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A BAYESIAN SEMI-PARAMETRIC MIXTURE MODEL

FOR BIVARIATE EXTREME VALUE ANALYSIS WITH

APPLICATION TO PRECIPITATION FORECASTING
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Abstract: We propose a novel mixture generalized Pareto model for calibrating

extreme precipitation forecasts. This model is able to describe the marginal dis-

tribution of observed precipitation and capture the dependence between climate

forecasts and observed precipitation under suitable conditions. In addition, the full

range distribution of precipitation can be estimated, conditional on grid forecast

ensembles. Unlike the classical generalized Pareto distribution that can only model

points over a hard threshold, our model takes the threshold as a latent parameter.

We study the tail behavior of both univariate and bivariate models. The utility of

our model is evaluated using a Monte Carlo simulation study. Lastly, we apply the

model to US precipitation data, showing that it outperforms competing methods.

Key words and phrases: Bivariate extreme value model, generalized Pareto distri-

bution, hierarchical model, tail dependence.

1. Introduction

Heavy precipitation events are frequent and widespread weather hazards.

Precise forecasts of extreme precipitation are important to mitigating the risk

of these dangerous events. Numerical weather predictions (NWP) produced by

weather centers across the world enable us to model and predict precipitation

extremes. However, NWP can be biased; thus, they require statistical calibration

to account for the bias and to quantify the forecast uncertainty (Wilks (2011)).

Extreme value theory (EVT) provides elegant tools to model rare events.

According to EVT, the conditional distribution of the independent and identi-

cally distributed (i.i.d.) observations that exceed a sufficiently high threshold can

be well approximated by the generalized Pareto distribution (GPD) under some

mild regularity conditions (Pickands III and others (1975); de Haan and Ferreira

(2006)). However, the selection of an optimal threshold is a difficult task, in prac-

tice (see Caeiro and Gomes (2015) and the references therein for an overview).
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In addition, the GPD is only an approximate model for the tail, while the rest

of the data (lower than the threshold) are typically discarded. To fully use the

data, mixture models have been proposed to fit the tail and the bulk separately.

The tail is usually assumed to follow the GPD, whereas the bulk component can

be modeled using parametric (Behrens, Lopes and Gamerman (2004); Cabras

and Castellanos (2011); MacDonald (2011); Hu (2013); Zheng, Ismail and Meng

(2014)), semiparametric, (Cabras and Castellanos (2011); do Nascimento, Gamer-

man and Lopes (2012); Lee, Li and Wong (2012)) or nonparametric (Tancredi,

Anderson and O’Hagan (2006); MacDonald (2011)) methods. The mixture dis-

tribution model with Pareto tails is shown to be useful in practice (Bentzien and

Friederichs (2012)). However, these methods require specifying a hard threshold

that separates the bulk and the tail. In addition, the probability density func-

tion of the mixture model is not necessarily continuous (smooth) at the threshold

(though the cumulative distribution is continuous), which may lead to biased

estimators (Scarrott and MacDonald (2012)). Extensions of the extreme value

mixture models that exhibit a smoother transition from the bulk to the tail in-

clude the dynamically weighted mixture model (Frigessi, Haug and Rue (2002);

Vrac and Naveau (2007)) and the interval transition mixture model (Holden and

Haug (2009)). As an alternative to the mixture models, Naveau et al. (2016) pro-

pose an extended GPD (EGPD) model that can be applied to heavy, moderate,

and low precipitation amounts, while avoiding the potential difficulties associated

with threshold selection. Rather than considering all points over the threshold,

the data are converted to block maxima and fit using a generalized extreme value

(GEV) distribution (Scheuerer (2014)). In addition, Bjørnar Bremnes (2004) pro-

poses a quantile regression approach, showing that it is useful when the training

sample size is relatively large.

In this study, we propose a finite mixture generalized Pareto (MIXGP) model.

The proposed MIXGP is an extension of the classical GPD. Here, we treat the

threshold as a random variable and use a semiparametric Bayesian prior for its

mixing distribution. By marginalizing over the threshold, we have a full range

model that applies to both the bulk and the tail. The idea of using a random

threshold that varies among observations was first proposed in Pigeon and Denuit

(2011). However, their model is built upon the composite lognormal-Pareto model

(Cooray and Ananda (2005); Scollnik (2007)), a type of extreme value mixture

model, on which discussions of its tail behavior are limited.

Rather than specifying a single parametric model, as in Pigeon and Denuit

(2011), the proposed MIXGP allows for more flexibility. We discuss the tail be-

havior of our proposed model in detail, providing an empirically based guideline
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for choosing suitable mixing distribution functions. With a normal mixing distri-

bution, our proposed model has nice tail properties and its estimating procedure

can be easily implemented.

Motivated by a joint analysis of extreme precipitation data and forecasts,

we extend the proposed MIXGP to a bivariate model, which is necessary when

modeling the dependence between extremes from different sources. We use a

bivariate semi-parametric mixing distribution, and show that our proposed bi-

variate MIXGP is able to capture the tail dependence under mild conditions.

The conditional distribution of precipitation given a forecast is a byproduct

of our bivariate model, and serves as a calibrated forecast of extreme precipita-

tion. In the context of quantile regression, Taddy and Kottas (2010) develop a

Dirichlet process mixture (DPM) model for the bivariate distribution of the re-

sponse and the covariate in order to indirectly estimate the conditional quantiles,

given the covariate. Bivariate DPM models are easy to fit, span the entire class

on continuous joint density functions, and provide a consistent nonparametric

estimate under general regularity conditions (Ghosal and Van der Vaart (2017)).

