators are very close to the true value. The estimated curve with the invari-
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ant bandwidth is slightly smoother than that with the cross-validation-selected

bandwidth, because the latter changes at each time point. Panels a2 and b2 of

Figure 1 compare the estimated and empirical standard errors of the local kernel

estimator, with h=0.5 and hcv, respectively. As shown, there is good agreement

between the estimated and empirical standard errors from the various bandwidth

choices. Panels a3 and b3 of Figure 1 show the empirical coverage probabilities

of the 95% confidence intervals, with h=0.5 and hcv, respectively. In general, the

empirical coverage probabilities are around 95%, with lower coverage probabili-

ties on the boundary, owing to the relative larger bias of the coefficient estimator.

Panels a4 and b4 of Figure 1 show the Breslow-type estimator for the baseline

mean function, with h=0.5 and hcv, respectively. The estimators are close to the

true curve, with a slight deviation on the boundary. The simulation results with

a sample size of 500 show a similar pattern; see the Supplementary Material.

In the second setting, we set the regression function as β(t)=sin(πt/6) and

the baseline function as µ0(t) = 4+4t4. We use the local quadratic approximation

(p = 2), following Fan and Gijbels (1992), who note that local quadratic approx-

imations may be preferable to local linear fitting at peaks and valleys. Similarly

to the first setting, the results demonstrate good performance, as shown in Fig-

ure 2. Panels a1 and b1 of Figure 2 show the true curve β(t) and the average of

the local kernel estimator β̂(t), with h=1.2 and hcv, respectively. The estimators

are very close to the true value, with a slight bias at the peak of the regres-

sion curve. Panels a2 and b2 of Figure 2 compare the estimated and empirical

standard errors of the local kernel estimator, with h=1.2 and hcv, respectively.

There is clearly good concordance between the estimated and empirical stan-

dard errors from the various bandwidth selections. Panels a3 and b3 of Figure 2

show the empirical coverage probabilities of the 95% confidence intervals, with

h=1.2 and hcv, respectively. In general, the empirical coverage probabilities are

around 95%. There are lower coverage probabilities on the boundary, owing to

the relative larger bias of the coefficient estimator. Panels a4 and b4 of Figure 2

present the Breslow-type estimator for the baseline function, with h=1.2 and hcv,

respectively. The estimators are close to the true baseline curve. The simulation

results with a sample size of 500 show analogous patterns, and are presented in

the Supplementary Material.

In summary, the local kernel estimators perform well in terms of exhibiting a

small estimation bias and good coverage probabilities of the confidence intervals.

Next, we apply the estimation procedure to analyze data from a childhood asthma

study.
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Figure 1. (a1) and (b1): The true and the average of the local kernel estimator, with
h=0.5 and hcv, respectively. (a2) and (b2): Comparison of empirical standard errors

(ESE) and the estimated standard errors (MSE) of β̂(t), with h=0.5 and hcv, respectively.

(a3) and (b3): Empirical coverage probabilities of the 95% confidence intervals for β̂(t),
with h=0.5 and hcv, respectively. (a4) and (b4): Comparison of the true baseline curve
and the average of the Breslow-type estimator, with h=0.5 and hcv, respectively.
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Figure 2. (a1) and (b1): The true and the average of the local kernel estimator, with
h=1.2 and hcv, respectively. (a2) and (b2): Comparison of empirical standard errors

(ESE) and the estimated standard errors (MSE) of β̂(t), with h=1.2 and hcv, respectively.

(a3) and (b3): Empirical coverage probabilities of the 95% confidence intervals for β̂(t),
with h=1.2 and hcv, respectively. (a4) and (b4): Comparison of the true baseline curve
and the average of the Breslow-type estimator, with h=1.2 and hcv, respectively.
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5. Application

The childhood asthma study was designed and conducted at Indiana Uni-

versity School of Medicine (Tepper et al. (2008)), and recruited 105 infants with

a high risk of developing asthma. Records of cumulative wheezing episodes were

collected by means of monthly phone calls. The median follow-up time was 33.5

months, and the total number of wheezing events was 625. For the baseline

characteristics, 49.5% were boys, 10.5% of the children’s mothers smoked during

pregnancy, and the mean age at enrollment was 10.8 months. In a recent human

asthma study, Kearley et al. (2005) indicated that interleukin-10 (IL-10) regulates

the suppressive activity of T cells, which play an important role in human asthma.

