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DESIGN BASED INCOMPLETE U-STATISTICS
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Beijing Institute of Technology and University of Tennessee

Abstract: U-statistics are widely used in fields such as economics, machine learning,

and statistics. However, while they enjoy desirable statistical properties, they have

an obvious drawback in that the computation becomes impractical as the data size

n increases. Specifically, the number of combinations, say m, that a U-statistic of

order d has to evaluate is O(nd). Many efforts have been made to approximate

the original U-statistic using a small subset of combinations since Blom (1976),

who referred to such an approximation as an incomplete U-statistic. To the best

of our knowledge, all existing methods require m to grow at least faster than n,

albeit more slowly than nd, in order for the corresponding incomplete U-statistic

to be asymptotically efficient in terms of the mean squared error. In this paper, we

introduce a new type of incomplete U-statistic that can be asymptotically efficient,

even when m grows more slowly than n. In some cases, m is only required to

grow faster than
√
n. Our theoretical and empirical results both show significant

improvements in the statistical efficiency of the new incomplete U-statistic.

Key words and phrases: Asymptotically efficient, BIBD, big data, design of experi-

ment, subsampling.

1. Introduction

The U-statistic has been a fundamental statistical estimator since the work

of Hoeffding (1948), who studied its theoretical properties and established central

limit theorems for non-degenerate U-statistics. Eagleson (1979) derived asymp-

totic distributions of some degenerate U-statistics of order two, which were then

extended to all degenerate U-statistics by Lee (1979). Other extensions include a

variant of U-statistics called V-statistics by von Mises (1948), U-statistics for sta-

tionary processes by Enqvist (1985), and multi-sample U-statistics by Lehmann

(1951) and Sen (1974, 1977).

The theory of U-statistics admits a minimum variance unbiased estimator

of an estimable parameter for a large class of probability distributions, hence its

popularity in applications. However, U-statistics can also be time consuming to

compute. For a U-statistic of order d, the number of combinations, say m, to be
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evaluated is
(
n
d

)
, that is O(nd), where n is the data size. Suppose n = 104 and

d = 3. Then, listing the
(
104

3

)
combinations requires 667 GB of memory and a

computing time of approximately 100 hours on a Macbook Pro with Intel Core

i7 2.9 GHz CPU. With n = 105 and d = 4, the required memory is roughly 16.7

EB and the computing time is projected to be 285,000 years. To provide context,

Hilbert and López (2011) estimated that humankind was able to store 295 EB of

optimally compressed data in 2007. The issue of computational difficulty becomes

even more severe in the bootstrap approximation of the asymptotic distribution

of a U-statistic; see, for instance, Bickel and Freedman (1981), Bretagnolle (1983),

Dehling and Mikosch (1994), and Huskova and Janssen (1993a,b), among others.

For certain U-statistics, the computational complexity can be reduced to

O(n) by exploiting the structure of the kernel function, especially when the data

are univariate and consist of one sample. However, in practice, such a com-

putational reduction is often not feasible. Note that we do not focus here on

which U-statistics are candidates for a reduction in the original computational

complexity of O(nd) because our goal is to study a generic scheme for the fast ap-

proximation of U-statistics. A natural remedy is to take a sample of size m�
(
n
d

)
from all possible combinations. Blom (1976) referred to the resulting estimator

as an incomplete U-statistic. The problem of identifying a good incomplete U-

statistic is related to the design of the sampling scheme. Of the various options,

the vanilla scheme of simple random sampling by Blom (1976) has received much

attention in the literature. Janson (1984) established the asymptotic distributions

of incomplete U-statistics based on random sampling (ICUR), Herrndorf (1986)

established the invariance principle for the statsitics, and Chen and Kengo (2019)

studied the vector- and matrix-valued ICUR. For a more detailed discussion on

incomplete U-statistics, refer to Wang (2012) and Wang and Lindsay (2014).

First, we introduce some required notation. For α > 0, we use m ≺ nα,

m � nα, and m � nα to mean m/nα → 0, 0 < limm/nα ≤ limm/nα <

∞, and m/nα → ∞, respectively. For a given incomplete U-statistic, say U ,

its efficiency is defined in terms of the mean squared error (MSE): Eff(U) =

MSE(U0)/MSE(U), where U0 is the complete U-statistic. An incomplete U-

statistic is said to be asymptotically efficient if Eff(U)→ 1 as n→∞. Note that

the ICUR is asymptotically efficient for the non-degenerate case when m � n;

see (2.5) for a theoretical verification, and Table 1 for empirical evidence.

Blom (1976) also proposed sampling schemes based on the design of an ex-

periment. In particular, balanced incomplete block designs (BIBDs) have been

examined by Brown and Kildea (1978) and Lee (1982). The latter also proved that

incomplete U-statistics based on BIBDs achieve the minimum variance among all
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unbiased estimators for a given m. By Raghavarao (1971), a BIBD exists when-

ever n = 6a + 3 for any positive integer a. Unfortunately, the optimality of the

BIBD does not make it practically attractive because its construction requires

m � n2; see Table 1. The same issue exists for the permanent design of Rem-

pala and Wesolowski (2003) and the rectangular design of Rempala and Srivastav

(2004). For the case of m/n→ 1, Blom (1976) proposed using a Latin square and

a Graeco-Latin square to guide the sampling scheme. However, the efficiency of

the estimator derived in this way is essentially asymptotically the same as that

of the ICUR. Moreover, the limit of the efficiency does not exceed d/(1 + d) as

n→∞; see (2.5) and the follow-up discussion.

Another method recently proposed in the literature is the divide and conquer

(DC) strategy of Lin and Xi (2010), which randomly divides the data into many

groups, calculates the complete U-statistic within each group, and then takes the

average of these complete U-statistics. Unfortunately, the DC is even less efficient

than the ICUR. Moreover, it is not available when m ≤ n; see Table 1.

We conclude that the ICUR is still the most viable of the existing choices

of incomplete U-statistics. It performs as well as a design-based method when a

design exists. It also possesses several advantages, such as a flexible choice of m,

the availability of asymptotic properties, and being extendable to multi-sample

cases.

In this paper, we introduce a new type of incomplete U-statistic that is

substantially more efficient than the ICUR, while maintaining the latter’s afore-

mentioned advantages. It has three main steps: (i) Divide the data into L(� n)

groups of homogeneous units. (ii) Judiciously select a collection of the combina-

tions of the groups based on a design structure called an orthogonal array (OA).

(iii) Randomly select a combination of inputs from each selected group combina-

tion. We call the derived estimator the incomplete U-statistic based on division

and an orthogonal array (ICUDO). Our first example provides a snapshot of the

performance of the major incomplete U-statistics mentioned so far.

Example 1. (The symmetry of distribution). The kernel function g(x1, x2, x3) =

sign(2x1 − x2 − x3) + sign(2x2 − x1 − x3) + sign(2x3 − x1 − x2) has mean zero

when the distribution of the data is symmetric. The data consists of n = 103

independent and identically distributed (i.i.d.) observations generated iid from

the standard normal distribution. The performance of the ICUR, BIBD, DC,

and ICUDO is measured by their efficiency at different values of m.