Therefore, this indirect approach provides a convenient and flexible way to esti-

mate a conditional distribution. In our application to extreme value modeling,

the indirect approach allows for an arbitrarily flexible model for the effect of the

covariate on the response, Furthermore, including different effects on the bulk

and the tail of the distribution because the bivariate model allows for asymptotic

dependence, the effect of the covariate on the conditional distribution need not

dissipate for extreme quantiles.

The rest of the paper is organized as follows. Section 2 describes the MIXGP

model and its tail behavior. Specifically, the tail index of the univariate model

and the tail dependence of the bivariate model are discussed in depth. The

method is evaluated using a simulation study in Section 3. We apply both the

univariate and the bivariate MIXGP models to analyze observed and forecast

daily precipitation data in Section 4. The proposed MIXGP is shown to give well-

calibrated forecasts, with greater precision than competing methods. Finally, we

conclude the work with a discussion section.

2. The MIXGP Model

In this section, we introduce our proposed MIXGP model and study its tail

properties. EVT dictates that the distribution of Y conditional on Y > y + µ

converges to the generalized Pareto distribution (GPD) as µ→ +∞, under some

mild regularity conditions (Pickands III and others (1975); de Haan and Ferreira
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(2006)), justifying its use as a model for threshold exceedances. The cumulative

distribution function (CDF) of the GPD is

H(y) =

(
1 + ξ

y − µ
σ

)−1/ξ
+

, y > µ, (2.1)

where µ ∈ R is the location parameter, σ > 0 is the scale parameter, ξ ∈ R is

the shape parameter, and y+ = max(y, 0). We denote the density function of

the GPD(µ, σ, ξ) as h(·|µ, σ, ξ). When ξ ≥ 0, the support is (µ,∞); otherwise,

the support is (µ, µ−σ/ξ). Therefore, the shape parameter ξ determines the tail

behavior. A challenge when applying the GPD is to choose an optimal threshold

µ. Instead of specifying a deterministic µ, we extend the model by treating µ as

a latent variable.

2.1. Univariate model

In this section, we present a univariate model for the marginal distribution

of Y . To capture the tail behavior more flexibly, we specify a MIXGP model with

latent location variable

f(y|Θ,p) =

K∑
k=1

pk

∫
h(y|µ, σk, ξk)dGk(µ), (2.2)

where Θ = {σ1, . . . , σK , ξ1, . . . , ξK} denotes the collection of scale and shape

parameters, and p = {p1, . . . , pK} denotes the mixture probabilities. The model

can be written hierarchically as

Yi|µ(i),Θ, Zi = k ∼ GPD(µ(i), σk, ξk)

µ(i)|Zi = k ∼ Gk(·)
Zi|p ∼ Cat(p),

where Cat(p) denotes the categorical distribution, with Prob(Zi = k) = pk, for

k = 1, . . . ,K, Θ = {σ1, . . . , σK , ξ1, . . . , ξK} denotes the collection of scale and

shape parameters of the GPD, p = {p1, . . . , pK} denotes the mixture probabili-

ties, Zi ∈ {1, . . . ,K} is the cluster label, and the mixing distribution functions

{Gk(µ) : k = 1, . . . ,K} are CDFs of the latent location variables. The choice of

Gk(·)’s is discussed later. Because K → ∞, the resulting model is sufficiently

flexible to approximate any true density function (Ghosal and Van der Vaart

(2017)).
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Extreme value analysis focuses on studying the upper-tail behavior of a ran-

dom variable. A commonly used measure to characterize the tail is the right-tail

index.

Definition 1 (Right-tail index). For a CDF F (y) with density f(y) defined on

R, the right-tail index is given by

α+(F ) = lim inf
y→+∞

− log{1− F (y)}
log y

.

If α+(F ) =∞, the corresponding distribution function is thin-tailed (e.g., expo-

nential or normal distribution). The tail index of the Student t-distribution is

strictly positive and finite. As a result, it has a heavier tail than those of the

exponential and the normal distributions. If α+(F ) = 0, the distribution has a

heavy tail (e.g., log-Pareto distribution) (Li, Lin and Dunson (2019)).

Below, we calculate the tail index of our proposed MIXGP model. The proof

of Theorem 1 is given in the online Supplementary Material.

Theorem 1 (Tail index). Let ak be the tail index of the mixture density
∫
h(y|µ,

σk, ξk)dGk(µ). Then, we have

ak =

{
α+(Gk), ξk ≤ 0,

min{α+(Gk), ξ
−1
k }, ξk > 0.

and the tail index of the model (2.2) is α+(F ) = min(a1, . . . , aK).

When ξk < 0, the GPD is short-tailed and ak is completely determined by

Gk(·). For example, if we choose Gk to be a normal distribution, then the kth

component is a thin-tailed distribution and ak =∞. If we choose Gk to be a log-

Pareto, then the kth component is a super heavy-tailed distribution and ak = 0.

When ξk ≥ 0, the resulting GPD’s domain is unbounded. Then, ak is determined

jointly by the tail behavior of the mixing distribution function Gk(·) and ξk. For

example, if we set Gk to be a normal distribution and ξk > 0, then ak = ξ−1k .

If we set Gk to be a t-distribution and ξk = 0, then ak = α+(Gk). In addition,

it can be seen from Theorem 1 that the tail index of the mixture distribution

α+(F ) is determined by the mixture component that has the heaviest tail, and

does not depend on the mixture probabilities p.

As an example, consider K = 1, µ ∼ U [0, b]. Then, G(µ|b) = 0 if µ < 0, and

G(µ|b) = 1 if µ > b; otherwise, if 0 ≤ µ ≤ b, G(µ|b) = µ/b. Therefore,
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F̄ (y|σ, ξ, b)=


1+ σ

b(ξ−1)

{
1+ξ y−min(b,y)

σ

}−1/ξ+1
I
(
y<b− σ

ξ

)
−min(b,y)

b , ξ<0,

1+ σ
b

[
exp

{
− y−min(b,y)

σ

}
−exp

{
− y
σ

}]
−min(b,y)

b , ξ=0,

1+ σ
b(ξ−1)

[{
1+ξ y−min(b,y)

σ

}−1/ξ+1
−
{

1+ξ yσ

}−1/ξ+1]
−min(b,y)

b , ξ>0.

