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WITH SIDE INFORMATION
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Abstract: Conducting integrative analyses of multiple data sets is an important

strategy in data analysis. It is becoming increasingly popular in genomics, which

enjoys a wealth of publicly available data sets that can be compared, contrasted,

and combined in order to extract novel scientific insights. This study examines a

stylized example of data integration for a classical statistical problem: leveraging

side information to estimate a vector of normal means. We formulate this task as a

compound decision problem, derive an oracle integrative decision rule, and propose

a data-driven estimate of this rule based on minimizing an unbiased estimate of

its risk. The data-driven rule is shown to asymptotically achieve the minimum

possible risk among all separable decision rules, and it can outperform existing

methods in terms of numerical properties. The proposed procedure leads naturally

to an integrative high-dimensional classification procedure, which is illustrated by

combining data from two independent gene expression profiling studies.

Key words and phrases: Compound decision problem, data integration, Gaussian

sequence problem, integrative genomics, nonparametric empirical Bayes.

1. Introduction

Methods for integrative analyses of multiple data sets are becoming increas-

ingly important. This is especially true in genetics and genomics, where petabytes

of public data are readily available for integrative analysis (Richardson, Tseng

and Sun (2016); Ritchie et al. (2015)). For example, Pickrell et al. (2016) ana-

lyzed summary statistics from genome-wide association studies of 42 human traits

and found that multiple traits are influenced by several hundred common genetic

variants. In a cross-species example, Shpigler et al. (2017) combined results from

a honey bee gene expression study with a database of autism-associated genetic

variants. They found evidence for evolutionary conservation of genes associated

with both honey bee sociality and human autism spectrum disorder. Comparing

and contrasting existing data, or combining them with new data, can lead to

novel insights that would have been difficult or impossible to uncover using a
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single data set (Tseng, Ghosh and Zhou (2015)).

Integrative analysis strategies can take many forms. One common imple-

mentation is to leverage side information from one or several auxiliary studies to

improve the analysis of some primary data set of interest. Examples abound in

the multiple testing literature, where methods such as p-value weighting and false

discovery rate regression incorporate auxiliary information to improve the power

to detect true signals in a primary data set (Genovese, Roeder and Wasserman

(2006); Ramdas et al. (2017)). In the genomic risk prediction literature, Hu et al.

(2017) and Zhao (2017) showed that summary statistics from previously con-

ducted genome-wide association studies can be used to improve the performance

of polygenic risk scores.

Growing interest in these ideas gives rise to an important statistical question:

what is the best way to leverage side information? This study examines this

question in a simple but nontrivial problem: the simultaneous estimation of a

vector of normal means. The classical version of this problem considers a sequence

of independent Xi1 ∼ N(θi1, σ
2
1), for i = 1, . . . , n, with known σ21, where the goal

is to estimate the θi1 (Johnstone (2017)). The integrative version, studied here,

investigates how an auxiliary sequence of Gaussian random variables can be used

to improve this estimation.

This Gaussian sequence model is simplistic, but studying data integration in

this setting is nevertheless instructive. First, the model is still important for many

applications (Cai (2012); Johnstone (2017)). Second, more accurate estimation

of the mean vector has immediate implications for high-dimensional classification

in genomics (Greenshtein and Park (2009)), as demonstrated in Section 6. Fi-

nally, this simple problem can reveal general statistical phenomena that arise in

integrative data analysis. More complicated variations of the Gaussian sequence

model have been studied, for example involving unknown variances that differ

across indices i; see Section 2.2. Extensions of the present work to these more

realistic settings are important directions for future work.

Section 2 formalizes this integrative estimation task as a compound decision

problem and summarizes previous related work. The optimal way to leverage

side information is derived in Section 3, which presents an oracle integrative

decision rule that achieves the best risk within a certain class of estimators.

This section also introduces a regularized version of the oracle rule that has the

same asymptotic risk. A data-driven estimate of this regularized oracle rule is

introduced in Section 4, and is shown to asymptotically achieve the optimal risk.

Its good performance is illustrated in simulations in Section 5 and in two genomic

risk prediction problems in Section 6. A discussion is presented in Section 7.
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Additional simulations and proofs can be found in the Supplementary Material.