Note that the DC is unavailable when m ≤ n, and the BIBD does not exist

in most cases, except for m = 166,167. For m ≤ 166,167, the sample size is
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Table 1. Comparison of efficiencies in Example 1.

m m/n m/
(
n
3

)
ICUR BIBD DC ICUDO

1.0× 103 1.0 6.018× 10−6 21.62% 2.706% – 36.31%

1.2× 104 12.0 7.222× 10−5 74.97% 9.155% 55.60% 100%

5.7× 104 57.0 3.430× 10−4 97.40% 21.81% 76.70% 100%

1.66× 105 116.0 1.000× 10−3 100% 100% 84.22% 100%

3.92× 105 392.0 2.359× 10−3 100% 100% 90.71% 100%

1.617× 106 1617.0 9.731× 10−3 100% 100% 95.64% 100%

separately reduced for the BIBD in order to make it available. The ICUR has

the same efficiency as the BIBD method at 100% when the BIBD exists. It is

more efficient than the DC method whenever the DC is available. However, the

ICUDO methods outperforms the ICUR for all m.

Here, we briefly explain why our ICUDO performs so well. Note that existing

design-based methods focus on the arrangement of indices of units, without refer-

ring to their actual values. The ICUDO method exploits the fact that replacing

a unit by another one with a similar value does not change the value of the kernel

function g too much. For example, suppose the first six numbers of the data are

(1, 2, 3, 1, 2, 3). Then, a kernel function of order three yields the same value by

evaluating the first three and the next three units. Beyond the grouping idea,

we use the OA to achieve the projective uniformity of the group combinations in

the dominating lower-dimensional spaces. This allows us to recover information

on the lower dimension’s variability in the U-statistics, which is the dominating

part of Hoeffding’s decomposition of the U-statistics. As shown later, in the non-

degenerate case, whereas the ICUR needs m � n to be asymptotically efficient,

the ICUDO requires a substantially smaller m; sometimes even m �
√
n will suf-

fice. See Theorem 2 for the latter case. When the U-statistic is degenerate, both

methods require larger m, but the ICUDO still requires a substantially smaller

m than that of the ICUR.

The rest of the paper is organized as follows. Section 2 introduces the con-

struction of the ICUDO for univariate data and derives its asymptotic properties.

Section 3 discusses the debiasing issues of the ICUDO for the degenerate case.

Section 4 constructs a debiased ICUDO for multi-dimensional data. Simula-

tions are presented in each section to support the theoretical results. Section

5 concludes the paper and points out some future research topics. All proofs

are postponed to the Appendix. Additional theorems are given in the online

Supplementary Material.
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2. ICUDO Based on Univariate Data

Let X1, . . . , Xn be a random sample of size n from a univariate distribution,

say F . For a given symmetric kernel function, say g : Rd → R, of order d,

the uniformly minimum variance unbiased estimator (UMVUE) of the parameter

Θ =
∫
g(x1, . . . , xd) dF (x1) . . . dF (xd) is given by the U-statistic

U0 =

(
n

d

)−1 ∑
η∈Sn,d

g(Xη), (2.1)

where Sn,d = {η = (η1, . . . , ηd) : 1 ≤ η1 < η2 < · · · < ηd ≤ n} and Xη =

(Xη1 , . . . , Xηd). When Sn,d is replaced with the set of all nd ordered combinations,

the corresponding average in (2.1) is called a V-Statistic (von Mises (1948)).

The main difference is that V-statistics include combinations with duplicated

units, such as (1, 1, 2). Throughout this paper, we adopt the mild assumption

Eg2 (X1, . . . , Xd) <∞.
Unless there is some special structure of g that can be exploited to reduce

the computational burden, in general, (2.1) becomes impractical to compute as

n increases. To address this problem, Blom (1976) proposed using the following

incomplete U-statistic as a fast approximation:

U =
1

m

∑
η∈S

g(Xη), (2.2)

where S ⊂ Sn,d, with its cardinality m = |S| being only a fraction of
(
n
d

)
. The

statistic in (2.2) becomes an ICUR when S is a simple random sample, which we

denote as URND.

Here, we briefly review the properties of U0 and URND. For arbitrary positive

integers N and p, define ZN = {1, . . . , N} and ZpN = {(z1. . . . , zp) : zj ∈ ZN , 1 ≤
j ≤ p}. Following Hoeffding (1948), for u ⊆ Zd and x = (x1, . . . , xd), denote

gu(x) =
∫
g(x)dFuc , with uc = Zd \ u and dFu =

∏
j∈u dF (xj). With the

conventions g∅(x) = Θ and h∅(x) = 0, we recursively define the projection

hu(x) = gu(x)−
∑

v⊆Zd:v⊂u
hv(x).

Because g is symmetric, we have Eg2v = Eg2u and Eh2v = Eh2u for any pair

u,v ⊆ Zd, with |v| = |u|. Hence, we can now define

σ2j = Var(gu) and δ2j = Var(hu), with |u| = j.
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Following Hoeffding (1948) and Blom (1976), we have

MSE(U0) =

(
n

d

)−1 d∑
j=1

(
d

j

)(
n− d
d− j

)
σ2j =

d∑
j=1

(
d

j

)2(n
j

)−1
δ2j , (2.3)

MSE(URND) = MSE(U0) +
σ2d
m

+O

(
1

nm

)
= MSE(U0) +

1

m

d∑
j=1

(
d

j

)
δ2j +O

(
1

nm

)
. (2.4)

In (2.3) and (2.4), the MSEs are expressed in terms of both σ2j and δ2j . The

equivalences are established by σ2j =
∑j

j′=1

(
j
j′

)
δ2j′ , for 1 ≤ j ≤ d. The U-statistic

and the kernel function g are called non-degenerate if δ21 = σ21 > 0, and are called

order-q degenerate if σ2q = 0 and σ2q+1 > 0, or equivalently δ21 = · · · = δ2q = 0 and

δ2q+1 > 0. For the non-degenerate case, we have Var(U0) � n−1, which together

with (2.4) yields

Eff(URND) =



1−O
(
n

m

)
, m � n

1

1 + (n/m)(σ2d/(d
2δ21))

+O

(
1

n

)
, m � n

O

(
m

n

)
, m ≺ n.

(2.5)

As a result, we have Eff(URND)→ 1 when m � n, Eff(URND)→ 0 when m ≺ n,

and Eff(URND) →
(
1 + σ2d/(cd

2σ21)
)−1

when m/n → c, for a constant c > 0.

With c = 1, Blom (1976) proposed using Latin squares and Graeco-Latin squares

to construct the incomplete U-statistics. In such a case, we can verify that its

efficiency is asymptotically the same as that of URND, and limn→∞ Eff(URND) ≤
d/(1 + d), from (2.5) and σ2d ≤ dσ21. In contrast, Theorem 1 shows that the

ICUDO is asymptotically efficient when m � n. Stronger results are stated in

Theorem 2 in Section 2.1 and in similar theorems in the Supplementary Material

under various conditions on g and F .

2.1. One-sample U-statistics

Recall that δ2j = Var(hu), for |u| = j, 1 ≤ j ≤ d, and note that the coefficient

of δ2j in (2.3) is O(n−j). Hence, it is more important to capture the variability

of g in its lower-dimensional projected space. This idea matches perfectly with

the projective property of the OA. An OA denoted by OA(m, d, L, t), is an m by

d array with entries from {1, . . . , L}, arranged in such a way that for any m by
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t subarray, all ordered t-tuples of the entries from {1, . . . , L} appear λ = m/Lt

times in the rows. The number t is called the strength of the OA; see the matrix

A defined in (2.7) as an example of OA(9, 4, 3, 2). In this case, the ordered

2-arrays are {(i1, i2) : 1 ≤ i1, i2 ≤ 3}. Consider any two columns of A, we

can see that all these ordered 2-tuples appear once, that is, λ = 1. For sets

S1, . . . ,Sq, define
∏q
i=1 Si = {(s1, . . . , sq) : si ∈ Si}. The ICUDO is constructed

as follows. For ease of illustration, we assume n is a multiple of L. Actually,

throughout the manuscript, we assume that L � n. Thus, we may randomly

draw an n′ = bn/Lc · L subsample as the new data set. The information loss in

this process is negligible compared with the original size n.