As a result, Y has a polynomial tail when ξ > 0, and an exponential decaying

tail when ξ = 0. If ξ < 0, Y is short-tailed and bounded.

2.2. Bivariate model

In the bivariate case, we model the joint distribution of (X,Y ) as a finite

mixture of bivariate GPDs (BGPDs) with random location parameters. The

BGPD CDF proposed in Smith (1994) is given by

H(x, y|µ,σ, ξ, γ) = exp [−V {− logHX(x|µ1, σ1, ξ1),− logHY (y|µ2, σ2, ξ2); γ}] ,
(2.3)

where H(x, y|µ,σ, ξ, γ) = P (X ≤ x, Y ≤ y|µ,σ, ξ, γ), µ = (µ1, µ2),σ = (σ1, σ2),

and ξ = (ξ1, ξ2). The structure function V (s, t; γ) can take a variety of forms in

general BGPDs. Here, we focus on the logistic dependence structure, where

V (s, t; γ) = (s1/γ + t1/γ)γ (Smith (1994)). The marginal distribution functions

HX(x|µ1, σ1, ξ1) = H(x,∞|µ,σ, ξ, γ) and HY (y|µ2, σ2, ξ2) = H(∞, y|µ,σ, ξ, γ)

are the CDFs of the univariate GPD(µ1, σ1, ξ1) and GPD(µ2,

σ2, ξ2), respectively. The parameter γ ∈ [0, 1] is referred to as the dependence pa-

rameter. Two extremal cases, where γ = 0 and γ = 1, correspond to the settings

where X and Y are completely dependent and independent, respectively.

We consider the following bivariate density function of (X,Y ):

f(x, y|Θ,p,γ) =

K∑
k=1

pk

∫
h(x, y|µ,σk, ξk; γk)dGk(µ), (2.4)

where Θ = {σ1, . . . ,σK , ξ1, . . . , ξK} denotes the collection of scale and shape pa-

rameters; p = {p1, . . . , pK} are the mixture probabilities; σk = (σk,1, σk,2), ξk =

(ξk,1, ξk,2), and µ = (µ1, µ2); γ = {γ1, . . . , γK} is the set of dependence param-

eters; and h(·, ·|µ,σk, ξk; γk) denotes the BGPD(µ,σk, ξk; γk) density function.

To reduce the computational complexity in the model fitting procedure, we take

Gk(µ1, µ2) to be the bivariate normal distribution with cluster-specific mean vec-

tors uk = (uk,1, uk,2) and shared covariance matrix Σ. The marginal distributions

f(x|Θ,p) and f(y|Θ,p) reduce to the univariate MIXGP model with normal mix-

ing distributions. The dependence within the joint tail regions is modeled by the
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dependence parameter γ.

Definition 2 (Tail dependence). Suppose FX and FY are the marginal distri-

bution functions of X and Y , respectively. Then, the upper-tail dependence

coefficient is defined as

χ = lim
t→1

Pr{FY (Y ) > t|FX(X) > t},

or equivalently,

χ = lim
t→1

Pr{Y > F−1Y (t)|X > F−1X (t)}.

In the following, we show that the upper tail dependence of X and Y can be

determined jointly by the tails of Gk and ξk and the dependence parameter

γk. Under certain conditions, our model is able to capture the tail dependence

between Y and X.

Theorem 2 (Tail dependency). Assume Gk(µ1, µ2) is a bivariate normal distri-

bution with mean vector uk and covariance matrix Σ. Suppose ∃ o ∈ {1, . . . ,K},
s.t. γo ∈ [0, 1), ξo,1 = maxk=1,...,K{ξk,1}, and ξo,2 = maxk=1,...,K{ξk,2}, and

ξo,1 > 0, ξo,2 > 0. Furthermore, po is the proportion of the o-th cluster. Then, we

have χ > χL > 0, where χL = 2po/
∑

k ωk,1(2ξo,1/σo,1)
ξ−1
o,1(1−2γo−1). Here, ξo, σo,

and γo are the BGPD parameters, and the definition of ωk, for k = 1, . . . ,K, can

be found in the Supplementary Material.

Under the conditions of Theorem 2, the marginal distributions of X and Y

are univariate MIXGP models with normal mixing distributions. The marginal

distributions of the oth mixture component have the heaviest upper tail. Specif-

ically, the upper-tail indices are ξ−1o,1 and ξ−1o,2 , respectively. The oth dependence

parameter γo ∈ [0, 1) indicates that X and Y are dependent in the oth com-

ponent. Consequently, X and Y are also asymptotically dependent. In other

words, the bivariate MIXGP model is able to capture this tail dependence if the

oth component is tail dependent. Theorem 2 states that the tail dependence of

the bivariate MIXGP model is also determined by the mixture component that

has the heaviest-tailed marginal distribution.

We use a Metropolis-within-Gibbs Markov Chain Monte Carlo (MCMC) to

implement the model. The prior distributions and details of the MCMC sam-

pler used for the estimation are given in the Supplementary Material. For the

simulation study in Section 3, we generate 10,000 MCMC iterations and discard

the first 2,500 as burn-in. For the data analysis in Section 4, we generate 20,000

MCMC iterations and discard the first 5,000 as burn-in. Convergence is moni-

tored using trace plots of the representative parameters. Determining the choice
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of K in a finite mixture model is an interesting research question. In general, a

model with a large K will gain flexibility at the expense of computational burden.