2. Normal Means Problem with Side Information

2.1. Problem statement

As in the classical Gaussian sequence problem, consider a sequence of inde-

pendent Xi1 ∼ N(θi1, σ
2
1), for i = 1, . . . , n, with σ21 known. The side information

problem studied here further supposes that a second sequence of independent

Xi2 ∼ N(θi2, σ
2
2), for i = 1, . . . , n is available, with σ22 known. The goal is to

estimate the θi1, just as in the classical problem, except that we allow both Xi1

and the Xi2 to be used for estimation. In this sense, the Xi1 play the role of a

primary data set and the Xi2 are the auxiliary data set. We assume that the Xi1

are independent of the Xi2 for each i; extensions to dependent Xi1 and Xi2 are

discussed in Section 7.

This formulation is motivated by applications in integrative genomics. The

indices i represent different genomic features, such as genes, and Xi1 and Xi2

represent measurements on feature i from different studies. For example, in

the genomics classification problem described in Section 6, each Xi1 estimates

a classifier parameter θi1 corresponding to the ith gene from a primary study

of interest. Each Xi2 is the Z-score for the ith gene reported by an auxiliary

study of a related phenotype. The goal is to improve classification accuracy in

the primary study by leveraging both Xi1 and Xi2 to better estimate θi1.

In the above example, the Xi1 and Xi2 are paired for each i, because both

correspond to the same genomic feature. The informativeness of this pairing is

crucial to the good performance of data integration. For example, because the

phenotypes considered by the two studies in Section 6 are related, genes with

significant Z-scores in the auxiliary study are also likely to be important features

for classification in the primary study. Thus, combining the studies is likely to

be fruitful. In contrast, if the phenotypes were unrelated, Xi2 would likely not

be informative about θi1. The challenge is to develop an estimation procedure

that can make optimal use of the Xi2, incorporating them when appropriate and

discarding them otherwise. This is addressed by the method proposed in this

paper.

To more formally state the problem, define X·d = (X1d, . . . , Xnd), θ·d =

(θ1d, . . . , θnd), for d = 1, 2, and θ = (θ·1,θ·2). The normal means problem with

side information is to determine a decision rule δ(X·1,X·2) = {δ1(X·1,X·2), . . . ,
δn(X·1,X·2)} : R2n → Rn that minimizes the risk function
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Rn(θ, δ) =
1

n

n∑
i=1

E[{θi1 − δi(X·1,X·2)}2] (2.1)

over some class of decision rules. We focus on the important class of separa-

ble estimators; see Section 3. Throughout, we adopt the frequentist framework

where the θ·d is a fixed nonrandom vector. The auxiliary data are thus statisti-

cally independent of the primary data, but nevertheless can still provide useful

information for estimating θ·1.

To illustrate the complexities of this problem, first suppose that it were

known that θi2 = θi1, for all i = 1, . . . , n, and that σ1 = σ2. The best way to

integrate the auxiliary data set would be to apply existing optimal estimation

methods for a single Gaussian sequence to the sequence of averaged observations

(Xi1 + Xi2)/2. Next, consider a slightly more complicated setting: θi2 = θi1 for

all but one i, and the i for which θi2 6= θi1 is unknown. The auxiliary sequence is

clearly still informative for estimating θ·1, but how it should be used is no longer

obvious. Finally, consider an even more complicated scenario: θi2 = h(θi1) + ei,

where h(t) is an unknown function and the ei are unknown perturbations that

exhibit no patterns with respect to θi1. If the magnitudes of the ei are small

relative to the those of the θi1, X·2 should still be useful when estimating θ·1, but

it is even less clear how to optimally integrate it into the estimation procedure.

2.2. Previous work

The classical normal means estimation problem without side information,

which aims to minimize the risk function in (2.1) using decision rules that depend

only on X·1 and not X·2, has inspired an enormous body of literature (Johnstone

(2017)). Stein (1956) found that the maximum likelihood estimator δi(X·1) = Xi1

is inadmissible. Since then, research has focused on finding alternative estimators

with better risk properties. Several different but intimately related perspectives

on this problem have been developed.

The shrinkage perspective is exemplified by the James–Stein estimator (James

and Stein (1961); Stigler (1990)), which estimates θi1 by scaling Xi1 toward zero.