Step 1. Let A0 be an OA(m, d, L, t). Apply random level permutations {π1, . . . ,
πd} to columns of A0 independently. Specifically, for l ∈ ZL, change all

elements l in the jth column of A0 to πj(l). The new OA is denoted by

A = (aij)m×d.

Step 2. Create the partition Zn =
⋃L
l=1Gl such that |Gl| = n/L for l ∈ ZL, and

Xi1 ≤ Xi2 for any i1 ∈ Gl1 , i2 ∈ Gl2 , with l1 < l2.

Step 3. For i = 1, . . . ,m, independently draw an element, say ηi, uniformly from∏d
j=1Gaij . the ICUDO based on the OA A is defined as

Uoa =
1

m

m∑
i=1

g(Xηi). (2.6)

The level permutation in step 1 ensures that each row of A takes each d-

tuple with equal probability. At the same time, the projective uniformity of

the beginning OA, A0, carries over to A. Here, we ensure that A is free of a

coincidence defect, which means no two rows are the same in any m × (t + 1)

subarray. This property is necessary for the relevant theorems to hold. Step

2 divides the data into homogeneous groups. Step 3 is built on the first two

steps. It chooses representative elements from selected groups, and the selection

of groups is guided by the structure of A. Note (2.6) is in the form of (2.2) by

taking S as Soa = {η1, . . . ,ηm}. We now give a toy example of choosing ηi, for

i = 1, . . . ,m. Suppose d = 4, n = 9, and

X6 ≤ X8 ≤ X2 ≤ X4 ≤ X7 ≤ X5 ≤ X3 ≤ X9 ≤ X1.

Then, we have L = 3 groups listed as G1 = {6, 8, 2}, G2 = {4, 7, 5}, and G3 =

{3, 9, 1}. An example of OA(m = 9, d = 4, L = 3, t = 2) in step 1 is given as
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follows in transpose:

AT =


1 1 1 2 2 2 3 3 3

1 2 3 1 2 3 1 2 3

1 2 3 2 3 1 3 1 2

1 2 3 3 1 2 2 3 1

 . (2.7)

The fourth row of A, namely (2, 1, 2, 3), means we are sampling η4 from G2 ×
G1 ×G2 ×G3. One possible outcome for η4 could be (4, 8, 7, 3). Repeating this

for each row of A, we could possibly have the Xηi , for i = 1, . . . , 9, used in the

construction as follows:

{Xη1 , . . . ,Xη9} =


X6 X8 X2 X4 X4 X5 X9 X3 X1

X2 X4 X3 X8 X7 X9 X8 X5 X9

X8 X6 X9 X7 X1 X2 X1 X2 X4

X6 X5 X1 X3 X6 X4 X7 X9 X6

 . (2.8)

To proceed with the asymptotic properties of Uoa, we define

R(t) =
∑
j>t

(
d

j

)
δ2j . (2.9)

Theorem 1. For any (g, F ), using OA(m, d, L, t) in step 1 of the ICUDO algo-

rithm, we have

MSE(Uoa) = MSE(U0) +
R(t)

m
+ o

(
1

m

)
+O

(
1

n2

)
. (2.10)

We now explain the meanings of the three terms in (2.10) generated in the

process of approximating the complete U-statistic U0 using Uoa. The term O(n−2)

is the bias square of Uoa due to the inclusion of combinations with duplicate units,

such as the first column of (2.8). Essentially, Uoa is approximating the V-statistic,

which is biased for Θ itself. The term o(m−1) is due to the sampling variability

when we draw one point from each selected group, that is, step 3 of the algorithm.

The term R(t)/m is due to the usage of the OA structure in place of a complete

enumeration of all group combinations. Compared with the second term in (2.4)

for the ICUR, R(0)/m, we are able to eliminate all δ2j with j ≤ t owing to the

projective uniformity of the OA in all t-dimensional projected spaces. If δ2j = 0

for d′ ≤ j ≤ d, an OA with strength t ≥ d′ yields R(t) = 0. We discuss the

hidden benefit of using a lower strength OA in Example 2.

In the non-degenerate case, recall the MSE(U0) � n−1 and limn→∞ Eff(URND)

≤ d/(1 + d) for the ICUR when m � n. Under the same situation, Theorem 1
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implies that Uoa is asymptotically efficient by simply taking t = d. In fact,

stronger results can be derived for the ICUDO so that m is allowed to grow more

slowly than n under various conditions. We give Theorem 2 here as one example;

additional results can be found in the Supplementary Material.

Theorem 2. Suppose (i) the kernel function g is Lipschitz continuous, and (ii)

F has density function f(x) > c for some fixed c > 0 and x ∈ [a, b], and f(x) = 0

otherwise. For Uoa based on OA(m, d, L, t) with L2 ≤ n(log n)−1, we have

MSE(Uoa) = MSE(U0) +
R(t)

m
+O

(
1

mL2

)
+O

(
1

n2

)
. (2.11)

For t = d = 2, we automatically have R(t) = 0. If the conditions in Theorem

2 hold, we only need m �
√
n to achieve Eff(Uoa)→ 1, while the ICUR requires

m � n. In general, R(t) decreases in t and could vanish if we take t large enough

so that δ2j = 0, for all j > t. Without knowledge of δ2j , simply taking t = d

will eliminate R(t) too. On the other hand, the term O(1/(mL2)) in (2.11) is

decreasing in L, meaning the more groups we use to divide the data, the more

homogeneous the units we could have in each group. However, L and t are subject

to the constraint m = λLt, where λ is the number of replicates of each t-tuple

in OA and is equal to one in all examples presented here. As a result, L and

t cannot be increased simultaneously. To gain insight to the trade-off between

L and t, we need to determine the constant term for O(1/(mL2)). For this, we

derive the following theorem. A more detailed discussion on how to choose L and

t, given m, is provided in the Supplementary Material. Denote by U(0, 1) the

uniform distribution on [0, 1].

Theorem 3. Suppose g has a continuous first-order derivative on [0, 1]d, X ∼
U(0, 1), and there exists some c ∈ (0, 1/2), such that L � nc. For Uoa based on

OA(m, d, L, t),

MSE(Uoa) = MSE(U0) +
R(t)

m
+

d

12mL2
Eγ2(X1, . . . , Xd) + o

(
1

mL2

)
, (2.12)

where γ(x1, . . . , xd) = ∂g/∂x1(x1, . . . , xd).

The assumption of a uniform distribution for X is not as strict as it seems.

To see this, for X ∼ F , let Z = F (X) ∼ U(0, 1). Applying Theorem 3 to

gF (Z1, . . . , Zd) := g(F−1(Z1), . . . , F
−1(Zd)) = g(X1, . . . , Xd), we have the fol-

lowing corollary.

Corollary 1. Suppose gF has a continuous first-order derivative on [0, 1]d, and
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Table 2. Result of Example 2.

m/n
µ = 0.5 µ = 2

Eff(URND) Eff(Uoa2
) Eff(Uoa3

) Eff(URND) Eff(Uoa2
) Eff(Uoa3

)

0.005 0.133% 0.171% 0.218% 1.110% 9.908% 2.323%

0.01 0.290% 0.464% 0.579% 2.485% 26.84% 8.455%

0.05 1.291% 2.448% 6.096% 10.31% 75.12% 51.71%

0.1 2.936% 4.527% 16.62% 20.13% 91.87% 76.80%

0.5 12.58% 21.89% 71.78% 50.78% 100.0% 98.53%

1.0 21.05% 33.26% 99.94% 67.51% 100.0% 99.64%

there exists some c ∈ (0, 1/2), such that L � nc. Then, (2.12) still holds.