The number of clusters K can be viewed as an upper bound for the number of

active mixture components, because some clusters may have a small probability

(Gelman et al. (2013)). In our applications, we feel K = 5 is sufficiently large to

make the model flexible. In both the simulation study and the real-data analysis,

we find that some clusters often have low probability, which implies K = 5 is a

proper upper bound for the number of mixture components. Therefore, we take

K = 5 throughout this paper.

3. Simulation Study

In this section, we evaluate the performance of the bivariate MIXGP and

compare it with that of the gamma distribution model (“GAM”), a mixture

model with a gamma bulk and a GPD tail (“MIX-t”), the GEV model (“GEV”),

and two EGPD (Naveau et al. (2016)) models, namely, the generalized linear

extended Pareto distribution (GEPD) and the clustered extended GPD (CGPD).

We use the maximum likelihood to fit the GAM model, and follow Bentzien and

Friederichs (2012) and Scheuerer (2014) to fit the MIX-t and the GEV model,

respectively. Because the original EGPD proposed in Naveau et al. (2016) is a

univariate model with density EGPD(σ, ξ, δ), we modify it to be suitable for the

bivariate case by transforming the scale parameter as log(σ) = β0+β1X and using

maximum likelihood estimators for β0, β1, ξ, δ. This transformation is commonly

used to incorporate covariates parametrically when fitting extreme value models

(Wang and Li (2015)). For the CGPD, we first use k-means to partition the

observed covariate X into K clusters, and then fit the univariate extended GPD

model within each cluster using the maximum likelihood. We compare K = 3

and K = 5 clusters.

The potential advantage of the MIXGP is that it weights the location pa-

rameter in a flexible way. Therefore, it is possible to capture the tail behavior

of any bivariate distribution. In this simulation study, we consider distributions

with bounded and unbounded domains. For the bounded cases, we generate data

from bivariate beta distributions, such that 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 (Gupta and

Wong (1985); Nadarajah and Kotz (2005); Olkin and Trikalinos (2015)). For

unbounded cases, we generate data from a left-truncated bivariate t distribution,

such that 0 ≤ x ≤ ∞, 0 ≤ y ≤ ∞ (Ho et al. (2012)). Because our primary

interest is in studying the tail behavior, we estimate the extremal proportions

P̂ (Y ≤ Y C
ty |Xtx) for covariate quantile levels tx = 0.9 and conditional response
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quantile levels ty = 0.95, 0.99, 0.999, where

P (Y ≤ Y C
ty |X) = ty and P (X ≤ Xtx) = tx.

If the model fits the data well, then P̂ (Y ≤ Y C
ty |Xtx) should be approximately

ty. The bias and MSE of P̂ (Y ≤ Y C
ty |Xtx) are presented. Additional results can

be found in the Supplementary Material. Under each setting, n = 1,000 samples

are generated and the results are averaged over 100 replicates.

3.1. Bounded cases

For the bivariate beta simulation, we follow Olkin and Trikalinos (2015) to

generate the data. We have the following four settings:

S1: Bivariate Beta (2,2,2,0.5)

S2: Bivariate Beta (0.5,0.5,0.5,3.5)

S3: Bivariate Beta (2.5,0.5,2.5,2.5)

S4: Bivariate Beta (2.5,2.5,0.5,2.5)

In S1 and S2, X and Y have the same marginal decaying rate, whereas in S3

and S4, X and Y have different marginal decaying rates. Figure 1 presents the

densities for S1–S4.

Table 1 shows the bias of the estimators. MIXGP outperforms the others

with the smallest bias in S2 and S4, and is competitive in S1 and S3. For the

CGPD model, the performance varies with the number of clusters K, but K = 5

performs better than K = 3. In general, MIX-t outperforms GAM in the tail, but

MIXGP has better or comparable performance than MIX-t across all scenarios.

Table 2 summarizes the MSE of the estimated proportion. Here, MIXGP has the

smallest MSE among the seven models in S2 and S4. In S1 and S4, MIXGP has

a similar MSE to those of the top performing models.

3.2. Unbounded cases

The bivariate t distribution is a suitable choice for evaluating the aforementioned

methods because it has a polynomial marginal decaying rate and its tail de-

pendence is determined jointly by the degrees of freedom df and the correlation

ρ (Schmidt (2002)). Because the GEPD and CGPD are limited to nonnega-

tive distributions, we generate data from the truncated bivariate t distribution

TBT{µ = (2, 2),Σ =

[
1 ρ

ρ 1

]
, df = 4, x ≥ 0, y ≥ 0} with different ρ. We also
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Figure 1. Density plot of the bivariate beta distributions used in S1–S4.

consider data from the GEPD to determine how much is lost by fitting an over-

complex semiparametric model compared with fitting a correctly-specified para-

metric model. The four unbounded scenarios are:

S5: Truncated bivariate t with ρ = 0

S6: Truncated bivariate t with ρ = 0.5

S7: Truncated bivariate t with ρ = 0.8

S8: X ∼ Gamma(10, 10), Y |X ∼ EGPD(δ = 5, σ = exp(X), ξ = 0.1)

The densities for S5–S8 is presented in Figure 2.

Table 3 presents the results for S5–S8. The MIXGP, in general, outperforms

better than competing models in S6 and S7 when the true model is correlated

truncated bivariate t, and is among the top models in S5 and S8 when the true

model is independent bivariate t and GEPD. The GEPD and CGPD perform well

in S8 and S5 when ρ = 0. However, these two models show a greater discrepancy
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Table 1. S1–4: (E[P̂ (Y ≤ Y Cty |Xtx)] − ty) × 1,000 (Bias) for covariate quantile level
tx = 0.9 and conditional response quantile levels ty = 0.95, 0.99, 0.999. Standard errors
are given in parentheses. Bold represents the smallest Bias among the four models under
the same setting. “MIXGP” stands for our proposed MIXGP model, “GEPD” stands
for the GEPD model, “C3” stands for the CGPD model with three clusters, “C5” stands
for the CGPD model with five clusters, “GAM” stands for the gamma model, “GEV”
stands for the GEV model, and “MIX-t” stands for the tail mixture model.