The empirical Bayes perspective (Robbins (1964)) treats the θi1 as random draws

from a prior distribution, uses the Xi1 to estimate any unknown parameters in

the prior, and then estimates each θi1 using its posterior mean. Efron and Morris

(1973) showed that the James–Stein estimator is an empirical Bayes estimator

that assumes a normal prior for the θi1. The compound decision perspective

(Robbins (1951); Zhang (1997)) treats the θi1 as nonrandom constants and di-

rectly derives the decision rule that minimizes the risk. Under certain conditions,
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the optimal solution from this perspective is closely related to nonparametric em-

pirical Bayes estimators (Brown and Greenshtein (2009); Jiang and Zhang (2009);

Zhang (2003)).

More complicated versions of the classical normal means problem have also

been studied. For example, specialized methods have been developed for estimat-

ing sparse normal means, where most θi1 are assumed to equal zero (Castillo and

van der Vaart (2012); Donoho and Johnstone (1994, 1995); Martin and Walker

(2014)). Heteroscedastic normal sequences, where the Xi1 can have different vari-

ances for different indices i, have also been considered, both when the variances

are known (Fu, Sun and James (2019); Tan (2016); Weinstein et al. (2018); Xie,

Kou and Brown (2012); Zhang and Bhattacharya (2017)), and when they are

unknown but estimates are available (Feng and Dicker (2018); Gu and Koenker

(2017); Jing et al. (2016)).

However, most prior studies of the normal means problem and its variants

consider only a single sequence of observations Xi1. It appears that the side infor-

mation problem (2.1) has not yet been widely studied. Jiang and Zhang (2010),

Cohen, Greenshtein and Ritov (2013), Tan (2016), and Kou and Yang (2017) pro-

posed methods for integrating the Xi2, but these essentially require knowledge of

the nature of the relationship between θi1 and Xi2, and may not work well when

this relationship is misspecified. Banerjee, Mukherjee and Sun (2018) studied the

side information problem, but only for sparse θ·1. Saha and Guntuboyina (2017)

and Koudstaal and Yao (2018) considered two or more Gaussian sequences, but

minimized the risk of estimating the means of all sequences, rather than one of

them, as in (2.1). In contrast to existing work, we examine the optimal use of

X·1 and X·2 for estimating possibly nonsparse θ·1.

3. Oracle Integrative Separable Rules

Without any restrictions, the optimal decision rule is simply δi(X·1,X·2) =

θi1. However, this is not useful, because the performance of this rule cannot

realistically be achieved using the observed data alone. Instead, we only consider

rules in the class

S = {δ(X·1,X·2) : δi(X·1,X·2) = f(Xi1, Xi2)}, (3.1)

where f is some fixed real-valued function that is applied to each pair (Xi1, Xi2)

in order to estimate θi1. In other words, the estimate of θi1 is calculated by

applying f(x1, x2) to only the ith pair of observations (Xi1, Xi2), and f(x1, x2)

cannot vary with i.
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Rules in S, called “separable” rules, are appealing because of their sim-

plicity, and have been studied extensively (Brown and Greenshtein (2009); Cai

(2012); Robbins (1951); Zhang (2003)). The maximum likelihood estimator

δ(X·1,X·2) = Xi1 belongs to S, and the James–Stein estimator approximates

the optimal separable rule that is linear in Xi1 (Jiang and Zhang (2009)). The

minimum risk among all separable estimators has been shown to be asymptoti-

cally equivalent, in a certain sense, to the minimum achievable risk over the larger

class of permutation invariant estimators (Greenshtein and Ritov (2009)).

The following proposition describes the oracle optimal integrative rule in S
for estimating θ·1, which will perform no worse than any separable rule that relies

only on X·1. It is a direct consequence of the fundamental theorem of compound

decision problems (Robbins (1951); Jiang and Zhang (2009)). Let φ(x) denote

the standard normal density, and define

p(x1, x2; t1, t2) =
1

σ1
φ

(
x1 − t1
σ1

)
1

σ2
φ

(
x2 − t2
σ2

)
,

p0i (x1, x2) = p(x1, x2; θi1, θi2),

(3.2)

such that the density of (Xi1, Xi2) can be abbreviated by p0i (x1, x2). As men-

tioned in the problem statement in Section 2.1, we assume that Xi1 and Xi2 are

independent. However, the following result is easily extended to settings where

Xi1 and Xi2 are correlated; see Section 7.