The term Eγ2 in (2.12) provides a nice interpretation of the trade-off between

t and L. When the kernel function g has a large variability (large Eγ2), it is more

challenging to make each group as homogeneous as possible, which enforces larger

values of L. On the other hand, if g is quite flat on the domain (small Eγ2), we

prefer fewer groups to improve the strength of the OA.

Example 2. The kernel function g(x1, x2, x3) = x1x2x3 estimates µ3, where

µ = E(X). We compare the performance of three methods: URND; Uoa2
based on

OA(m, 3,
√
m, 2), with strength t = 2; and Uoa3

based on OA(m, 3,m1/3, 3), with

strength t = 3. The data consist of n = 104 i.i.d. observations simulated from

N(µ, 1), where µ takes the values of 0.5 and 2; see Table 2 for the simulation

results.

In Table 2, both Uoa2
and Uoa3

outperform URND significantly. The advan-

tage of the ICUDO over the ICUR is discussed below in additional examples.

Furthermore, we find that the winning strategy changes from Uoa3
to Uoa2

as

we increase the mean µ of the distribution. This observation well illustrates the

comments after Theorem 3 on the relevance of Eγ2 in determining the optimal

value of the strength t. That is, for larger Eγ2, we are more inclined to choose

a smaller strength. This is validated by our second observation together with

Eγ2 = (µ2 + 1)2, which increases in µ(> 0).

Note that the applicability of Theorem 2 and its variants, Theorems 7–9 in the

Supplementary Material is broader than it appears. To see this, let φ : R→ R be

a one-to-one mapping. Denote by Fφ the distribution of the transformed random

variable Z = φ(X), which leads to the following representation:

gφ(z1, . . . , zd) := g(φ−1(z1), . . . , φ
−1(zd)) = g(x1, . . . , xd).

If (gφ, Fφ) satisfies the conditions in these theorems, corresponding results also
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hold for the pair (g, F ). For example, suppose g(x1, x2) = x−a1 x−a2 and F is a

Pareto distribution with shape and scale parameters a and b, respectively. The

Pareto distribution is neither light-tailed nor bounded, and hence violates the

conditions in Theorem 2. By taking φ(x) = 1− (b/x)a, we have φ(X) ∼ U(0, 1).

It can be verified that the conditions in Theorem 2 are satisfied by (gφ, Fφ).

2.2. Multi-sample U-statistics

For k = 1, . . . ,K, let X
(k)
1 , . . . , X

(k)
nk be a random sample of size nk from the

distribution Fk. The UMVUE of

Θ =

∫
g(x

(1)
1 , . . . , x

(1)
d1
, . . . , x

(K)
1 , . . . , x

(K)
dK

)dF1(x
(1)
1 ) · · · dFK(x

(K)
dK

)

is given by the generalized U-statistic

U0 =

K∏
k=1

(
nk
dk

)−1 ∑
η∈

∏K
k=1 Snk,dk

g(Xη),

Snk,dk = {ηk = (ηk,1, . . . , ηk,dk) : 1 ≤ ηk,1 < ηk,2 < · · · < ηk,dk ≤ nk},

Xη = (Xη1
, . . . ,XηK ) = (X(1)

η1,1 , . . . , X
(1)
η1,d1

, . . . , X(K)
ηK,1 , . . . , X

(K)
ηK,dK

).

The d(=
∑K

k=1 dk)-dimensional kernel function g is symmetric about any dk-

dimensional sub-input {x(k)1 , . . . , x
(k)
dk
}. The generalized U-statistic reduces to

the traditional U-statistic when K = 1. An incomplete generalized U-statistic is

given by

U =
1

m

∑
η∈S

g(Xη), (2.13)

where S ⊂
∏K
k=1 Snk,dk and m = |S|. We construct the multi-sample ICUDO as

follows. For ease of illustration, we assume nk’ is a multiple of L.

Step 1. Let A0 be an OA(m, d, L, t). Adopt random level permutations {π1, . . . ,
πd} of columns of A0 independently. Specifically, for each l ∈ ZL, change

all elements l in the jth column of A0 to πj(l). The m rows of the resulting

array A are denoted by {ai = (ai1, . . . ,a
i
K) : i = 1, . . . ,m;aik ∈ Z

dk
L , k =

1, . . . ,K}.

Step 2. For each k = 1, . . . ,K, create the partition Znk =
⋃L
l=1G

(k)
l , such that

|G(k)
l | = nkL

−1 for l ∈ ZL, and X
(k)
i1
≤ X

(k)
i2

for any i1 ∈ G(k)
l1

, i2 ∈ G(k)
l2

,

with l1 < l2. For any a = (a1, . . . ,aK) with ak = (ak,1, . . . , ak,dk) ∈ Z
dk
L ,
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define

Ga =

K∏
k=1

dk∏
j=1

G(k)
ak,j . (2.14)

Step 3. For i = 1, . . . ,m, independently draw an element ηi uniformly from Gai ,
where ai is the ith row of A:

Uoa =
1

m

m∑
i=1

g(Xηi). (2.15)

An example is given in the Supplementary Material. For any jk,1, . . . , jk,dk ∈ Zdk
and k ∈ ZK , assume

Eg2
(
X

(1)
j1,1
, . . . , X

(1)
j1,d1

, . . . , X
(K)
jK,1

, . . . , X
(K)
jK,dK

)
<∞.

Let nmin = min{n1, . . . , nK} and nmax = max{n1, . . . , nK}. Here, we assume

nmin � nmax and L ≺ nmin. Let u = (u1, . . . ,uK), where uk ⊆ Zdk . Define

dFu =
∏K
k=1

∏
j∈uk dFk(x

(k)
j ). For any u and x = (x

(1)
1 , . . . , x

(1)
d1
, . . . , x

(K)
1 , . . . ,

x
(K)
dK

), we recursively define

gu(x) =

∫
g(x)dFuc hu(x) = g(x)−

∑
v⊂u

hv(x),

where uc = (uc1, . . . ,u
c
K) = (Zd1 \ u1, . . . ,ZdK \ uK), g∅(x) = Θ and h∅(x) = 0,

v = (v1, . . . ,vK), and v ⊂ u means vk ⊆ uk (v 6= u).

For u, we can define σ2u = Var(gu) and δ2u = Var(hu). The MSE of the

complete generalized U-statistic is given by Sen (1974) as

MSE(U0) =

K∏
k=1

(
nk
dk

)−1 ∑
u=(u1,...,uK)

{
K∏
k=1

(
dk
|uk|

)(
nk − dk
dk − |uk|

)}
σ2u.

Let |u| =
∑K

k=1 |uk|. The generalized U-statistic and the kernel function are

called order-q degenerate if σ2u =
∑
v∈u δ

2
v = 0, for all |u| ≤ q, and there exists

u′ such that σ2u′ > 0 and |u′| = q + 1. We have MSE(U0) = O(n−(q+1)) in this

case. For the non-degenerate case q = 0, we have MSE(U0) � n−1 . With a slight

abuse of notation, let σ(j1,...,jK) = σu and δ(j1,...,jK) = δu, for u = (u1, . . . ,uK),

with |uk| = jk, k = 1, . . . ,K. For the ICUR, we have

MSE(URND) = MSE(U0) +
R(0)

m
+O

(
1

mnmin

)
,
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R(t) = u : |u| > tδ2u =

d1∑
j1=0

· · ·
dK∑
jK=0

I(j1 + · · ·+ jK > t)

K∏
k=1

(
dk
jk

)
δ2(j1,...,jK).