Setting tx ty MIXGP GEPD C3 C5 GAM GEV MIX-t

S1 0.9

0.95 6.14 -77.10 -85.87 -78.44 1.12 -182.16 4.97

(1.44) (0.45) (0.48) (0.66) (0.61) (15.47) (0.98)

0.99 -8.88 -28.75 -31.75 -29.21 -15.47 -163.11 1.32

(1.05) (0.15) (0.16) (0.23) (0.38) (14.23) (0.31)

0.999 -10.21 -5.43 -138.11 -5.51 -15.68 -144.05 -2.07

(0.83) (0.03) (0.64) (0.04) (0.28) (13.43) (0.14)

S2 0.9

0.95 -12.98 -90.05 -99.52 -65.05 -49.30 -89.92 -49.30

(1.98) (0.96) (2.12) (2.60) (0.91) (1.36) (0.91)

0.99 -2.32 -79.25 -80.98 -54.61 -39.59 -72.08 -38.08

(0.94) (0.78) (2.04) (2.22) (0.58) (1.03) (0.75)

0.999 -1.63 -56.43 -55.12 -36.00 -23.65 -50.26 -13.97

(0.61) (0.60) (1.78) (1.75) (0.36) (0.80) (0.41)

S3 0.9

0.95 -56.12 -106.65 -107.57 -104.18 -87.14 -188.52 -87.14

(1.61) (0.64) (0.86) (1.92) (1.16) (15.79) (1.16)

0.99 -50.88 -48.20 -48.59 -47.26 -81.63 -180.42 -81.63

(1.34) (0.27) (0.36) (0.81) (0.89) (16.01) (0.89)

0.999 -39.04 -12.57 -232.69 -12.35 -67.53 -163.76 -67.53

(1.20) (0.07) (0.72) (0.20) (0.73) (15.99) (0.73)

S4 0.9

0.95 10.76 -117.37 -101.34 -116.72 -26.04 -58.10 -26.04

(1.23) (0.86) (0.84) (1.25) (0.78) (3.47) (0.78)

0.99 -4.15 -118.79 -104.94 -118.25 -32.25 -59.02 -25.85

(0.66) (0.75) (0.72) (1.09) (0.52) (3.16) (0.87)

0.999 -3.35 -94.91 -83.37 -94.48 -20.30 -250.45 -8.81

(0.33) (0.63) (0.59) (0.91) (0.32) (33.34) (0.38)

in estimating the extremal proportion in S6 and S7 when ρ > 0. GAM and MIX-t

perform well in the tail when ty = 0.999, but inevitably perform less well for less

extreme quantile levels (ty = 0.95, 0.99). Table 4 summarizes the MSE of the

methods. In general, GAM and MIX-t have the smallest MSE among the seven

models in S5–S7 and GEPD has the smallest MSE among the seven models in

S8. MIXGP also has a competitive MSE in S5–S8, as expected. This indicates

that MIXGP delivers a reliable estimation.
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Table 2. S1–4: E[P̂ (Y ≤ Y Cty |Xtx) − ty]2 × 1,000 (MSE) for covariate quantile level
tx = 0.9 and conditional response quantile levels ty = 0.95, 0.99, 0.999. Standard errors
are given in parentheses. Bold represents the smallest MSE among the four models under
the same setting. Standard errors are given in parentheses. “MIXGP” stands for our
proposed MIXGP model, “GEPD” stands for the GEPD model, “C3” stands for the
CGPD model with three clusters, “C5” stands for the CGPD model with five clusters,
“GAM” stands for the gamma model, “GEV” stands for the GEV model, and “MIX-t”
stands for the tail mixture model.

Setting tx ty MIXGP GEPD C3 C5 GAM GEV MIX-t

S1 0.9

0.95 0.25 5.97 7.40 6.20 0.04 57.34 0.12

(0.07) (0.07) (0.08) (0.11) (0.01) (13.90) (0.02)

0.99 0.19 0.83 1.01 0.86 0.25 47.05 0.01

(0.07) (0.01) (0.01) (0.01) (0.01) (11.67) (<0.01)

0.999 0.18 0.03 19.11 0.03 0.25 38.96 0.01

(0.05) (<0.01) (0.18) (<0.01) (0.01) (10.14) (<0.01)

S2
0.9

0.95 0.57 8.20 10.36 4.91 2.51 8.27 2.51

(0.08) (0.18) (0.42) (0.37) (0.09) (0.25) (0.09)

0.99 0.09 6.34 6.98 3.48 1.60 5.30 1.51

(0.03) (0.12) (0.33) (0.27) (0.05) (0.15) (0.06)

0.999 0.04 3.22 3.36 1.60 0.57 2.59 0.21

(0.03) (0.07) (0.20) (0.15) (0.02) (0.08) (0.01)

S3
0.9

0.95 3.41 11.42 11.65 11.23 7.73 60.72 7.73

(0.22) (0.14) (0.19) (0.44) (0.21) (13.48) (0.21)

0.99 2.77 2.33 2.37 2.30 6.74 58.43 6.74

(0.17) (0.03) (0.04) (0.08) (0.15) (13.52) (0.15)

0.999 1.67 0.16 54.19 0.16 4.61 52.63 4.61

(0.12) (0.00) (0.34) (0.01) (0.10) (12.96) (0.10)

