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Abstract: We investigate the problem of designing experiments for series estima-

tors in nonparametric regression models with correlated observations. We use

projection-based estimators to derive an explicit solution of the best linear ora-

cle estimator in the continuous-time model for all Markovian-type error processes.

These solutions are then used to construct estimators, which can be calculated

from the available data, along with their corresponding optimal design points. Our

results are illustrated by means of a simulation study, which demonstrates that

the proposed series estimator outperforms commonly used techniques based on the

optimal linear unbiased estimators. Moreover, we show that the performance of

the proposed estimators can be further improved by choosing the design points

appropriately.
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1. Introduction

Nonparametric regression is a common tool in statistical inference, with nu-

merous applications (see the monographs of Efromovich (1999) and Tsybakov

(2009), among many others). The basic model is formulated as

Yi = f(Xi) + εi, i = 1, . . . , n, (1.1)

where one usually distinguishes between random and fixed predictors Xi. In the

latter case, a natural question is how to choose X1, . . . , Xn to obtain the most

precise estimates of the regression function f . Several authors have worked on

this problem, including Müller (1984) and Zhao and Yao (2012), who derived op-

timal designs with respect to different criteria for kernel estimates, and Dette and

Wiens (2008), who considered the design problem for series estimation in terms
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of spherical harmonics. We also refer to the work of Efromovich (2008), who pro-

posed a sequential allocation scheme in a nonparametric model of the form given

in (1.1), with random predictors and heteroscedastic errors. A common feature

of the literature in this field is that all authors investigate the design problem

in a model (1.1) with independent errors. However, in many situations, this as-

sumption is not satisfied, particularly when the explanatory variable represents

time.

The reason for this gap in the literature is that the design problem for mod-

els with correlated errors (even parametric models) is substantially harder com-

pared to the uncorrelated case. In the latter case, a well developed and powerful

methodology for the construction of optimal designs has been established (see,

e.g., the monograph of Pukelsheim (2006)). In contrast, optimal designs for mod-

els with correlated observations are only available in rare circumstances involv-

ing parametric models (see, e.g., Pázman and Müller (2001), Näther and Simák

(2003), Müller and Stehĺık (2004), Harman and Stulajter (2010), Amo-Salas,

López-Fidalgo and López-Rios (2012), Stehlik et al. (2015), and Rodŕıguez-Dı́az

(2017), among others). Some general results on optimal designs for linear mod-

els with correlated observations can be found in the seminal work of Sacks and

Ylvisaker (1966, 1968). More recently, Dette, Pepelyshev and Zhigljavsky (2013,

2016); Dette, Konstantinou and Zhigljavsky (2017) provided a general approach

for the problem of designing experiments in linear models with correlated obser-

vations by considering the problem of optimal (unbiased linear) estimation and

optimal design simultaneously. Usually, authors use asymptotic arguments to

embed the discrete (nonconvex) optimization problem in a continuous (or approx-

imate) one. However, unlike the uncorrelated case, in the context of correlated

observations, this approach does not simplify the problem substantially. Further-

more, owing to the lack of convexity, the resulting approximate optimal design

problems for regression models with correlated observations are still extremely

difficult to solve.

In this study we consider optimal design theory for series estimation in the

nonparametric regression model (1.1) with correlated data. The basic notation

and general design problem are introduced in Section 2. In order to address

the particular difficulties in design problems for series estimation from correlated

data, in Section 3, we consider a continuous-time version of the discrete model.

We first determine optimal oracle estimators for the coefficients in a Fourier

expansion of the regression function f . These are shrinkage estimators, and are

not unbiased.

Section 4 is devoted to the implementation of the results from Section 3 for
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the construction of an efficient estimator with a corresponding optimal design.

In particular, we determine an optimal approximation of the Fourier coefficients

in the continuous model (which requires the full trajectory of the process) us-

ing an estimator that can be calculated from the available data {Yt1 , . . . , Ytn}.
Then, we determine the designs points t1, . . . , tn, such that the approximation

has a minimal mean squared error with respect to the solution in the continuous-

time model. The resulting two-stage estimator shrinks the best linear unbiased

estimator when the design points are chosen in an optimal way. The superior

performance of our approach is demonstrated in Section 5 by means of a small

simulation study. The online Supplementary Material contains all technical de-

tails and further numerical results.

2. Optimal Designs for Series Estimation

Throughout this paper, we consider the following nonparametric regression

model with a fixed design:

Yti = f(ti) + εti , i = 1, . . . , n, (2.1)

where f : [0, 1] → R is the regression function, 0 ≤ t1 < t2 < · · · < tn ≤ 1

are n distinct time points in the interval [0, 1], E[ε(tj)] = 0, and K(ti, tj) =

E[εtiεtj ] denotes the covariance between the observations at points ti and tj (i, j =

1, . . . , n). Let

L2([0, 1]) =

{
g : [0, 1]→ R :

∫ 1

0
g2(t)dt <∞

}
denote the space of square-integrable (real-valued) functions with inner product

〈g1, g2〉 =
∫ 1
0 g1(t)g2(t)dt and norm ‖g‖2 =

( ∫ 1
0 g

2(t)dt
)1/2

. Let {ϕj(·) : j ∈ N} be

an orthonormal basis. Then any function f ∈ L2([0, 1]) admits a series expansion

of the form

f(t) =
∑
j∈N

θjϕj(t) (2.2)

in L2([0, 1]) with Fourier coefficients

θj = 〈f, ϕj〉 =

∫ 1

0
f(t)ϕj(t)dt, j ∈ N. (2.3)

Moreover, the coefficients are squared summable; that is,
∑

j∈N θ
2
j < ∞. In

order to estimate the unknown function f , we now follow the idea of projec-

tion estimators (see Tsybakov (2009), p.47) and estimate the truncated series
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f (J)(t) =
∑J

j=1 θjϕj(t) by

f̂ (J)(t) =

J∑
j=1

θ̂jϕj(t), (2.4)

where θ̂j is an appropriate estimator for the Fourier coefficient θj (j = 1, . . . , J).

For example, if maxn
i=2(ti − ti−1) → 0 as n → ∞, an asymptotically unbiased

estimator of θj is given by

n∑
i=2

(ti − ti−1)ϕj(ti−1)Yti−1
. (2.5)

More general estimators are specified later on. At this point, it is only important

to note that the performance of any reasonable estimator will depend on the

design points t1, . . . , tn. We are interested in choosing these design points such

that the mean integrated squared error,

E
[ ∫ 1

0

(
f̂ (J)(t)− f(t)

)2
dt

]
=

J∑
j=1

E
[
(θ̂j − θj)2

]
+

∞∑
j=J+1

θ2j ,

is minimal. We also note that any solution of this discrete optimization problem

depends on the unknown regression function f , truncation point J used in (2.4),

and covariance kernel K, which is assumed to be known throughout this paper.