Proposition 1. Define the decision rule δ? = (δ?1 , . . . , δ
?
n), where δ?i (X·1,X·2) =

f?(Xi1, Xi2) and

f?(x1, x2) =

∑n
j=1 θj1p

0
j (x1, x2)∑n

j=1 p
0
j (x1, x2)

. (3.3)

Then Rn(θ, δ) ≥ Rn(θ, δ?) for any δ ∈ S (3.1), for the risk function Rn(θ, δ)

defined in (2.1).

The oracle rule δ? also has a useful interpretation as a Bayes rule. If the θi1
are viewed as independent draws from the discrete prior distribution

Gn(t1, t2) =
1

n

n∑
i=1

I(θi1 ≤ t1, θi2 ≤ t2), (3.4)

then the posterior expectation E(θi1 | Xi1, Xi2) of θi1 is exactly equal to (3.3).

This is an example of the close connection between compound decision problems

and nonparametric empirical Bayes procedures. The dependence between θi1 and

θi2 under Gn quantifies the amount of information that can be borrowed from
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Figure 1. Oracle estimators with and without side information for n = 20 pairs (Xi1, Xi2).
Each curve plots the estimate of θi1 as a function of Xi1. Each dot corresponds to a pair
(Xi1, θi1).

Xi2.

While appealing, this Bayesian interpretation is not necessary for Proposi-

tion 1, which holds for fixed and constant θ·1 and θ·2. Interestingly, under this

frequentist setting, Proposition 1 shows that X·2 can improve the estimation of

θ·1, even though X·1 and X·2 are statistically independent, as long the sequences

θ·1 and θ·2 are related in some sense. There need not be an obvious functional

relationship between the two mean vectors.

The above view of side information is slightly different from that of existing

frameworks. Previous methods (Jiang and Zhang (2010); Kou and Yang (2017);

Tan (2016)) posit some functional relationship, typically linear, between θi1 and

the observed Xi2, rather than between θi1 and the true mean θi2. For example,

Kou and Yang (2017) assume that θi1 = h(Xi2) + ei for some error term ei,

where h(x) must be known up to a finite-dimensional parameter. These methods

treat the Xi2 as fixed, whereas the proposed framework treats them as random

variables. The difference between existing work and the present setting is akin to

the difference between classical regression methods and those that take covariate

measurement error into account.

Figure 1 compares the oracle rule δ? (3.3) to the best separable estimator

that does not use X·2, which is the posterior expectation of θi1 under the prior

Gn conditional only on Xi1 (Zhang (2003)). In both panels, the θi1 are generated

by drawing n = 20 values from a standard normal distribution. In the left panel,

θ·2 = θ·1, which means X·2 is highly informative for θ·1. Thus, f?(x1, 3) gives the
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best estimates of θi1 for large Xi1 and f?(x1,−3) is most accurate for small Xi1.

In the right panel of Figure 1, the θi2 are generated from an independent standard

normal, which means X·2 is completely uninformative. In this setting, δ? may

not have the same performance as the optimal non-integrative separable rule for

any given set of X·1 and X·2, but in expectation, Proposition 1 guarantees that

it will have equal or lower risk.

The oracle separable integrative rule δ? described in (3.3) cannot be imple-

mented in practice because it requires knowing the true (θi1, θi2) up to a per-

mutation of the indices. Section 4 introduces a data-driven rule that targets the

performance of δ?, though for technical reasons, it is more convenient to tar-

get a regularized version of the oracle rule. Let δ?ρ = (δ?ρ1, . . . , δ
?
ρn) denote this

regularized rule, with δ?ρi(X·1,X·2) = f?ρ (Xi1, Xi2),

f?ρ (x1, x2) = x1 +

∑n
j=1(θj1 − x1)p0j (x1, x2)
ρ+

∑n
j=1 p

0
j (x1, x2)

, (3.5)

and ρ a small positive constant that prevents the denominator from being too

close to zero. Under some assumptions, δ?ρ will have the same asymptotic risk as

the oracle δ?.