S4 0.9

0.95 0.27 13.85 10.34 13.78 0.74 4.59 0.74

(0.04) (0.20) (0.17) (0.30) (0.04) (1.01) (0.04)

0.99 0.06 14.17 11.07 14.10 1.07 4.49 0.74

(0.01) (0.18) (0.15) (0.26) (0.03) (0.89) (0.05)

0.999 0.02 9.05 6.99 9.01 0.42 174.98 0.09

(0.01) (0.12) (0.10) (0.18) (0.01) (34.16) (0.01)

4. Calibration of Extreme Precipitation Forecasts

The US daily precipitation data are downloaded from the United States His-

torical Climatology Network (USHCN, available at http://cdiac.ess-dive.

lbl.gov/epubs/ndp/ushcn/ushcn.html). These data include the daily precipi-

tation from 1,218 monitor stations across the contiguous 48 US states for the pe-

http://cdiac.ess-dive.lbl.gov/epubs/ndp/ushcn/ushcn.html
http://cdiac.ess-dive.lbl.gov/epubs/ndp/ushcn/ushcn.html
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Figure 2. Density plot of the truncated bivariate t and the GEPD model used in S5–S8.

riod 1905 to 2014. The THORPEX Interactive Grand Global Ensemble (TIGGE)

data set is a key part of THORPEX project, a world weather research program

for the period 2006 to 2014 (Bougeault et al. (2010)). The TIGGE data consist

of ensemble forecast data from 10 global numerical weather prediction centers.

Each NWP center delivers forecasts every six hours on a 0.5× 0.5 degree global

grid. We use only the eight forecasts that deliver daily predictions for the con-

tinental US (CMA, CPTEC, ECCC, ECMWF, JMA, KMA, NCEPM, UKMO).

The station data are matched with forecasts made at midnight (one-day prior

forecast) for the grid cell closest to the station, and missing observations (either

forecast or station data) are discarded. We use data for 2014 only, because this

year has the most integrated data.

Figure 3 presents a QQ plot of the observed daily precipitation, eight forecast

models, and ensemble mean and maximum at several stations. All forecast mod-

els show discrepancies from the reference line at the tail. The maximum forecast

is the closest to the reference line. In addition to the QQ plot, we compared the

Pearson correlation between the observed data and the ensemble mean/max fore-

cast. Because we are interested in extremes, we restrict the computation of the
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Table 3. S5–8: (E[P̂ (Y ≤ Y Cty |Xtx)] − ty) × 1,000 (Bias) for covariate quantile level
tx = 0.9 and conditional response quantile levels ty = 0.95, 0.99, 0.999. Standard errors
are given in parentheses. Bold represents the smallest Bias among the four models under
the same setting. “MIXGP” stands for our proposed MIXGP model, “GEPD” stands
for the GEPD model, “C3” stands for the CGPD model with three clusters, “C5” stands
for the CGPD model with five clusters, “GAM” stands for the gamma model, “GEV”
stands for the GEV model, and “MIX-t” stands for the tail mixture model.

Setting tx ty MIXGP GEPD C3 C5 GAM GEV MIX-t

S5 0.9

0.95 -7.62 -49.30 -58.03 -50.96 18.59 -343.41 15.10

(1.71) (0.99) (1.89) (1.94) (0.81) (31.40) (0.79)

0.99 -2.64 -22.06 -26.52 -23.13 2.73 -300.21 -3.50

(0.66) (0.46) (0.93) (0.96) (0.24) (31.60) (0.59)

0.999 -0.90 -2.42 -3.33 -2.71 0.56 -93.32 -2.30

(0.21) (0.08) (0.18) (0.19) (0.02) (7.19) (0.26)

S6 0.9

0.95 -4.60 -94.27 -119.57 -106.32 -42.21 -168.24 -42.21

(2.14) (0.90) (5.41) (2.76) (1.69) (28.09) (1.69)

0.99 -2.66 -57.77 -76.36 -66.00 -13.70 -144.61 -11.48

(1.04) (0.57) (3.49) (1.77) (0.64) (29.18) (0.81)

0.999 -1.46 -14.24 -22.22 -17.40 -0.70 -122.88 -2.86

(0.32) (0.19) (1.25) (0.62) (0.07) (6.82) (0.32)

S7 0.9

0.95 -4.16 -167.65 -178.79 -179.73 -56.22 -180.11 -56.22

(2.06) (0.93) (9.28) (4.24) (1.86) (27.84) (1.86)

0.99 -4.59 -130.99 -144.65 -141.70 -32.73 -164.21 -31.17

(1.09) (0.75) (7.32) (3.47) (0.99) (28.90) (1.20)

0.999 -3.03 -59.01 -71.77 -66.34 -5.49 -37.21 -5.89

(0.61) (0.44) (4.23) (2.08) (0.23) (6.48) (0.42)

S8 0.9

0.95 -6.51 -0.89 -18.98 7.59 29.39 -23.67 21.68

(2.63) (0.90) (1.67) (1.64) (0.59) (13.18) (0.60)

0.99 -1.24 -0.40 -7.62 1.43 9.01 -29.60 4.39

(0.92) (0.32) (0.72) (0.54) (0.05) (13.66) (0.24)

0.999 -1.18 -0.15 -2.00 -0.11 1.00 -15.60 0.38

(0.34) (0.07) (0.24) (0.13) (<0.01) (9.84) (0.05)

correlation to observations with observed forecasts greater than their 0.95 quan-

tiles. The correlation between the observations and the ensemble mean forecast is

0.267, with [0.253, 0.282] as the 95% confidence interval. The correlation between

the observations and the ensemble maximum forecast is 0.288, with [0.274, 0.302]

as the 95% confidence interval. This indicates that the max forecast is more

correlated with observations in the tail. Therefore, the maximum forecast is used

throughout as the one-number summary of the ensemble.
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Table 4. S5–8: E[P̂ (Y ≤ Y Cty |Xtx) − ty]2 × 1,000 (MSE) for covariate quantile level
tx = 0.9 and conditional response quantile levels ty = 0.95, 0.99, 0.999. Standard errors
are given in parentheses. Bold represents the smallest MSE among the four models under
the same setting. Standard errors are given in parentheses. “MIXGP” stands for our
proposed MIXGP model, “GEPD” stands for the GEPD model, “C3” stands for the
CGPD model with three clusters, “C5” stands for the CGPD model with five clusters,
“GAM” stands for the gamma model, “GEV” stands for the GEV model, and “MIX-t”
stands for the tail mixture model.