On the other hand, the term
∑∞

j=J+1 θ
2
j does not depend on the design points.

Therefore, it can be determined by minimizing
∑J

j=1 E
[
(θ̂j − θj)2

]
with respect

to the choice of t1, . . . , tn. For example, if θ̂j =
∑`j

i=1 αjiYti is a linear estimator

of θj (j = 1, . . . , J), we have that

J∑
j=1

E
[
(θ̂j − θj)2

]
=

J∑
j=1

(
`j∑
i=1

αjif(ti)− θj

)2

+

J∑
j=1

`j∑
i1,i2=1

αji1αji2K(ti1 , ti2),

which has to be minimized with respect to the choice of the time points t1, . . . , tn.

3. Optimal Estimation in the Continuous-Time Model

The discrete optimization problem stated at the end of the previous section

is extremely difficult to solve. In this section, in order to derive efficient designs,

we investigate a simpler problem. Specifically, we consider the continuous-time

nonparametric regression model of the form

Yt = f(t) + εt , t ∈ [0, 1], (3.1)
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where f is an unknown square-integrable function, and the error process ε = {εt :

t ∈ [0, 1]} is a centered Gaussian process with covariance kernel K(s, t) = E[εsεt].

Because we assume that the full trajectory of the process is available, there is in

fact no optimal design problem, but only the issue of an optimal estimation of

the regression function f . The optimal design question will appear later, when

we return to the discrete model (2.1). The main result of this section provides

an oracle solution of the optimal estimation problem. In particular, the optimal

estimator depends on the unknown function f in model (3.1) and, therefore, is

not implementable (even if the full trajectory of the process {Yt : t ∈ [0, 1]}
is available). However, our solution serves as a benchmark and suggests how

good estimators and corresponding optimal designs can be constructed. This is

formulated precisely in Section 4.

Model (3.1) is often written in terms of a stochastic differential equation

(provided that the regression function f is differentiable, with derivative ḟ); that

is,

dYt = ḟ(t)dt+ dεt , t ∈ [0, 1] . (3.2)

If ε = {εt : t ∈ [0, 1]} is a Brownian motion, model (3.2) is called a Gaussian white

noise model, and has found garnered attention in the statistical literature (see,

e.g., Ibragimov and Hasminskĭı (1981) or Tsybakov (2009), among many others).

In particular, the model is asymptotically equivalent to the nonparametric re-

gression model Zi = ḟ(i/n) + ηi (i = 1, . . . , n), where η1, . . . , ηn are independent

standard normally distributed random variables (see Brown and Low (1996)).

Note that the focus in the aforementioned publications is on the optimal estima-

tion of the function ḟ , whereas in this section, we are interested in estimating the

function f in model (3.1). Nevertheless, under additional assumptions, we can

investigate the properties of the derivative of the oracle estimator developed in

what follows. A brief discussion of these relations is given in Example 1.

Another important difference between model (3.1) and the Gaussian white

noise model is that we consider a general error process {εt : t ∈ [0, 1]}. In par-

ticular, we concentrate on Markovian Gaussian error processes with a covariance

kernel of the form

E[εsεt] = K(s, t) = u(s)v(t) for s ≤ t, (3.3)

where u(·) and v(·) are some (known) functions defined on the interval [0, 1], such

that v(t) 6= 0, for t ∈ [0, 1]. Kernels of this form generalize the Brownian motion,

which is obtained for u(t) = t and v(t) = 1, and are called triangular kernels

in the literature. Property (3.3) essentially characterizes a Gaussian process as
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Markovian (see Doob (1949) for more details). We assume that the process

{εt : t ∈ [0, 1]} is nondegenerate on the open interval (0, 1), which implies that

the function

q(t) =
u(t)

v(t)
, (3.4)

is positive on the interval (0, 1), and strictly increasing and continuous on [0, 1].

With regard to estimating the unknown function f , we propose estimating

the coefficients θj in the projection estimator (2.4) using statistics of the form

(see Grenander (1950))

θ̂j =

∫ 1

0
Ytξj(dt), j ∈ N, (3.5)

where ξj is a signed measure on the interval [0, 1], such that

∞∑
j=1

{
(E[θ̂j ])

2 + Var(θ̂j)
}

=

∞∑
j=1

(∫ 1

0
f(t)dξj(t)

)2

(3.6)

+

∞∑
j=1

∫ 1

0

∫ 1

0
K(s, t)dξj(s)dξj(t) <∞.

Obviously, this condition implies that for the sequence of estimators (θ̂j)j∈N,∑∞
j=1 E[θ̂2j ] <∞; thus, and thus we can define the random variable

f̂(t) =

∞∑
j=1

θ̂jϕj(t). (3.7)

In particular, if f̂ (J)(t) =
∑J

j=1 θ̂jϕj(t) is the truncated series from (3.7), we have

that

lim
J→∞

E
[ ∫ 1

0

(
f̂ (J)(t)− f(t)

)2
dt

]
= lim

J→∞

J∑
j=1

E[(θ̂j − θj)2]

=

∞∑
j=1

E[(θ̂j − θj)2] <∞,

and the mean integrated squared error of the estimator f̂ in (3.7) is given by

MISE(f̂) := E
[ ∫ 1

0
(f̂(t)− f(t))2dt

]
=

∞∑
j=1

E[(θ̂j − θj)2]. (3.8)

We conclude that the optimal linear oracle estimator f̂ of the function f
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minimizing (3.8) can be determined by minimizing the individual mean squared

errors E[(θ̂j − θj)2] separately. From the definition of linear estimators in (3.5),

this problem corresponds to one of determining a signed measure ξ∗j on the interval

[0, 1], which minimizes the functional

Ψj(ξj) : = E
[(∫ 1

0
Ytξj(dt)− θj

)2]
(3.9)

=

∫ 1

0

∫ 1

0

[
f(s)f(t) +K(s, t)

]
ξj(ds)ξj(dt)− 2θj

∫ 1

0
f(s)ξj(ds) + θ2j

=

∫ 1

0

∫ 1

0
K(s, t)ξj(ds)ξj(dt) +

(∫ 1

0
f(s)ξj(ds)− θj

)2

.