The last term above reduces to the form of R(t) for the one-sample case, but the

second term yields a parsimonious presentation for the multi-sample case. The

corresponding properties of Uoa are given as follows.

Theorem 4. For Uoa based on OA(m, d, L, t), for any pair of (g, F ), we have

MSE(Uoa) = MSE(U0) +
R(t)

m
+ o

(
1

m

)
+O

(
1

n2min

)
. (2.16)

Theorem 4 is basically a multi-sample version of Theorem 1, and its result

can be strengthened in the same way. The details are omitted here to conserve

space. We conclude this section with a machine learning example.

Example 3. (Ranking measure, Chen et al. (2009)). The ranking measure is an

important topic in machine learning research. In the commonly used pairwise

approach, the loss for a given classifier score function f is given by

L(f) =
∑

1≤i<j≤K

∑
x∈Gi,y∈Gj

ψ(f(y)− f(x)),

where G1, . . . , GK are K groups ranked in ascending order. Here, ψ could that

the form of

(i) hinge function: ψ(z) = (1− z)+, or a

(ii) logistic function: ψ(z) = log(1 + exp(−z))

for the Ranking SVM and RankNet methods, respectively. In the simulation, we

set K = 2, that is, the two-sample case, |G1| = |G2| = 104, f(G1) ∼ N(0, 4), and

f(G2) ∼ N(5, 4). Figure 1 reveals the high efficiency of Ũoa compared with that

of URND.

3. Debiased ICUDO for Degenerate Cases

Recall the ICUDO procedure is actually biased owing to the inclusion of

combinations with duplicate units. The bias square is O(n−2) for any pair (g, F ),

which is negligible compared to Var(U0) � n−1 in the non-degenerate case. One

can see that it is no longer negligible in the degenerate case. In this section, we

propose a debiased version of the ICUDO.
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Figure 1. Comparison of efficiencies of Ũoa and URND with respect to subsample size m
for loss function (i) (left) and (ii) (right).

We provide details for the multi-sample cases, where the one-sample cases

are achieved by taking K = 1. To proceed, Let S∗0 = {(η1, . . . ,ηK) : ηk =

(ηk,1, . . . , ηk,dk) ∈ Zdknk , ηk,j1 6= ηk,j2 for any j1 6= j2}. The debiased ICUDO is

constructed in the same way as the original, except that step 3 changes as follows:

Step 3′. For i = 1, . . . ,m, independently draw ηi from the uniform distribution

on Gai∩S∗0 . Adopting (2.13) with S∗oa = {η1, . . . ,ηm}, we have the debiased

ICUDO as

Ũoa =
1

m

m∑
i=1

ωηig(Xηi), (3.1)

where ωηi = Ld|Gai ∩ S∗0 |/|S∗0 |.

Theorem 5. Ũoa based on OA(m, d, L, t) is an unbiased estimator, and

MSE(Ũoa) = MSE(U0) +
R(t)

m
+ o

(
1

m

)
. (3.2)

Theorem 5 is analogous to Theorems 1 and 4 for the one-sample and multi-

sample cases, respectively, except that the bias square term O(n−2) and O(n−2min)

are eliminated. Now, for an order-q degenerate U-statistic, the debiased ICUDO

can be asymptotically efficient with m � nq+1, while the ICUR requires m �
nq+1. Moreover, we could allow m to grow more slowly for the debiased ICUDO

under some mild conditions on (g, F ). For example, when d = 2, q = 1, and

the conditions of Theorem 2 hold, the debiased ICUDO only needs m � n to be

asymptotically efficient, while the ICUR requires m � n2. For the general order

q of degeneration, we have m∗oa = (m∗RND)d/(d+1), for all d, under the conditions
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Table 3. Result of Example 4.

m/
(
n
2

)
0.002 0.01 0.02 0.04 0.06 0.1 0.14 0.2

Eff(Ũoa3
) 0.836% 10.9% 15.6% 35.9% 44.9% 56.9% 75.1% 94.1%

Eff(Uoa3
) 0.861% 9.50% 12.9% 25.2% 28.3% 29.8% 36.3% 39.0%

Eff(Uoa4) 0.450% 4.96% 6.78% 10.6% 10.7% 11.9% 14.5% 15.6%

Eff(URND) 0.179% 0.701% 1.50% 2.93% 4.19% 7.84% 10.9% 13.1%

in Theorem 2. Here, m∗oa and m∗RND represent the minimum m required for the

ICUDO and ICUR, respectively, to be asymptotically efficient.

We conclude this section with the following multi-sample example. The ker-

nel function is degenerate, and hence favors a debiased ICUDO. However, the

highest order δ2-value vanishes, which encourages a lower strength of OA. The

comparison is made between the ICUR and different versions of the ICUDO.

Example 4. Let K = 2, d1 = d2 = 2, d = 4, and

g(x
(1)
1 , x

(1)
2 , x

(2)
1 , x

(2)
2 ) = I(x

(1)
1 < x

(2)
1 , x

(1)
2 < x

(2)
1 ) + I(x

(2)
1 < x

(1)
1 , x

(2)
2 < x

(1)
1 ).

The construction of Uoa and the debiased Ũoa is based on OA(m, 4,m1/3, 3) and

OA(m, 4, m1/4, 4). For continuous distributions F1 and F2, it can be verified that

Eg(X
(1)
1 , X

(1)
2 , X

(2)
1 , X

(2)
2 ) =

2

3
+

1

2

∫
(F1(x)− F2(x))2d(F1(x) + F2(x)),

which indicates the similarity of F1 and F2. The null hypothesis of F1 = F2

is rejected when the U-statistic is significantly larger than 2/3. Note that the

corresponding U-statistic is degenerate under the null hypothesis. See Table 3

for the simulation results when both samples are simulated from N(0, 1) with

sample sizes n1 = n2 = 103.

Note that in the g function of Example 4, the two separate parts are all

functions of three inputs. Thus, R(4) = 0, and we can claim that t = 3 works

better than t = 4, which is verified by the results in Table 3.

4. ICUDO for Multi-Dimensional Data

Note that step 2 of the ICUDO algorithm in Section 2 does not apply to

multi-dimensional data because it relies on ordering the univariate data. To

remedy this, we adopt a clustering algorithm to divide the data into homogeneous

groups. In this regard, the clustered group sizes may vary. This will necessitate



1608 KONG AND ZHENG

a re-weighting procedure similar to the debiasing step in Section 3. To save

space, we focus on the debiased ICUDO and adopt the notation of the multi-

sample U-statistics in the study of multi-dimensional data. For k = 1, . . . ,K,

let X
(k)
1 , . . . , X

(k)
nk be a random sample of size nk from the multi-dimensional

distribution Fk. The algorithm is given as follows.

Step 1. Let A0 be an OA(m, d, L, t). Adopt random level permutations {π1, . . . ,
πd} of columns of A0 independently. Specifically, for l ∈ ZL, change all

elements l in the jth column of A0 to πj(l). The m rows of the resulting

array A are denoted by {ai = (ai1, . . . ,a
i
K) : i = 1, . . . ,m;aik ∈ Z

dk
L , k =

1, . . . ,K}.