Furthermore, Groux et al. (1998) showed that IL-10 has differential effects on T

cells, depending on their activated state. The potent anti-inflammatory cytokine

IL-10 has been shown to be a risk factor for infection in early childhood (Yao

et al. (2010)). In addition, the effect of IL-10 may vary during childhood growth.

Therefore, we apply the proposed method to analyze the time-varying effect of

IL-10 using the childhood wheezing data set.

We estimate the time-varying effect of IL-10 on the risk of wheezing using

the proposed local kernel estimator. The bandwidth at each time point is chosen

using the cross-validation technique, and the results are shown in Figure 3. In

general, IL-10 shows a significant effect on a child’s risk of wheezing over the

follow-up period. The relative risk increased over time for the period 25 to 75

months, and decreased over time near the boundary. We estimated the IL-10

effect as a constant coefficient, and found the overall relative risk to be 1.53 (p-

value<0.05). Although both the time-varying and the constant-effect estimators

showed significant results, the effect of the time-varying estimator increases with

age. Overall, we have shown that IL-10 is positively associated with children’s

wheezing. In addition, subjects with higher IL-10 have a higher wheezing risk.

6. Discussion

We have proposed a local kernel estimation procedure for a panel count

model with time-varying coefficients. We constructed a kernel-weighted local

partial likelihood at each fixed time point using a local polynomial interpolation.

We derived the strong uniform consistency and the point-wise asymptotic nor-

mality of the proposed estimator. We also discussed bandwidth selection based

on the leave-one-out cross-validation approach. Our simulation results demon-

strate that the proposed estimation methods perform well under finite sample

sizes. An application of the proposed methods to a clinical data set showed that
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Figure 3. Estimated IL-10 effect, β̂(age), time-varying effect (thick dot); 95% confidence
interval (thin dot); IL-10 effect based on the model with a constant coefficient (horizontal
solid line, β = 0.428).

the time-varying coefficient estimation provides more information on the effect

of risk factors on the panel count outcome measurement. As such, we have pro-

vided a nonparametric approach for time-varying coefficients in panel count data.

Compared with the spline estimator for panel count models, of which the asymp-

totic normality of β̂ has not been verified, our approach provides a thorough

theoretical investigation. An inference for β̂ is also developed.

The proposed methodology and theory based on a pth-order local polyno-

mial can result in improved rates of convergence for derivations and rates of

bias. Although the proposed estimation applies to a one-dimensional covariate,

both the local partial likelihood and the asymptotic properties can be extended

to the multivariate setting in a straightforward manner. However, implementa-

tions with more than two dimensions may have difficulties with the “curse of

dimensionality.”

There are several possible directions for further research. For example, in-

stead of the time-varying coefficients in a panel count model, one may be in-

terested in the variational covariate effects for such a model. For example, in a

biomedical study, a new drug may work well in an initial treatment with a low

dose, but may gradually lose its efficacy owing to drug resistance. It is impor-

tant to know how the drug works for different dosages. A panel count model

with a nonparametric covariate function may shed light on this issue and help

us to design a rational dosage regimen. However, although many works focus

on nonparametric estimations for variational covariate effects in survival analysis

(Sun and Wei (2000); Cai et al. (2007); Chen, Lin and Zhou (2012)), few have
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investigated those for panel count models. Hence, it is crucial to develop a non-

parametric estimation for a panel count model with a nonparametric covariate

function.

Supplementary Material

The online Supplementary Material contains the proofs of Theorems 1−3,

the convergence of the covariance estimator, and additional simulation results.
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