Remark 1.

(1) Note that, in contrast to most of the literature, we do not assume that θ̂j
is an unbiased estimator of the Fourier coefficient θj (j ∈ N). A prominent

unbiased estimator for θj is given by

θ̃j =

∫ 1

0
Ytϕj(t)dt (j ∈ N) , (3.10)

and for general unbiased estimates of the form (3.5), condition (3.6) reduces

to
∞∑
j=1

∫ 1

0

∫ 1

0
K(s, t)dξj(s)dξj(t) <∞ . (3.11)

Moreover, if the kernel K is continuous on [0, 1]× [0, 1], and if ϕ1, ϕ2, . . . are

the eigenfunctions of the integral operator associated with the covariance

kernel K, with corresponding eigenvalues λ1, λ2, . . ., then condition (3.6)

further reduces to

∞∑
j=1

∫ 1

0

∫ 1

0
K(s, t)ϕj(s)ϕj(t)dsdt =

∞∑
j=1

λj <∞.

(2) Under the additional assumption that the estimator (3.5) is unbiased for θj ,

the second term in (3.9) vanishes. Thus, the resulting optimization problem

corresponds to one of finding the best linear estimator in the location scale

model Yt = θj + εt, first studied by Grenander (1950). This author showed

that under the additional constraint
∫ 1
0 dξj(dt) = 1, the optimal solution ξ∗j

minimizing
∫ 1
0

∫ 1
0 K(s, t)ξj(ds)ξj(dt) can be characterized by the property

that the function t→
∫ 1
0 K(s, t)ξ∗j (ds) is constant on the interval [0, 1].
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The following theorem provides a complete solution of the optimization prob-

lem (3.9). The proof can be found in the Supplementary Material. For a precise

statement of the result, we denote by δx the Dirac measure at point x, and

distinguish the following cases for the triangular kernel (3.3).

(A) u(0) 6= 0.

(B) u(0) = 0, f(0) = 0.

(C) u(0) = 0, f(0) 6= 0.

Theorem 1. Consider the functional Ψj in (3.9) with a twice differentiable re-

gression function f and a triangular covariance kernel of the form (3.3), where

the functions u and v are also twice differentiable. For any j ∈ N, the signed

measure ξ∗j (dt) minimizing the functional Ψj in the class of all signed measures

on the interval [0, 1] is given by

ξ∗j (dt) =
θj

1 + c
(P0δ0(dt) + P1δ1(dt) + p(t)dt) , (3.12)

where θj is the jth Fourier coefficient in the Fourier expansion (2.2). The values

for c, P0, P1, and the function p(·) do not depend on the index j, and take

different values corresponding to the properties of the functions u(·) and f(·). In

particular, we have the following cases:

(A) If u(0) 6= 0, the quantities c, P0, P1, and p are given by

c =

∫ 1

0

{
d

dt

[
f(t)

v(t)

]}2( d

dt
q(t)

)−1
dt+

f2(0)

v2(0)
(q(0))−1, (3.13)

P0 = − 1

v(0)

d

dt

[
f(t)

u(t)

] ∣∣∣∣
t=0

(
d

dt
q(t)

∣∣∣∣
t=0

)−1
q(0), (3.14)

P1 =
1

u(1)

d

dt

[
f(t)

v(t)

] ∣∣∣∣
t=1

(
d

dt
q(t)

∣∣∣∣
t=1

)−1
q(1), (3.15)

p(t) = − 1

v(t)

d

dt

{
d

dt

[
f(t)

v(t)

](
d

dt
q(t)

)−1}
, (3.16)

where the function q is defined in (3.4).

(B) If u(0) = 0 and f(0) = 0, the quantity c is given by

c =

∫ 1

0

{
d

dt

[
f(t)

v(t)

]}2( d

dt
q(t)

)−1
dt, (3.17)

where P0 = 0 and P1 and p are given by (3.15) and (3.16), respectively.
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(C) If u(0) = 0 and f(0) 6= 0, the quantities c, p(t), and P1 are equal to zero,

whereas P0 is given by P0 = 1/f(0).

Corollary 1. Consider the regression model (3.1) with a twice differentiable re-

gression function f and a nondegenerate centered Gaussian error process {εt : t ∈
[0, 1]}, with a triangular covariance kernel of the form (3.3), where the functions

u and v are twice differentiable. The best linear oracle estimator minimizing

the mean integrated squared error in (3.8) in the class of all linear estimators

of the form (3.7) satisfying (3.6) is defined by f∗(t) =
∑∞

j=1 θ̂
∗
jϕj(t), where the

coefficients θ̂∗j are given by

θ̂∗j =

∫ 1

0
Ytξ
∗
j (dt), j ∈ N, (3.18)

and the signed measure ξ∗j (dt) is defined in Theorem 1. Moreover, the correspond-

ing mean integrated squared error is given by

MISE(f̂∗) =
1

1 + c

∞∑
j=1

θ2j =
1

1 + c

∫ 1

0
f2(t)dt,

where c is defined in (3.13).

Note that Theorem 1 is a theoretical result as it requires knowledge of the

unknown regression function f . Nevertheless, we use it extensively in the follow-

ing section to construct good estimators and corresponding optimal designs for

series estimation in model (2.1).

Remark 2.

(1) In model (2.1), with covariance kernel (3.3) and u(0) = 0, the observation

Y0 at t = 0 does not contain any errors. Therefore, the value of f(0) is

known, and we can check whether case (B) or (C) of Theorem 1 holds.

(2) The estimator given in Corollary 1 depends on the orthonormal system of

the series expansion via the parameter θj .

(3) Using integration by parts, the resulting estimator θ̂∗j in Corollary 1 can

be represented as a stochastic integral. For example, in case (A) (where

u(0) 6= 0), the estimator can be represented as

(A) θ̂∗j =
θj

1 + c

{∫ 1

0

d

dt

[
f(t)

v(t)

](
d

dt
q(t)

)−1
d

(
Yt
v(t)

)
+
f(0)

u(0)

Y0
v(0)

}
, (3.19)
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where the constant c is defined in (3.13). Similarly, in case (B) (where

u(0) = 0 and f(0) = 0), the estimator can be represented by

(B) θ̂∗j =
θj

1 + c

{∫ 1

0

d

dt

[
f(t)

v(t)

](
d

dt
q(t)

)−1
d

(
Yt
v(t)

)}
. (3.20)

Finally, in case (C) (where u(0) = 0 and f(0) 6= 0), the estimator directly

reduces to

(C) θ̂∗j = θj . (3.21)

In the latter case, the estimator in (3.21) is not random, but fixed to the

true, but unknown parameter θj .