Assumption 1. There exist positive constants C and η such that |θid| ≤ Cn1/4−η,

for i = 1, . . . , n and d = 1, 2.

Theorem 1. Under Assumption 1, limn→∞{Rn(θ, δ?ρ)−Rn(θ, δ?)} = 0.

Assumption 1 determines how quickly the magnitudes of θid can grow. To

put this rate into perspective, if the θid were random draws from a normal distri-

bution, then maxi |θid| would be O(log1/2 n) almost surely. Related assumptions,

which essentially restrict how variable the θid can be, have been made in previous

work on normal means estimation without side information. For example, Xie,

Kou and Brown (2012) require limn−1
∑

i θ
2
i1 <∞, and Jiang and Zhang (2009)

and Zhang (2009) control the rate of the pth weak moment of the distribution

function n−1
∑

i I(θi1 ≤ t1).

4. Data-Driven Separable Estimator

4.1. Existing nonparametric empirical Bayes approach

By Proposition 1 and Theorem 1, the regularized oracle δ?ρ (3.5) is asymp-

totically optimal within the class of separable estimators (3.1) but cannot be

implemented in practice. It therefore remains to develop a fully data-driven es-

timator for the θi1. There currently exist two classes of approaches, referred to
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as f - and g-modeling (Efron (2014, 2019)), and are based on nonparametric em-

pirical Bayes principles that pretend that the (θi1, θi2) are random variables with

prior distribution Gn(t1, t2) (3.4).

In f -modeling, the oracle estimator (3.3) is re-expressed as

f?(x1, x2) = x1 +
p̃′(x1, x2)

p̃(x1, x2)
,

where p̃′(x1, x2) = ∂p̃/∂x1 and

p̃(x1, x2) =

∫
p(x1, x2; t1, t2)dGn(t1, t2),

with p(x1, x2; t1, t2) from (3.2). If the (θi1, θi2) were truly random, p̃(x1, x2)

could be interpreted as the marginal density of (Xi1, Xi2), and p̃(x1, x2) and

p̃′(x1, x2) could be estimated nonparametrically using kernel density estimators.

In g-modeling, the oracle estimator is re-expressed as

f?(x1, x2) = x1 +

∫
(t1 − x1)p(x1, x2; t1, t2)dGn(t1, t2)∫

p(x1, x2; t1, t2)dGn(t1, t2)
,

and if the (θi1, θi2) were truly random, a nonparametric estimate of Gn(t1, t2)

could be obtained by maximizing the marginal log-likelihood (Kiefer and Wol-

fowitz (1956))

argmax
G

n∏
i=1

∫
p(Xi1, Xi2; t1, t2)dG(t1, t2).

Both f - and g-modeling have been used in normal means problems without

side information, where they are asymptotically optimal even in the frequen-

tist framework where the θi1 and θi2 are nonrandom (Brown and Greenshtein

(2009); Feng and Dicker (2018); Fu, Sun and James (2019); Jiang and Zhang

(2009); Koenker (2014); Koenker and Mizera (2014); Saha and Guntuboyina

(2017); Zhang (2009)). However, neither approach directly estimates the ora-

cle decision rule, with f -modeling proceeding through the intermediate quantity

p̃(x1, x2) and g-modeling proceeding through Gn(t1, t2).

4.2. Proposed direct risk minimization approach

We explore a more direct approach to estimating the oracle integrative sep-

arable classifier. Motivated by the regularized oracle (3.5), consider separable

rules of the form δtρ = (δtρ1, . . . , δ
t
ρn), with
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δtρi(x1, x2) = x1 +

∑n
j=1(tj1 − x1)p(x1, x2; tj1, tj2)
ρ+

∑n
j=1 p(x1, x2; tj1, tj2)

, (4.1)

for a given t = (t11, . . . , tn1, t12, . . . , tn2). By Theorem 1, the optimal t is equal

to9 (θ11, . . . , θn1, θ12, . . . , θn2), but the θid are not known. The challenge is to

choose t in a data-driven fashion that still asymptotically achieves the optimal

risk.