Step 2. Let P(k) = {G(k)
1 , . . . , G

(k)
L } denote an L-group partition from the cluster-

ing of {X(k)
1 , . . . , X

(k)
nk }. For any a = (a1, . . . ,aK), with ak = (ak,1, . . . , ak,dk)

∈ ZdkL , define

Ga =

K∏
k=1

dk∏
j=1

G(k)
ak,j . (4.1)

Step 3. For i = 1, . . . ,m, independently draw an element ηi uniformly from Gai ,
where ai is the ith row of A. Let ωηi = Ld|Gai ∩ S∗0 |/|S∗0 |.

Ũoa =
1

m

m∑
i=1

ωηig(Xηi). (4.2)

An example of the construction is given in the Supplementary Material.

Theorem 6. Suppose ωηi → 1 uniformly as n,L → ∞. For Ũoa based on

OA(m, d, L, t), we have

MSE(Ũoa) = MSE(U0) +
R(t)

m
+ o

(
1

m

)
. (4.3)

The R(t) in (4.3) is given by (2.9), except that the univariate distribution

F is changed to a multi-dimensional distribution. The assumption in Theorem 6

naturally holds if we force balance the group size in the clustering process. By

applying the full strength t = d OA to Theorem 6, we have the following corollary.

Corollary 2. For Ũoa based on OA(m, d, L, d), for any pair of (g, F ), we have

MSE(Ũoa) = MSE(U0) + o(m−1). (4.4)

The choice of t has been discussed and is illustrated in Examples 2 and 4.
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Table 4. Result of Example 5.

m 100 400 900 1,600 2,500 3,600 4,900 6,400 8,100 10,000

MSE(URND) 0.765 0.191 0.0903 0.0515 0.0260 0.0195 0.0167 0.0137 0.0098 0.0089

MSE(Ũoa) 0.075 0.0096 0.0032 0.0015 0.00063 0.00035 0.00023 0.00014 0.00011 0.00009

We do not compare different t in the following examples because d = 2 always

holds, and so t ≤ 2. We always take t = 2, L = 10, 20, . . . , 100, and m = Lt.

Example 5. (Kendall’s tau, Chen and Kengo (2019)). The Kernel function

h((x1, y1), (x2, y2)) = 2I(x1 < x2, y1 < y2) + 2I(x2 < x1, y2 < y1) − 1. For sim-

plicity, we assume that (X,Y ) follows a normal distribution, with µ = (0, 0)

and Σ = diag(3, 1). Set n = 104. The MSE when estimating the Kendall

correlation using URND and Ũoa is shown in Table 4. As a reference, we have

MSE(U0) = 8.97× 10−5.

Example 6. (Testing stochastic monotonicity, Lee, Linton and Whang (2009)).

Let (X,Y ) be a real-valued random vector, and denote by FY |X(y|x) the condi-

tional distribution function of Y , given X. Consider the problem of testing the

stochastic monotonicity hypothesis

H0 : FY |X(y|x) ≤ FY |X(y|x′),∀y ∈ R and whenever x ≥ x′.

This essentially tests where an increase in X would induce an increase in Y (e.g.,

income vs. expenditure in a household). Lee, Linton and Whang (2009) proposed

the following testing statistic:

Un(x, x′) =
1

n(n− 1)

∑
1≤i 6=j≤n

(I{Yi ≤ x′} − I{Yj ≤ x′})

sign(Xi −Xj)K(x−Xi)K(x−Xj), (4.5)

where K(x) = 0.75(1−x2). We simulate (X,Y ) from a normal distribution with

µ = (0, 0) and Σ = diag(3, 1), and calculate (4.5) at (x, x′) = (0, 0). For n = 104,

the comparison between Ũoa and URND is given in Table 5. As a reference, we

have MSE(U0) = 2.572.

Example 7. (Clustering performance evaluation, Papa, Clémençon and Bellet

(2015)). For a given distance D : X × X → R defined on X , the performance of

a partition P can be evaluated from the data X1, . . . , Xn ∈ X using

W (P ) =
∑

1≤i<j≤n
D(Xi, Xj) ·

∑
C∈P

I{(Xi, Xj) ∈ C2}. (4.6)
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Table 5. Result of Example 6.

m 100 400 900 1,600 2,500 3,600 4,900 6,400 8,100 10,000

MSE(URND) 302.7 69.01 38.01 17.45 12.86 8.613 7.438 6.273 4.886 4.327

MSE(Ũoa) 33.18 15.73 8.848 4.252 3.524 3.168 2.732 2.662 2.630 2.602

Table 6. Result of Example 7.

m 100 400 900 1,600 2,500 3,600 4,900 6,400 8,100 10,000

MSE(URND) 0.216 0.0625 0.0346 0.0171 0.0064 0.0047 0.0038 0.0021 0.0017 0.0010

MSE(Ũoa) 0.011 0.0064 0.0038 0.0019 0.00056 0.00051 0.00038 0.00027 0.00013 0.00012

Our purpose is to compare the different incomplete U-statistics of (4.6); here, we

focus on the k-means method for the comparison. The data are generated from

a normal distribution with µ = (0, 0) and Σ = diag(1, 2), and we divide the data

into two groups. The MSE of URND and Ũoa when estimating W (P ) for different

m is shown in Table 6. As a reference, we have MSE(U0) = 1.043× 10−4.

5. Conclusion

To tackle the computational issue of U-statistics, we have introduced a new

type of incomplete U-statistic called the ICUDO, which has much higher efficiency

than existing methods. The required computational burden, as indexed by the

number of combinations m for the ICUDO to be statistically equivalent to the

complete U-statistic, is of smaller magnitude than existing methods. This was

validated theoretically and empirically for degenerate and non-degenerate one-

and multi-sample U-statistics on univariate and multi-dimensional data. In fact,

m is allowed to grow more slowly than the data size n in the non-degenerate case.

The OA plays a critical role in the construction of the ICUDO, in light

of its projective uniformity. Other space-filling design schemes exist with similar

properties, such as the OA-based Latin hypercube by Tang (1993), and the strong

orthogonal array by He and Tang (2012), which is used frequently in the design

of computer experiments. By exhaustive simulations, we find the improvement of

the efficiency by these design schemes over that of the ICUDO to be within 1%.

However, this improvement is not sufficient to advocate using these structures,

owing to the extra complexity of the computation. Other improvements over the

OA are based on optimal criteria, such as the generalized minimum aberration

OA. However, no theoretical results are available for these fixed structures.

Lastly, the following offer potential future research directions. (i) For high-

dimensional data, dimension-reduction techniques need to be integrated into our
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current algorithm. (ii) For multi-sample cases, we may divide different samples

into different numbers of groups in some optimal way. This will induce more

complicated OA structures. (iii) For the purpose of statistical inference, it would

be of interest to study the asymptotic distributions of the ICUDO under different

conditions. (iv) The dimension of the kernel functions is fixed at d as n increases,

and all data are generated independently. In one important type of U-statistic

based on stochastic processes, d increases with n and the data can be dependent.

These topics will involve quite different methodologies, and hence are left to

future work.

Supplementary Material

The online Supplementary Material generalizes the result of Theorem 2 under

additional conditions. It also provides details on how to choose the combination

of L and t and illustrates the generation of the ICUDO for multi-sample and

multi-dimensional cases.
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Appendix

A. Proof of Theorems

Lemmas 1–3 contribute to the proof of Theorem 1. Theorems 4 and 6 can be

proved similarly as Theorem 1, but only with more tedious analysis, and hence

they are omitted due to the limit of space. For any a ∈ ZdL, we call the set

Ga =
∏d
j=1Gaj a grid. Let Fn be the empirical distribution of {X1, . . . , Xn} and

define V =
∫
g(x1, . . . , xd)dFn(x1) . . . dFn(xd). For given Fn and η ∈ Ga, define

ḡ(Xη) = |Ga|−1
∑
η′∈Ga

g(Xη′).