Example 1. A very popular orthonormal basis of L2([0, 1]) is given by the

trigonometric functions ϕ1(t) = 1,

ϕj(t) =

{√
2 cos(2πkt), j = 2k
√

2 sin(2πkt), j = 2k + 1
, k = 1, 2, 3, . . . . (3.22)

Under the assumptions of Theorem 1, we assume that f and its derivative ḟ can

be represented as a trigonometric series; that is,

f(t) = θ1 +

∞∑
k=1

√
2 cos(2πkt)θ2k +

∞∑
k=1

√
2 sin(2πkt)θ2k+1, (3.23)

ḟ(t) = θ̄1 +

∞∑
k=1

√
2 cos(2πkt)θ̄2k +

∞∑
k=1

√
2 sin(2πkt)θ̄2k+1. (3.24)

Note that (under suitable assumptions) the Fourier coefficients in (3.23) and

(3.24) are related by the equations

θ̄1 = 0, θ̄2k = (2πk)θ2k+1, θ̄2k+1 = −(2πk)θ2k. (3.25)

If the error process {εt : t ∈ [0, 1]} in model (2.1) is given by a Brownian motion,

we have u(t) = t, v(t) = 1 in the definition of the triangular kernel (3.3), and

thus q(t) = t. A straightforward application of Corollary 1 (case (B)) yields the

following for the optimal oracle estimator of the function f :

f∗(t) = θ̂∗1 +

∞∑
k=1

√
2 cos(2πkt)θ̂∗2k +

∞∑
k=1

√
2 sin(2πkt)θ̂∗2k+1, (3.26)
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where the estimated Fourier coefficients are given by

θ̂∗j =
θj

1 + c

∫ 1

0
ḟ(t)dYt, j ∈ N, (3.27)

(note that f(0) = f(1) = 0). We thus also obtain an estimator of the function ḟ

in model (3.2) by taking the derivative of f∗ given in (3.26); that is,

ḟ∗(t) = −
∞∑
k=1

(2πk)
√

2 sin(2πkt)θ̂∗2k +

∞∑
k=1

(2πk)
√

2 cos(2πkt)θ̂∗2k+1. (3.28)

Using the relation (3.25), the estimator in (3.27) can be rewritten as

θ̂∗j =


− θ̄2k+1

2πk

1

1 + c

∫ 1
0 ḟ(t)dYt, j = 2k,

θ̄2k
2πk

1

1 + c

∫ 1
0 ḟ(t)dYt, j = 2k + 1,

and the mean integrated squared error of the estimator ḟ∗ in (3.28) is given by

E
[ ∫ 1

0

(
ḟ∗(t)− ḟ(t)

)2
dt

]
=

∞∑
j=2

θ̄2j
(1 + c)2

E
[(

1 + c−
∫ 1

0
ḟ(t)dYt

)2]

=

∞∑
j=2

θ̄2j
1 + c

=

∑∞
j=2 θ̄

2
j

1 +
∑∞

j=2 θ̄
2
j

, (3.29)

where we have used the representation c =
∫ 1
0

(
ḟ(t)

)2
dt =

∑∞
j=1 θ̄

2
j =

∑∞
j=2 θ̄

2
j

in the last equality. It might be of interest to compare this estimator with the

linear oracle estimator
˙̃
f(t) =

∑
j∈N

θ̃jϕj(t), (3.30)

proposed in Tsybakov (2009, p.67), where θ̃j = θ̄2j/(1 + θ̄2j )
∫ 1
0 ϕj(t)dYt is used

as the estimator of the Fourier coefficient θ̄j (j = 1, 2, . . .). This estimator is a

shrinkage version of the unbiased estimator in (3.10), and the mean integrated

squared error of
˙̃
f is given by

E
[ ∫ 1

0

( ˙̃
f(t)− ḟ(t)

)2
dt

]
=

∞∑
j=1

θ̄2j

1 + θ̄2j
. (3.31)

Comparing (3.29) and (3.31), we observe that the oracle estimator ḟ∗, constructed

by applying Corollary 1, has a smaller mean integrated squared error than that
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of the estimator
˙̃
f defined in (3.30).

4. Efficient Series Estimation from Correlated Data

In this section, we apply the results from the continuous-time model to con-

struct optimal designs for a series estimation of the function f in model (2.1).

In this transition from the continuous to the discrete model, we are faced with

several challenges. First, the signed measure defining the optimal oracle estima-

tor θ̂∗j depends on the unknown function f through its Fourier coefficients and

the constant c. Furthermore, the function f appears in the stochastic integrals

in (3.19) and (3.20). Second, we need to address the problem that, even with

preliminary knowledge of the function f , the stochastic integrals cannot be com-

puted because the continuous-time process {Yt : t ∈ [0, 1]} is not observable. In

order to overcome these difficulties and construct an implementable estimator,

that does not require preliminary knowledge of f , we proceed as follows. Roughly

speaking, these steps consist of a two-stage estimation procedure, a truncation,

and an appropriate approximation of the stochastic integrals by sums, which can

be calculated from the available data. In the latter step of this procedure we also

determine the optimal design points.

Throughout this section, we restrict ourselves to cases (A) and (B) of The-

orem 1. For case (C), we simply propose to replace the parameter value (3.21)

by the best linear unbiased estimator derived in Dette, Konstantinou and Zhigl-

javsky (2017).

4.1. Truncation in the continuous-time model

In model (2.1), with n observations, only a finite number, say J , of Fourier

coefficients in the series expansion (2.2) can be estimated. For this reason, we

consider, for fixed J ∈ N, the best L2-approximation

f (J)(t) =

J∑
j=1

θjϕj(t) = Φ(J),T (t)θ(J) (4.1)

of the function f by functions from the span{ϕ1, . . . , ϕJ} space, where the vectors

θ(J) and Φ(J) are defined by θ(J) = (θ1, . . . , θJ)T and Φ(J)(t) = (ϕ1(t), . . . , ϕJ(t))T ,

respectively. We now replace the function f with the function f (J) in the estima-

tors θ̂∗1, . . . , θ̂
∗
J , defined in (3.19) and (3.20) for cases (A) and (B), respectively.