Choosing t to minimize the risk (2.1) of δtρ (4.1) should give an estimator

with good performance. However, calculating the risk requires knowing the true

θid. On the other hand, Stein’s lemma (Stein (1981)) can be used to give an

unbiased estimate of the true risk as a function of t only:

sure(t)

=
2

n

n∑
i=1

∑
j(tj1 −Xi1)

2p(Xi1, Xi2; tj1, tj2)

ρ+
∑

j p(Xi1, Xi2; tj1, tj2)
− 2

n
σ21

n∑
i=1

∑
j p(Xi1, Xi2; tj1, tj2)

ρ+
∑

j p(Xi1, Xi2; tj1, tj2)

− 1

n

n∑
i=1

{∑
j(t1j −Xi1)p(Xi1, Xi2; tj1, tj2)

ρ+
∑

j p(Xi1, Xi2; tj1, tj2)

}2

+ σ21.

(4.2)

The following theorem shows that sure(t) is also a good approximation to the

actual loss

`n(t) =
1

n

n∑
i=1

{θi1 − δtρi(Xi1, Xi2)}2 (4.3)

uniformly over the set

T = {t : |tjd| ≤ Cn1/4−η, j = 1, . . . , n, d = 1, 2}. (4.4)

Theorem 2. Under Assumption 1, if 0 < ρ ≤ 1, then

lim
n→∞

E sup
t∈T
|sure(t)− `n(t)| = 0.

The tuning parameter t can now be chosen by minimizing this estimated

risk, as a proxy for minimizing the unknown true risk. The proposed estimator

is therefore defined as

δt̂ρ as in (4.1) with t̂ = argmin
t∈T

sure(t). (4.5)

This strategy of direct risk minimization is common in the compound decision

literature (Jing et al. (2016); Kou and Yang (2017); Tan (2016); Weinstein et al.

(2018); Xie, Kou and Brown (2012, 2016); Zhang and Bhattacharya (2017)), but
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has not yet been used to approximate an optimal separable rule, such as (3.5).

The following theorem shows that (4.5) can asymptotically achieve the same

performance as that of the optimal separable decision rule.

Theorem 3. Under the same conditions as Theorem 2, limn→∞{E`n(t̂) −
Rn(θ, δ?)} ≤ 0, where E`n(t̂) is the risk of the proposed estimator δt̂ρ (4.5).

4.3. Implementation

The proposed estimator has been implemented in the R package cole, avail-

able at https://github.com/sdzhao/cole. In practice, the exact value of ρ

appears to make little difference, and ρ = 0 works well in most cases. When

the range of the Xid is very large or the variances σ2d are very small, problems

may arise when calculating sure(t) owing to numerical precision, in which case,

setting ρ = 10−12 seems sufficient. Throughout this paper, we implemented the

proposed method with ρ = 0.

Because the value of Cn1/4−η that defines the feasible set T (4.4) is not

known, in practice, the minimization in (4.5) can be performed over

T̂ =

n∏
i=1

[Xi1 −Mσ1, Xi1 +Mσ1]× [Xi2 −Mσ2, Xi2 +Mσ2],

for some sufficiently large positive constant M , such that T̂ contains (θ·1,θ·2)

with probability Φ(−M)n, where Φ is the cumulative distribution function of a

standard normal. By default, cole uses M = 5, such that T̂ contains (θ·1,θ·2)

with probability 0.99 when n = 10,000. Optimizing sure(t) over T̂ is sensible,

because it is known from Theorem 1 that E{sure(t)} achieves a global mini-

mum at tjd = θjd. This method works well, but bridging the gap between the

theoretical procedure and its practical implementation is an important direction

for future work.

Minimizing sure(t) is difficult because it is a nonconvex function. The im-

plementation in cole performs a simple coordinate descent. At initialization,

tid is set to Xid, and at each iteration, one tid is updated by optimizing over K

equally spaced candidates in [Xid−Mσd, Xid +Mσd]. All analyses in this paper

use K = 10, unless otherwise stated. The coordinates of t are updated in the

order t11, t21, . . . , tn1, t12, . . . , tn2. Convergence is reached when all coordinates

have been cycled through once without changing the value of sure(t) by more

than a small ε, which cole sets to 10−5 by default.

https://github.com/sdzhao/cole
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Table 1. Average total squared errors for the classical normal means problem without
side information. GMLEB: the g-modeling method of Jiang and Zhang (2009).