For the same Soa = {η1, . . . ,ηm} in generating Uoa, define

V̄ =
1

m

m∑
i=1

ḡ(Xηi).
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Lemma 1. Some properties of V and V̄ are listed as follows.

(i) V̄ is an unbiased estimator of V .

(ii) The bias of V is of order O(n−1) and MSE(V ) = MSE(U0) +O(n−2).

(iii) Uoa is an unbiased estimator of V and so also has bias O(n−1).

Proof. (i) follows the unbiasedness of orthogonal arrays. (ii) can be found in

Proposition 3.5 in (Shao, 2003, p.211). (iii) follows from Owen (1992).

Lemma 2.

E(V̄ − V )2 ≤ 1

m

∑
u:|u|>t

(
δ2u +O(n−1)

)
.

Proof. Let δ2u = δ2|u| and σ2u = σ2|u|.Change the F in section 2.2 to Fn, we can

define dFn,u, gn,u, hn,u, σ2n,u and δ2n,u analogously and sequentially. Again, by

substituting ḡ for g, with Fn, we define ḡn,u, h̄n,u, σ̄2n,u and δ̄2n,u. Adopt (3.5) in

Owen (1992) to ḡ, we have

E[(V̄ − V )2|Fn] ≤ 1

m

∑
u:|u|>t

δ̄2n,u ≤
1

m

∑
u:|u|>t

δ2n,u,

which leads to E(V̄ −V )2 = E(E[(V̄ −V )2|Fn]) ≤ (1/m)
∑
u:|u|>tEδ

2
n,u. Consider

σ2n,u =
∫
g2n,u(x1, . . . , xd)dFn(x1) . . . dFn(xn), which can be further written as∫ (∫

g2n,udFn,uc
)2
dFn,u. This integer can be viewed as a V-statistic with the

new kernel g(x1, . . . , x|u|, x|u|+1, . . . , xd)· g(x1, . . . , x|u|, xd+1, . . . , x2d−|u|), which

estimates σ2u with bias O(n−1).

Lemma 3. (Lusin’s theorem)

For any measurable function g on Rd and arbitrary ε > 0, there exists a contin-

uous gε defined on Rd with compact support such that E|g − gε| < ε.

Proof of Theorem 1. Define gF (Z1, . . . , Zd) = g(F−1(Z1), . . . , F
−1(Zd)) such

that Z ∼ U(0, 1) and F−1(Z) ∼ F . With this new kernel gF , the distribution of

random variables X is assumed to be the uniform distribution on [0, 1].

Write Uoa−Θ as (Uoa− V̄ ) + (V̄ −V ) + (V −Θ). Simple analysis reveals the

following relationships among of Voa, V̄ and V . Conditional on Fn, V is constant

and so E(Uoa − V̄ )(V − Θ) = 0, E(V̄ − V )(V − Θ) = 0 since E(Uoa − V̄ ) =

E(V̄ − V ) = 0. Conditional on both V and V̄ , E(Uoa − V̄ ) = 0 which indicates

E(Uoa − V̄ )(V̄ − V ) = 0. Thus,

MSE(Uoa) = E(Uoa − V̄ )2 + E(V̄ − V )2 + MSE(V ) (A.1)
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whose last two terms have been addressed by Lemma 2 and Lemma 1. So we

need to prove E(Uoa − V̄ )2 = o(m−1). Since Uoa and V̄ always use the same

Soa = {η1, . . . ,ηm},

E(Uoa − V̄ )2 = E

(
1

m

m∑
i=1

g(Xηi)− ḡ(Xηi)

)2

.

For i1 6= i2 (i1, i2 ∈ Zm), E(g(Xηi1 ) − ḡ(Xηi1 ))(g(Xηi2 ) − ḡ(Xηi2 )) = 0. Denote

η ∼ η′ if η and η′ belong to the same grid.

E(Uoa − V̄ )2 ≤ 2m−1E[(g(Xη)− g(Xη′))2|η ∼ η′]. (A.2)

For any M > 0, define g(x,M) = max{min{g(x),M},−M}. Obviously, we

have limM→∞ g(x,M) = g(x), and dominated convergence theorem indicates

E[(g(Xη)− g(Xη′))2|η ∼ η′]= lim
M→∞

E[(g(Xη,M)− g(Xη′ ,M))2|η ∼ η′]. (A.3)

Thus, for arbitrary ε > 0, we can find Mε such that

E[(g(Xη)− g(Xη′))2|η ∼ η′] ≤ E[(g(Xη,Mε)− g(Xη′ ,Mε))
2|η ∼ η′] + ε. (A.4)

Note that {X1, . . . , Xn} are random, so is Xη. Note that Eg2(X1, . . . , Xd) <∞.

We have Eg2(Xη) <∞ and so Eg(Xη) <∞, which indicates Eg2(Xη,Mε) <∞
and Eg(Xη,Mε) <∞. From Lusin’s theorem, there exists a continuous g∗ε,Mε

with

compact support such that E|g(Xη,M)−g∗ε,Mε
(Xη)| < εM−1ε . Since |g(Xη,Mε)| ≤

Mε,

E[(g(Xη,Mε)− g(Xη′ ,Mε))
2|η ∼ η′]

≤ 2MεE[|g(Xη,Mε)− g(Xη′ ,Mε)||η ∼ η′]
≤ 2MεE|g(Xη,Mε)− g∗ε,Mε

(Xη)|+ 2MεE|g(Xη′ ,Mε)− g∗ε,Mε
(Xη′)|+

2MεE[|g∗ε,Mε
(Xη)− g∗ε,Mε

(Xη′)||η ∼ η′]
≤ 4ε+ 2MεE[|g∗ε,Mε

(Xη)− g∗ε,Mε
(Xη′)||η ∼ η′] (A.5)

Note that g∗ε,Mε
has compact support and so is uniformly continuous. There exists

∆(M−1ε ε) such that |g∗ε,Mε
(Xη) − g∗ε,Mε

(Xη′)| ≤ εM−1ε as long as ||Xη − Xη′ ||2 ≤
∆(M−1ε ε). Define

A = {|Xηj −Xη′j | ≥ d
−1∆(M−1ε ε) for some j ∈ Zd},

with P (A) ≤
∑d

j=1 P{|Xηj−Xη′j | ≥ d
−1∆(M−1ε ε)}, and ||Xη−Xη′ ||2 ≤ ∆(M−1ε ε)
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on Ac.

2MεE[|g∗ε,Mε
(Xη)− g∗ε,Mε

(Xη′)||η ∼ η′]
= 2MεP (Ac)E[|g∗ε,Mε

(Xη)− g∗ε,Mε
(Xη′)||η ∼ η′,Ac]

+2MεP (A)E[|g∗ε,Mε
(Xη)− g∗ε,Mε

(Xη′)||η ∼ η′,A]

≤ 2ε+ 4M2
ε

d∑
k=1

P{|Xηj −Xη′j | ≥ d
−1∆(M−1ε ε)} (A.6)

Now we give the relationship among several events. For j ∈ Zd and η ∼ η′,

{|Xηj −Xη′j | ≥ d
−1∆(M−1ε ε)}

= {|Xηj − Fn(Xηj ) + Fn(Xηj )− Fn(Xη′j ) + Fn(Xη′j )−Xη′j | ≥ d
−1∆(M−1ε ε)}

⊆
{

sup
x∈(0,1)

|x− Fn(x)| ≥ 1

3d
∆(M−1ε ε)

}
∪
{
Fn(Xηj )− Fn(Xη′j ) ≥

1

3d
∆(M−1ε ε)

}
Note that η ∼ η′, as L → ∞, P ({Fn(Xηj ) − Fn(Xη′j ) ≥ (1/3d)∆(M−1ε ε)}) → 0.