In case (A), this gives the vector
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θ̂(J),∗ =
θ(J)(θ(J))T

1 + c(J)

{∫ 1

0

d

dt

[
Φ(J)(t)

v(t)

](
d

dt
q(t)

)−1
d

(
Yt
v(t)

)
+

Φ(J)(0)

u(0)

Y0
v(0)

}
,

(4.2)

where

c(J) = (θ(J))TC(J)θ(J), (4.3)

and the J × J matrix C(J) is defined by

C(J) =

∫ 1

0

d

dt

[
Φ(J)(t)

v(t)

](
d

dt

[
Φ(J)(t)

v(t)

])T( d

dt
q(t)

)−1
dt+

Φ(J)(0)(Φ(J)(0))T

u(0)v(0)
.

(4.4)

Similarly, in case (B), we obtain

θ̂(J),∗ =
θ(J)(θ(J))T

1 +m(J)

{∫ 1

0

d

dt

[
Φ(J)(t)

v(t)

](
d

dt
q(t)

)−1
d

(
Yt
v(t)

)}
, (4.5)

where

m(J) = (θ(J))TM (J)θ(J), (4.6)

and the J × J matrix M (J) is given by

M (J) =

∫ 1

0

d

dt

[
Φ(J)(t)

v(t)

](
d

dt

Φ(J)(t)

v(t)

)T( d

dt
q(t)

)−1
dt. (4.7)

The resulting estimators (4.2) and (4.5) still depend on the first J unknown

Fourier coefficients θ1, . . . , θJ , and also depend on the full trajectory of the process

{Yt : t ∈ [0, 1]}. This dependence is removed in the following sections.

4.2. Discrete approximation of stochastic integrals

In concrete applications, the integrals in (4.2) and (4.5) cannot be evaluated

and have to be approximated from the given data. For this purpose, we assume

that n observations Yt1 , . . . , Ytn from model (2.1) at n distinct time points 0 =

t1 < t2 < · · · < tn−1 < tn = 1 are available. We consider the estimators

θ̂(J),n =
θ(J)(θ(J))T

1 + c(J)

{
n∑

i=2

µi

(
Yti
v(ti)

−
Yti−1

v(ti−1)

)
+

Φ(J)(0)

u(0)

Y0
v(0)

}
(4.8)

θ̂(J),n =
1

1 +m(J)
θ(J)(θ(J))T

{
n∑

i=2

µi

(
Yti
v(ti)

−
Yti−1

v(ti−1)

)}
, (4.9)

as approximations of the quantities in (4.2) and (4.5), respectively. Note that

θ̂(J),∗ depends on the full trajectory {Yt : t ∈ [0, 1]}, while θ̂(J),n is an approxi-
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mation based on the sample {Yti : i = 1, . . . , n}. In (4.8) and (4.9), µ2, . . . , µn
denote J-dimensional weights that depend on the time points 0 = t1 < t2 <

· · · < tn−1 < tn = 1, and are chosen in an optimal way. In particular, we propose

determining the weights µ2, . . . , µn, such that the expected L2-distance

E
[
‖θ̂(J),∗ − θ̂(J),n‖2

]
(4.10)

between θ̂(J),∗ and its discrete analogue θ̂(J),n is minimized, where ‖ · ‖ denotes

the Euclidean norm in RJ .

The following result provides an alternative expression of the expectation of

this distance. The proof can be found in the Supplementary Material.

Proposition 1. Assume that the conditions of Theorem 1 are satisfied. The

Euclidean distance between the estimators θ̂(J),∗ and θ̂(J),n can be represented as

E
[
‖θ̂(J),∗ − θ̂(J),n‖2

]
= k(J)

{
V (µ2, . . . , µn) +B(µ2, . . . , µn)

}
, (4.11)

where the quantities V and B are defined by

V (µ2, . . . , µn) = tr

{
n∑

i=2

∫ ti

ti−1

(
d

dt

[
Φ(J)(t)

v(t)

]
(4.12)

×
(
d

dt
q(t)

)−1
− µi

)(
d

dt

[
Φ(J)(t)

v(t)

](
d

dt
q(t)

)−1
− µi

)T( d

dt
q(t)

)
dt

}
,

B(µ2, . . . , µn) = tr

{
n∑

i=2

∫ ti

ti−1

(
d

dt

[
Φ(J)(t)

v(t)

](
d

dt
q(t)

)−1
− µi

)
d

dt

[
f(t)

v(t)

]
dt

×
( n∑

i=2

∫ ti

ti−1

(
d

dt

[
Φ(J)(t)

v(t)

](
d

dt
q(t)

)−1
− µi

)(
d

dt

[
f(t)

v(t)

])
dt

)T
}
,

and k(J) is given by ‖θ(J)‖4/(1 + c(J))2 in case (A) and ‖θ(J)‖4/(1 +m(J))2 in

case (B) .

Note that the expected L2-distance in (4.11) only differs in the multiplicative

factor k(J) for cases (A) and (B), and that this factor does not depend on the

vector-weights µ2, . . . , µn. Therefore, optimal weights minimizing the expected

L2-distance can be determined without distinguishing between the two cases (A)

and (B).

The function B in the criterion (4.11) still depends on the unknown regression

function f , which we replace again by its truncation f (J) defined in (4.1). The

resulting criterion is given by
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Φ(µ2, . . . , µn) = V (µ2, . . . , µn) +B(J)(µ2, . . . , µn), (4.13)

where

B(J)(µ2, . . . , µn) = tr

{
n∑

i=2

∫ ti

ti−1

(
d

dt

Φ(J)(t)

v(t)

(
d

dt
q(t)

)−1
− µi

)
d

dt

f (J)(t)

v(t)
dt

×

(
n∑

i=2

∫ ti

ti−1

(
d

dt

[
Φ(J)(t)

v(t)

](
d

dt
q(t)

)−1
− µi

)
d

dt

f (J)(t)

v(t)
dt

)T}
. (4.14)

If we minimize the criterion Φ in (4.13) without any further constraints, the

resulting optimal weights depend on the unknown parameters θ(J). We therefore

impose a “controllable bias” condition, which ensures that the expected value of

the approximation of the stochastic integral is equal (approximately equal) to the

expected value of the stochastic integral.

We thus determine the optimal weights, such that the term B(J)(µ2, . . . , µn)

in (4.13) vanishes for all potential Fourier coefficients θ1, . . . , θJ in the function

f (J). Therefore, the optimal weights are obtained by minimizing Φ in (4.13)

under the constraint∫ 1

0

d

dt

[
Φ(J)(t)

v(t)

](
d

dt
q(t)

)−1 d
dt

[
Φ(J)(t)

v(t)

]T
dt =

n∑
i=2

µi

∫ ti

ti−1

d

dt

[
Φ(J)(t)

v(t)

]
dt.