Setting tx ty MIXGP GEPD C3 C5 GAM GEV MIX-t

S5 0.9

0.95 0.35 2.53 3.73 2.98 0.41 217.52 0.29

(0.08) (0.11) (0.25) (0.26) (0.03) (29.99) (0.03)

0.99 0.05 0.51 0.79 0.63 0.01 191.02 0.05

(0.01) (0.02) (0.06) (0.06) (<0.01) (33.58) (0.01)

0.999 0.01 0.01 0.01 0.01 <0.01 13.93 0.01

(<0.01) (<0.01) (<0.01) (<0.01) (<0.01) (1.20) (<0.01)

S6
0.9

0.95 0.48 8.97 17.25 12.07 2.07 108.03 2.07

(0.09) (0.17) (1.18) (0.59) (0.15) (27.07) (0.15)

0.99 0.12 3.37 7.06 4.67 0.23 106.93 0.20

(0.03) (0.07) (0.50) (0.24) (0.02) (29.37) (0.02)

0.999 0.01 0.21 0.65 0.34 <0.01 19.80 0.02

(<0.01) (0.01) (0.06) (0.02) (0.00) (1.21) (0.00)

S7
0.9

0.95 0.45 28.19 40.67 34.12 3.51 110.75 3.51

(0.10) (0.31) (2.97) (1.52) (0.21) (27.08) (0.21)

0.99 0.14 17.22 26.34 21.29 1.17 111.33 1.12

(0.04) (0.20) (1.95) (0.99) (0.07) (29.34) (0.07)

0.999 0.05 3.50 6.96 4.84 0.04 5.63 0.05

(0.01) (0.05) (0.57) (0.29) (<0.01) (1.47) (0.01)

S8 0.9

0.95 0.74 0.08 0.64 0.33 0.90 18.12 0.51

(0.16) (0.01) (0.08) (0.05) (0.03) (12.70) (0.03)

0.99 0.09 0.01 0.11 0.03 0.08 19.71 0.02

(0.02) (<0.01) (0.01) (<0.01) (<0.01) (13.79) (<0.01)

0.999 0.01 <0.01 0.01 <0.01 <0.01 10.01 <0.01

(<0.01) (<0.01) (<0.01) (<0.01) (0.00) (9.98) (<0.01)

Previous studies recommend using a power transformation (Sloughter et al.

(2007); Hamill, Whitaker and Wei (2004); Berrocal et al. (2008)), and so we

transform both X and Y using square root transformations. The data are zero-

inflated, with 71% of the Y samples equal to zero and 7% of X samples equal to

zero. The individual forecasts have a higher proportion of zeros, but because X is

the ensemble maximum, it is rarely zero. Therefore, we split the data according
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Figure 3. Sample QQ plots between the square root of the observed daily precipitation
(mm1/2), eight individual forecast models, and square root of the ensemble mean and
maximum forecasts (mm1/2). The longitude and latitude of three stations are given in
the captions and the final plot pools data for all stations.

to whether X = 0 and fit the two categories of data separately:

f(Y = y|X = 0) = P00I(Y = 0|X = 0)

+ (1− P00)g1(Y = y|X = 0)I(Y > 0|X = 0),

f(Y = y|X > 0) = P10I(Y = 0|X > 0)

+ (1− P10)g2(Y = y|X > 0)I(Y > 0|X > 0),

(4.1)

where P00 = P (Y = 0|X = 0) and P10 = P (Y = 0|X > 0). For both categories,

we apply a two-stage model: First, we predict whether Y is positive or zero. We

estimate P̂00 using the sample proportion of I(Y = 0|X = 0), and estimate P̂10

by fitting a simple logistic regression model of I(Y = 0|X > 0) regressed onto X.
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Figure 4. PIT histogram for the MIXGP, EGPD, CGPD model with cluster number K =
3; 5, GAM, GEV, and MIX-t model. “MIXGP” stands for our proposed MIXGP model,
“CGPD,K=3” stands for the CGPD model with three clusters, “CGPD, K=5” stands
for the CGPD model with five clusters, “GEPD” stands for the GEPD model, “GAM”
stands for the gamma model, “GEV” stands for the GEV model, “MIX-t” stands for the
tail mixture model.

Second, we fit univariate MIXGP or EGPD models to estimate g1(Y = y|X = 0),

given positive Y and zero X, and fit the models described in Section 3 for the

joint distribution of (X,Y ), given that both are positive. Here g2(Y = y|X > 0)

is obtained as a byproduct of the joint distribution of (X,Y ). We perform a

five-fold cross validation. Each time, we randomly sample 80% of the data as a

training set, and evaluate the model on the remaining 20%.