Dvoretzky-Kiefer-Wolfowitz inequality reveals P
(

supx∈(0,1) |Fn(x)− x| ≥ ε
)
≤

exp(−2nε2). So we immediately have P ({|Xηj − Xη′j | ≥ d−1∆(M−1ε ε)}) → 0 as

n,L→∞, and we can find nε and Lε such that

P ({|Xηj −Xη′j | ≥ d
−1∆(M−1ε ε)}) ≤ (4dM2

ε )−1ε (A.7)

as long as n ≥ nε and L ≥ Lε.
Finally, by combining (A.3)-(A.7), we know that for arbitrary ε > 0, we can

find nε and Lε such that E[(g(Xη)− g(Xη′))2|η ∼ η′] ≤ 8ε, as long as n ≥ nε and

L ≥ Lε. That means

E[(g(Xη)− g(Xη′))2|η ∼ η′]→ 0 (A.8)

as n,L → ∞. Theorem 1 is concluded by submitting (A.8) into (A.2) and com-

bining (A.2) with (A.1), Lemma 1(ii) and Lemma 2.

Proof of Theorem 2. There exists c > 0 such that density function f(·) > c on

[a, b], and |F (x1)−F (x2)| ≥ c|x1−x2| for x1, x2 ∈ [a, b]. In (A.1), we only analyze

E(Uoa − V̄ )2 since the rest two terms are given by Lemma 1(ii) and Lemma 2.

Dvoretzky-Kiefer-Wolfowitz inequality reveals P (supx∈R |Fn(x)− F (x)| ≥ ε) ≤
exp(−2nε2). By taking ε = [log(n)n−1]1/2, we have

P (A) ≤ exp(−2 log n) = O(n−2),
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where A = {supx∈R |Fn(x)−F (x)| ≥ n−1/2 log1/2(n)}. Since g is continuous and

F is bounded, we can find M > 0 such that |g| ≤M and so |Uoa|, |V̄ | ≤M .

E[(g(Xη)− g(Xη′))2|η ∼ η′]
= P (A)E[(g(Xη)− g(Xη′))2|η ∼ η′,A] + P (Ac)E[(g(Xη)− g(Xη′))2|η ∼ η′,Ac]
≤M2n−2 + E[(g(Xη)− g(Xη′))2|η ∼ η′,Ac]

The analysis of E[(Uoa − V̄ )2|Ac] is as follows. On Ac, we have, for 1 ≤ k1, k2 ≤
nL−1,

c|X((l−1)nL−1+k1) −X((l−1)nL−1+k2)|
≤ |F (X((l−1)nL−1+k1))− F (X((l−1)nL−1+k2))|
≤ |Fn(X((l−1)nL−1+k1))− Fn(X((l−1)nL−1+k2))|+ 2n−1/2 log1/2 n

≤ L−1 + 2n−1/2 log1/2 n.

Since g is Lipschitz continuous, we know (g(Xη)− g(Xη′))2 = O(L−2 +n−1 log n)

for any η ∼ η′. Then we have E[(g(Xη) − g(Xη′))2|η ∼ η′,Ac] = O(L−2 +

n−1 log n). With this equation, Theorem 8 is the direct result of (A.1) (A.2),

Lemma 1(ii), Lemma 2.

Proof of Theorem 3. For convenience, we simply write gF as g in this proof.

In (A.1), we only analyze E(Uoa − V̄ )2 since the rest two terms are given by

Lemma 1 (ii) and Lemma 2. Each row of the matrix A generated in step 1

follows the uniform distribution on ZdL since the permutation in each column of

A0 is independent. Thus,

E(Uoa − V̄ )2 = E

(
1

m

m∑
i=1

g(Xηi)− ḡ(Xηi)

)2

=
1

mLd

∑
a∈ZdL

E[(g(Xη)− ḡ(Xη))2|η ∈ Ga].

Analysis is now focused on E[(g(Xη) − ḡ(Xη))2|η ∈ Ga] for every a ∈ ZdL. Let

X(0) = 0 and X(n+1) = 1. For l ∈ ZL, given X((l−1)nL−1) and X(lnL−1+1),

X((l−1)nL−1+1), . . . , X(lnL−1) has the same distribution as the order statistic of

L samples following the uniform distribution on [X((l−1)nL−1), X(lnL−1+1)]. For

A = {supx∈R |Fn(x)−F (x)| ≥ n−((1−c)/2)}, Dvoretzky-Kiefer-Wolfowitz inequal-

ity reveals P (A) = exp(−2nc). On Ac, we have (X(lnL−1+1)−X((l−1)nL−1))/L→ 1

as n→∞. The analysis is now focused on E[(g(Xη)− ḡ(Xη))2|η ∈ Ga,Ac]. For
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this given a, define X0 = (X0,1, . . . , X0,d) where X0,j = (L/n)
∑

η∈Gaj
Xη and so∑

η∈Gaj
(Xη −X0,j) = 0. Adopt the Taylor expansion on X0, we have

g(Xη) = g(X0) +

d∑
j=1

∂g

∂xj

∣∣∣∣
X0,j

(Xηj−X0,j) +O(L−2) and ḡ(Xη) = g(X0) +O(L−2).

E[(g(Xη)− ḡ(Xη))2|η ∈ Ga,Ac]

= E

 d∑
j=1

∂g

∂xj

∣∣∣∣
X0,j

· (Xηj −X0,j) +O(L−2)

2

|η ∈ Ga,Ac


= o(L−2) +

d∑
j=1

E

( ∂g

∂xj

∣∣∣∣
X0,j

· (Xηj −X0,j)

)2

|η ∈ Ga,Ac


= o(L−2) +

d∑
j=1

(
∂g

∂xj

∣∣∣∣
X0,j

)2
1

12L2
.

And then we have

E(Uoa − V̄ )2 =
1

mLd

∑
a∈ZdL

E[(g(Xη)− ḡ(Xη))2|η ∈ Ga]

=
1

12mL2

d∑
j=1

 1

Ld

∑
a∈ZdL

(
∂g

∂xj

∣∣∣∣
X0,j

)2
+ o

(
1

mL2

)

=
1

12mL2

d∑
j=1

E

(
∂g

∂xj

)2

+ o

(
1

mL2

)
,

Then Theorem 3 is the direct result of (A.1), Lemma 1(ii) and Lemma 2.

Proof of Theorem 5. Consider the m rows of A, a1, . . . ,am, generated in the

step 1 of the construction in section 2.1. For any a ∈ ZdL, the random permutation

in generating a1, . . . ,am reveals that P (a1 = a) = L−d. Given Fn,

E(Ũoa|Fn) = E
1

m

m∑
i=1

ωηig(Xηi) = Eωη1g(Xη1)

=
∑
a∈ZdL

L−dEη∈Gaωηg(Xη) =
∑
a∈ZdL

|Gai ∩ S∗0 |
|S∗0 |

Eη∈Gag(Xη)

=
∑
a∈ZdL

|Gai ∩ S∗0 |
|S∗0 |

 1

|Gai ∩ S∗0 |
∑
η∈Ga

g(Xη)

 =
1

|S∗0 |
∑
η∈S∗0

g(Xη) = U0.
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Since U0 is unbiased, so is Ũoa. This proves the unbiasedness of Ũoa. The MSE

of Ũoa can be similar analyzed as Theorem 1, and so is omitted here.
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