(4.15)

In this situation, the criterion (4.13) reduces to the minimization of

n∑
i=2

∫ ti

ti−1

tr

{(
d

dt

Φ(J)(t)

v(t)

(
d

dt
q(t)

)−1
−µi

)(
d

dt

Φ(J)(t)

v(t)

(
d

dt
q(t)

)−1
−µi

)T d

dt
q(t)dt

}
,

(4.16)

with respect to the weights µ2, . . . , µn (depending on the time points 0 = t1 <

t2, . . . , tn−1 < tn = 1). In order to simplify this optimization, we introduce the

following notation:

βi =
Φ(J)(ti)/v(ti)− Φ(J)(ti−1)/v(ti−1)√

q(ti)− q(ti−1)
, γi = µi

√
q(ti)− q(ti−1). (4.17)

However, this does not reflect the dependence on the time points. Using the

notation in (4.17), the approximation of the expected L2-distance in (4.16) can

be rewritten in terms of the quantities γ2, . . . , γn as

Ψ(γ2, . . . , γn) = −tr(M (J)) +

n∑
i=2

γi
Tγi, (4.18)
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and the constraint (4.15) is given by

M (J) =

n∑
i=2

γiβi
T , (4.19)

where M (J) is the matrix defined in (4.7) (for both cases (A) and (B)). Note that

the function Ψ and the constraint in (4.19) do not involve the function f , and

only include assumptions related to the first J basis functions ϕ1, . . . , ϕJ used in

the approximation f (J).

The resulting optimization problem (4.18) with constraint (4.19) has the same

structure as an optimization problem considered in Dette, Konstantinou and

Zhigljavsky (2017). From the results in the latter work, we obtain the solution

γ∗i = M (J)B−1βi, i = 2, . . . , n, (4.20)

where the matrix B is given by

B =

n∑
i=2

βiβ
T
i , (4.21)

and M (J) and βi are defined in (4.7) and in (4.17), respectively. If the matrix B

is singular, we replace the inverse B−1 in (4.20) with a generalized inverse B−.

Using the relation between γi and µi in (4.17), we obtain the optimal weights

µ∗i = (1/
√
q(ti)− q(ti−1) )M (J)B−1βi for i = 2, . . . n. Note that these weights

still depend on the design points t2, . . . , tn−1, which are determined next.

4.3. Optimal designs for series estimation

Using the optimal γ∗2 , . . . , γ
∗
n given in (4.20) in the expression for the function

Ψ defined in (4.18), we obtain an appropriate optimal design criterion for the

choice of the time points 0 = t1 < t2 < · · · < tn−1 < tn = 1. More precisely, for

the optimal weights, the function Ψ depends only on the design points and can

be represented as the function

Ψ̃(t2, . . . , tn−1) = tr{M (J)B−1M (J)}, (4.22)

where the matrices B and M (J) are defined in (4.21) and (4.7), respectively, and

depend on 0 = t1 < t2, . . . , tn−1 < tn = 1. The optimal design is now determined

by minimizing the function Ψ̃. This differs from the criterion considered in Dette,

Konstantinou and Zhigljavsky (2017) for an unbiased linear estimation in the
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linear regression model

Yti = (Φ(J)(ti))
T θ + εti , i = 1, . . . , n. (4.23)

The optimal time points depend only on the first J basis functions, which are

used for the estimator of the regression function f , and have to be determined

numerically in all cases of practical interest. We present several examples in

Section 5.

4.4. The final estimate

With the optimal weights µ∗2, . . . , µ
∗
n determined in Section 4.2 and the op-

timal time points t∗2, . . . , t
∗
n−1 determined in Section 4.3, the estimators in (4.8)

and (4.9) corresponding to the cases (A) and (B) are given by

θ̂(J),n =
θ(J)(θ(J))T

1 + c(J)

{
M (J)B−1

n∑
i=2

β∗i

(
Yt∗i
v(t∗i )

−
Yt∗i−1

v(t∗i−1)

)
+

Φ(J)(0)

u(0)

Y0
v(0)

}
,

and

θ̂(J),n =
1

1 +m(J)
θ(J)(θ(J))TM (J)B−1

n∑
i=2

β∗i

(
Yt∗i
v(t∗i )

−
Yt∗i−1

v(t∗i−1)

)
, (4.24)

respectively, where β∗i = (Φ(J)(t∗i )/v(t∗i )− Φ(J)(t∗i−1)/v(t∗i−1))/
√
q(t∗i )− q(t∗i−1)

(i = 2, . . . , n).

For their application, we still require knowledge of the vector of Fourier coeffi-

cients θ(J) and the constants c(J) and m(J) defined in (4.3) and (4.6), respectively

(note that these quantities also depend on θ(J)). For this purpose, we propose us-

ing the linear unbiased estimate derived by Dette, Konstantinou and Zhigljavsky

(2017) for the linear model (4.23). This estimate is defined as

θ̌(J),n = (C(J))−1

{
M (J)B−1

n∑
i=2

β∗i

(
Yt∗i
v(t∗i )

−
Yt∗i−1

v(t∗i−1)

)
+

Φ(J)(0)

u(0)

Y0
v(0)

}
, (4.25)

and the quantity c(J) in (4.3) is estimated using č(J),n = (θ̌(J),n)TC(J)θ̌(J),n. A

straightforward calculation shows that the resulting estimator for case (A) is

given by

θ̂(J),n =
θ̌(J),n(θ̌(J),n)T

1 + č(J),n

{
M (J)B−1

n∑
i=2

β∗i

(
Yt∗i
v(t∗i )

−
Yt∗i−1

v(t∗i−1)

)
+

Φ(J)(0)

u(0)

Y0
v(0)

}
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=
θ̌(J),n(θ̌(J),n)T

1 + č(J),n
C(J)θ̌(J),n =

č(J),n

1 + č(J),n
θ̌(J),n, (4.26)

which is a shrinkage version of the estimator θ̌(J),n in (4.25).

For case (B), similar arguments show that the estimator in (4.24) can also

be rewritten in terms of the linear unbiased estimate θ̌(J),n; that is,

θ̂(J),n =
θ̌(J)(θ̌(J))T

1 + m̌(J)
M (J)B−1

n∑
i=2

β∗i

(
Yt∗i
v(t∗i )

−
Yt∗i−1

v(t∗i−1)

)
=

m̌(J),n

1 + m̌(J),n
θ̌(J),n,

where m̌(J),n = (θ̌(J),n)TM (J)θ̌(J),n. Here, the structure of the estimator θ̌(J),n

depends on the structure of the basis functions contained in the vector Φ(J) (see

Section 5 in Dette, Konstantinou and Zhigljavsky (2017) for more details).