To evaluate the performance for each model, we estimate the probability

integral transform (PITs): ωi = P (Y ≤ Yi|Xi). If the model fits well, the PITs
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Figure 5. Estimated density comparison among different conditions by given
X0.5, X0.75, X0.95, X0.99. “MIX” stands for our proposed MIXGP model, “CGPD,K=3”
stands for the CGPD model with three clusters, “CGPD, K=5” stands for the CGPD
model with five clusters, “GEPD” stands for the GEPD model, “GAM” stands for the
gamma model, “GEV” stands for the GEV model, and “MIX-t” stands for the tail mix-
ture model.

will be very close to the uniform distribution. PITs close to zero and one measure

the fit of the lower and upper tails, separately. The estimated PIT plots for the

different models are shown in Figure 4. All models perform well in the lower

tail. However, the GEPD models are questionable for the upper tail because the

PIT plots show departures from uniformity on the upper 50% of the data. The

MIXGP performs well when estimating the upper tail. For the CGPD model

with K = 5 clusters, the upper tail looks slightly lighter, but this drawback is

remedied by choosing K = 3 clusters. The GAM model has a roughly uniform

PIT with a slight departure in the tail. The GEV and MIX-t models fit poorly,

especially in the upper tail.

To further evaluate the performance, we compare the fitted PDF of Y |X
for covariate quantile levels tx = 0.5, 0.95, 0.99 in Figure 5. The density plots

correspond to the second row of (4.1). Conditional on X = X99%, CGPD gives a

bounded distribution, and the upper bound is smaller than X99%. This precludes

the observed precipitation being greater than the forecast. The MIXGP and

GEPD estimators have heavier tails, consistent with our intuition. The GAM

model is close to the EGPD when the covariate quantile level is not extreme
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Figure 6. P̂ (Y ≥ Yτ |X = x) for different values of x by given τ = 0.95, 0.975, 0.99.
“MIX” stands for our proposed MIXGP model, “CGPD,K=3” stands for the CGPD
model with three clusters, “CGPD, K=5” stands for the CGPD model with five clusters,
“GEPD” stands for the GEPD model, “GAM” stands for the gamma model, “GEV”
stands for the GEV model, and “MIX-t” stands for the tail mixture model.

(tx = 0.5, 0.95), and becomes closer to our MIXGP when tx = 0.99. The GEV and

the MIX-t have heavier tails than those of the other models, which is consistent

with our findings in the PIT plot. Figure 6 presents the probability of Y being

greater than a given value, conditional on different X. As expected, for a given

Yτ , the probability of Y ≥ Yτ increases with X.

We also consider the Brier score (BS, Brier (1950)) and quantile score (QS,

Koenker and Machado (1999); Friederichs and Hense (2007); Gneiting and Raftery

(2007)) to further evaluate the model fitting performance. The BS is appropri-

ate for binary or categorical outcomes. The response is binarized by recording

whether it exceeds Y95% and comparing it to P (Yi ≥ Y95%|Xi), the probability of

being an extreme event. For QS, we consider the quantiles τ = 0.5, 0.95, 0.99. The

results are shown in Table 5. For the extreme quantile, GEV achieves the smallest

QS. MIXGP achieves competitive results to those of GEV. For the nonextreme

quantile, MIXGP achieves the smallest BS and QS. The performance of GAM is

close to that of MIXGP.
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Table 5. Brier scores (BS) and quantile scores (QS) with τ = 0.5, 0.95, 0.99. Standard
deviations are given in parentheses. “MIX” stands for our proposed MIXGP model,
“CGPD,K=3” stands for the CGPD model with 3 clusters, “CGPD, K=5” stands for
the CGPD model with 5 clusters and “GEPD” stands for the GEPD model,“GAM”
stands for the gamma model, “GEV” stands for the GEV model, “MIX-t” stands for the
tail mixture model.

BS QS(τ = 0.5) QS(τ = 0.95) QS(τ = 0.99)
MIXGP 0.0878 0.3007 0.1529 0.0475

(0.0009) (0.0019) (0.0012) (0.0007)
GEPD 0.0884 0.3018 0.1567 0.0499

(0.0009) (0.0016) (0.0013) (0.0007)
CGPD,K=3 0.0903 0.3070 0.1731 0.0682

(0.0221) (0.0038) (0.0216) (0.0234)
CGPD,K=5 0.0929 0.3150 0.1925 0.0866

(0.0617) (0.0127) (0.0522) (0.0594)
GAM 0.0884 0.3006 0.1536 0.0477

(0.0009) (0.0018) (0.0016) (0.0008)
GEV 0.0922 0.3373 0.1500 0.0430

(0.0063) (0.0408) (0.0017) (0.0038)
MIX-t 0.0879 0.3083 0.1721 0.0515

(0.0010) (0.0024) (0.0012) (0.0002)

5. Conclusion

In this paper, we have proposed a finite mixture univariate and bivariate

models for precipitation extremes. Based on our proposed bivariate model, the

conditional distribution of precipitation can be derived, which in turn gives us

a calibrated forecast of the precipitation. Empirically, we show our proposed

method outperforms other state-of-the-art methods on a large precipitation data

set.

One of the main advantages of our proposed MIXGP model is that it allows

us to flexibly capture the tail behavior in both univariate and bivariate cases. The

flexibility is derived from two main sources. First, we randomize the threshold

parameter in the GPD. Second, we choose a finite mixture instead of specifying

a single parametric model.

It remains to explore the tail behavior of the conditional distribution. Our

models can be made more flexible using different choices of structure function V

in general BGPDs. We have restricted our discussion to univariate and bivariate

models. It would be interesting to extend our proposed model to multivariate

and spatial cases, where there is a more complicated dependence structure. For

example, Oesting, Schlather and Friederichs (2017) proposed a parametric bivari-
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ate spatial model to calibrate forecasts; extending this to more flexible models is

left to future work.

Supplementary Material

The proofs of Theorems 1 and 2, computational details, and additional sim-

ulation results are given in the online Supplementary Material.
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