5. Numerical Results

In this section, we illustrate the properties of the estimator and the corre-

sponding optimal design derived in Section 4 by means of a small simulation

study. We consider a Gaussian process, assuming both an exponential kernel and

a Brownian motion as the error process in model (2.1). In both cases, we present

the numerically calculated optimal time points with respect to the criterion de-

fined in (4.22) and the corresponding simulated mean integrated squared errors

for the proposed estimator

f̂ (J),n(t) =

J∑
j=1

θ̂(J),nϕj(t) (5.1)

and the estimator

f̌ (J),n(t) =

J∑
j=1

θ̌(J),nϕj(t), (5.2)

which is based on the best linear unbiased estimates in the truncated Fourier

expansion.

Throughout this section, we use the trigonometric series defined in (3.22) as

an orthonormal basis of L2([0, 1]). We further assume that the unknown function

f is symmetric on the interval [0, 1], such that it is sufficient to use only the cosine

functions in the series expansions of f . Note that this assumption is made for

the sake of simplicity; similar results can be obtained for nonsymmetric functions

using the full trigonometric basis from Example 1.

Consequently, the orthonormal system is given by ϕ1(t) = 1, ϕj(t) =
√

2 cos(
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Table 1. Optimal time points for the series estimation minimizing the criterion (4.22).
The covariance kernel is given by exp(−L|s− t|).

L n = 4 n = 7

1 0.00, 0.25, 0.52, 1.00 0.00, 0.12, 0.27, 0.45, 0.57, 0.77, 1.00

5 0.00, 0.25, 0.51, 1.00 0.00, 0.12, 0.27, 0.45, 0.57, 0.76, 1.00

2π(j − 1)t) (j = 2, 3, . . .). In Section 5.1 we consider the exponential kernel,

whereas in Section 5.2, we concentrate on the Brownian motion.

5.1. The exponential kernel

We assume that the error process {εt : t ∈ [0, 1]} is a centered Gaussian

process with an exponential kernel of the form K(s, t) = exp(−L|s − t|), where

L ∈ R+ is a given constant. This can be represented in the triangular form

given in (3.3), with u(t) = exp(Lt) and v(t) = exp(−Lt), and the function q is

obtained as q(t) = u(t)/v(t) = exp(2Lt). Therefore, we have u(0) 6= 0 (which

corresponds to case (A)). The proposed estimator θ̂(J),n is given by (4.26), and

the corresponding estimators of the function f are defined in (5.1) and (5.2).

We first consider the exponential covariance kernel with L = 1. We assume

that three basis functions, namely ϕ1(t) = 1, ϕ2(t) = cos(2πt), and ϕ3(t) =

cos(4πt), are used in the series estimator, where n = 4 and n = 7 observations at

different time points 0 = t1 < t2 < · · · < tn−1 < tn = 1 can be taken. Note that

one needs at least n = 4 observations at different time points to guarantee that

the matrix B in the preliminary estimator θ̌(J),n is nonsingular. The optimal

points are determined by minimizing the criterion (4.22) using particle swarm

optimization (see Clerc (2006) for details); the results are presented in the first

row of Table 1.

We now evaluate the performance of the different estimators and the optimal

time points by means of a simulation study. For the sake of comparison, we also

consider non-optimized time points for the simulation, given by

0.00, 0.45, 0.90, 1.00 (5.3)

0.00, 0.18, 0.36, 0.54, 0.72, 0.90, 1.00 (5.4)

for the case n = 4 and n = 7, respectively.

In the simulation study, we generate data according to model (2.1) using two

regression functions

f(t) = 4t(t− 1), (5.5)

f(t) =
√
t(t− 1) (5.6)
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Table 2. Simulated mean integrated squared errors of the estimators (5.1) and (5.2). The
covariance kernel is given by exp(−|s− t|).

design (n = 4) design (n = 7)

f estimator optimal (5.3) optimal (5.4)

(5.5)
f̂ (J),n 1.72 2.06 1.58 1.59

f̌ (J),n 1.89 2.22 1.76 1.77

(5.6)
f̂ (J),n 1.67 2.04 1.54 1.56

f̌ (J),n 1.89 2.21 1.76 1.79

(note that both proposed functions are symmetric, with f(0) = f(1) = 0). For

each model, we determine the mean integrated squared error of the estimators

f̂ (J),n and f̌ (J),n, defined in (5.1) and (5.2), respectively. More precisely, if S

denotes the number of simulation runs and f̄` is the estimator based on the

`th run (either f̂ (J),n and f̌ (J),n), the simulated mean integrated squared error

MISEn = (1/S)
∑S

`=1

∫ 1
0

(
f̄`(t)−f(t)

)2
dt, where f , the “true” regression function

under consideration, is given by (5.5) or (5.6). All results are based on S = 1,000

simulation runs.

For the case of the sample size n = 4, the resulting mean integrated squared

error of the different estimators (and corresponding optimal time points) is shown

in the left part of Table 2. For instance, the mean integrated squared error of

the estimator f̂ (J),n (based on the optimal design) is 1.72 if the true function is

given by (5.5), but is 2.06 if the observations are taken according to the non-

optimized design (5.3). Thus, the optimal design yields a 17% reduction in the

mean integrated squared error. The optimal design also yields a reduction of

15% of the mean squared error of the preliminary estimator f̌ (J),n (although it

is not constructed for this purpose). The results show that the new estimator

f̂ (J),n clearly outperforms the estimator f̌ (J),n in all cases under consideration

(reduction of the mean squared error between 9% and 12%).

For the case of the sample size n = 7, the corresponding results are presented

in the right part of Table 2, and we observe similar behavior. The new estimator

f̂ (J),n clearly outperforms f̌ (J),n, regardless of the design and model under consid-

eration. On the other hand, the improvement from the choice of the design is less

visible than when the sample size is n = 4. This means that the influence of the

design on the performance of the estimators decreases with an increasing sample

size. The reason for this observation is that in the models under consideration,

the discrete model (2.1) already provides a good approximation of the continuous

model (3.1) for the sample size n = 7. Because the full trajectory is available in

this model, the design is negligible for sample sizes larger than 10. As a result,
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Table 3. Simulated mean integrated squared errors of the estimators (5.1) and (5.2). The
covariance kernel is given by exp(−5|s− t|).

design (n = 4) design (n = 7)

f estimator optimal (5.3) optimal (5.4)

(5.5)
f̂ (J),n 0.65 2.13 0.47 0.51

f̌ (J),n 0.77 2.30 0.58 0.62

(5.6)
f̂ (J),n 0.64 2.09 0.43 0.43

f̌ (J),n 0.81 2.30 0.59 0.59

a larger sample size does not decrease the mean integrated squared error sub-

stantially. A similar effect is observed by Dette, Konstantinou and Zhigljavsky

(2017) for a linear regression model with correlated observations.

Next, we consider a situation in which the correlations between the obser-

vations are smaller, using the parameter L = 5 for the exponential kernel. The

time points minimizing the criterion Ψ̃ in (4.22) are depicted in the second row

of Table 1 for n = 4 and n = 7. We observe that the optimal time points are

similar to those for the constant L = 1. Further numerical results, not displayed

for the sake of brevity, support these findings indicating robustness of the opti-

mal design with respect to the choice of the parameter L. The simulated mean

integrated squared error of the estimators f̂ (J),n and f̌ (J),n, defined in (5.1) and

(5.2), are displayed in Table 3 for sample sizes n = 4 and n = 7. When the

sample size is n = 4, the optimal design yields a substantial reduction in the

mean squared errors of both estimators (between 65% and 70%). Compared with

the case L = 1 (see Table 2), the reduction is larger. When the sample size is

n = 7, the mean integrated squared errors of the estimators based on the optimal

time points are slightly smaller than those of the non-optimized time points. We

observe again that the influence of the position of the time points, and thus of

the design, decreases as the sample size n increases (see Table 3). A comparison

of the estimators (5.1) and (5.2) shows again that the new estimator f̂ (J),n out-

performs f̌ (J),n in all cases under consideration (reduction of the mean squared

error between 16% and 27%).

5.2. Brownian motion

We now consider the case in which the error process in (2.1) is given by a

Brownian motion; that is K(s, t) = s ∧ t , which can be represented by K(s, t) =

s, s ≤ t. Therefore, the functions u and v in (3.3) are given by u(t) = t and

v(t) = 1, respectively, and the function q is obtained as q(t) = u(t)/v(t) = t. This

situation corresponds to case (B), where u(0) = 0 and f(0) = 0. The estimator
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θ̂(J),n is given by

θ̂(J),n =
1

1 + m̌(J)
θ̌(J)(θ̌(J))TM (J)B−

n∑
i=2

(Φ(J)(ti)− Φ(J)(ti−1))
T

√
ti − ti−1

(Yti − Yti−1
),

(5.7)

where the matrices M (J) and B and the constant m(J) are of the form

M (J) =

∫ 1

0
Φ̇(J)(t)(Φ̇(J)(t))Tdt,

B =

n∑
i=2

(Φ(J)(ti)− Φ(J)(ti−1))(Φ
(J)(ti)− Φ(J)(ti−1))

T

ti − ti−1
,

m̌(J) = (θ̌(J))TM (J) θ̌(J).

Note that both the first row and the first column of the matrices M (J) and B are

zero (because ϕ1(t) = 1), such that both matrices are singular. Consequently, as

proposed in Section 4, we use the generalized inverse

B− =

(
0 0

0 B̃−1

)

of B, where the matrix B̃ is given by

B̃ =
(
0(J−1) I(J−1)×(J−1)

)
B

(
0T
(J−1)

I(J−1)×(J−1)

)
.

Here, the vector 0(J−1) is of dimension (J−1) with zero entries, where the matrix

I(J−1)×(J−1) is the (J − 1), dimensional identity matrix. The estimator θ̌(J),n is

obtained from Section 5.2 in Dette, Konstantinou and Zhigljavsky (2017),

θ̌(J),n = C(J)
n∑

i=2

(Φ(J)(ti)− Φ(J)(ti−1))
T

√
ti − ti−1

(Yti − Yti−1
),

where the matrix C(J) is of the form

C(J) =

 0 −(Φ(J)(0))T

(
0

B̃−1

)
0(J−1) B̃−1

 .

We now analyze the behavior of the resulting estimators of the function f

if the first three basis functions are used for the series estimator and n = 4 or
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Table 4. Simulated mean integrated squared errors of the estimators (5.1) and (5.2). The
error process is a Brownian motion.

design (n = 4) design (n = 7)

f estimator optimal (5.3) optimal (5.4)

(5.5)
f̂ (J),n 0.16 0.41 0.13 0.14

f̌ (J),n 0.15 0.43 0.12 0.12

(5.6)
f̂ (J),n 0.13 0.45 0.11 0.11

f̌ (J),n 0.15 0.48 0.12 0.13

n = 7 observations at different time points 0 = t1 < t2 < · · · < tn−1 < tn = 1

are available. The optimal time points minimizing the criterion (4.22) derived in

Section 4 are given by

0.00, 0.25, 0.47, 1.00 (5.8)

0.00, 0.22, 0.28, 0.50, 0.72, 0.78, 1.00, (5.9)

for sample sizes n = 4 and n = 7, respectively. Note that the optimal time

points (5.8) and (5.9) differ from those of the exponential kernel displayed in

Table 1. This indicates that the position of the optimal time points depends on

the structure of the covariance kernel.

The resulting mean integrated squared errors of the estimators f̂ (J),n and

f̌ (J),n are displayed in Table 4, where we again consider the comparative set of

time points depicted in (5.3) and (5.4). We obtain similar results to those in

Section 5.1. Specifically, for n = 4, we observe that the optimal design yields

a substantial reduction in the mean squared errors of both estimators (see the

left part of Table 4). When the sample size is n = 7, the difference between the

optimal time points and the design (5.4) is less visible.

A comparison of the two estimators shows different behavior to that in Sec-

tion 5.1; that is, unlike the case of an exponential kernel, when the error process is

a Brownian motion, both estimators perform well and have similar (small) mean

integrated squared errors (see Table 4).

Further simulation results are presented in the online Supplementary Ma-

terial, where we consider the effect of the truncation parameter on the optimal

design and on the two estimators. The results indicate some sensitivity of the

optimal design with respect to the number of basis functions in the series esti-

mator. Thus, an interesting problem for future research would be to construct

optimal designs that address the uncertainty in the truncation parameter.
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Supplementary Material

The Supplementary Material contains further numerical results for different

choices of the truncation parameter and proofs of Theorem 1 and Proposition 1.
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