# nonzero 5 50 500

µ 3 4 5 7 3 4 5 7 3 4 5 7

GMLEB 39 34 23 11 157 105 58 14 459 285 139 18

Proposed 37 32 21 11 158 110 56 14 460 289 133 21

5. Simulations

5.1. Normal means problem without side information

The proposed direct risk minimization approach appears to be novel in the

compound decision literature. Therefore, this section first illustrates how this idea

performs in the classical normal means problem without side information. The

optimal separable estimator and its corresponding unbiased risk estimate look

like (3.3) and (4.2), respectively, but with the density p(x1, x2; t1, t2) replaced

with φ{(x1− t1)/σ1}/σ1, where φ(x) is the standard normal density. Similarly to

(4.5), a data-driven estimator of the oracle rule can be obtained by minimizing

the risk estimate over t1 using the coordinate descent algorithm described in

Section 4.3; this is available in the cole package. Analogs of Theorems 1–3 can

also be proved.

The direct estimator was compared to the g-modeling procedure of Jiang

and Zhang (2009), which is also asymptotically risk-optimal. One independent

sequence Xi1, for i = 1, . . . , 1000 was generated from N(θi1, 1), with the goal of

estimating θ·1 using only X·1. The θi1 equaled either 0 or µ and the number of

nonzero θi1 equaled either 5, 50, or 500. Table 1 displays the average total squared

errors over 100 replications. The results for the estimator of Jiang and Zhang

(2009) were taken directly from their Table 1, and the proposed estimator was

implemented using a coordinate descent algorithm that optimized over K = 50

candidates for each t1j . Table 1 shows that the estimators exhibited almost

identical performance.

5.2. Settings for normal means problem with side information

The primary data X·1 = (X11, . . . , Xn1) were generated in four different ways,

for three dense and one sparse configuration of their means θ·1. To generate dense

θ·1, values of θi1 were drawn independently from a N(0, 1), a Unif(−2, 2), or an

Exp(1) distribution. To generate the sparse configuration, 10% of the coordinates

of θ·1 were set to 1.5, and the rest were set to zero. The observed primary data
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were generated as Xi1 = θi1+εi1, where the εi1 were independent standard normal

random variables. The values of the θi1 were fixed across all replications.

For each of these four settings, the auxiliary data X·2 = (X12, . . . , Xn2) were

generated in three different ways to model different degrees of informativeness

of θ·2. First, define ei as independent draws from a Unif(−4, 4). To generate

strongly, weakly, and non-informative side information, θi2 was set as 2θ2i1, θ
2
i1+ei,

or ei, respectively. The observed auxiliary data were generated as Xi2 = θi2 + εi2,

where the εi were again independent standard normals. The values of the θi2
were fixed across all replications.

We compared the proposed integrative normal means estimator (4.5) with

two existing approaches that can incorporate side information. The first is the

procedure of Banerjee, Mukherjee and Sun (2018). The second is estimator (1)

of Kou and Yang (2017), defined as

λ

λ+ σ21
Xi1 +

σ21
λ+ σ21

h(Xi2)

for some function h(x) known up to a finite number of parameters. These

unknown parameters and λ are chosen by minimizing an unbiased estimate of

the risk of this estimator. This estimator is motivated by the regression model

θi1 = h(Xi2) + ei, for some error terms ei. However, it can be difficult to choose

the correct regression function h(x). For example, in some of the present simu-

lation settings, the true relationship between the primary and auxiliary data is

θi2 = 2θ2i1+ei, which is difficult to translate into a regression model of θi1 on Xi2.

When implementing the method of Kou and Yang (2017), we used both the non-

linear model θi1 = β0 +β1|Xi2|1/2 +ei and the linear model θi1 = β0 +β1Xi2 +ei.

Finally, we also implemented two additional estimators for θ·1 to provide

performance baselines. The first was the oracle (3.3), which attains the lowest

possible risk of any separable decision rule that incorporates side information.

The second was the g-modeling method of Jiang and Zhang (2009), which can

asymptotically achieve the optimal risk of any separable rule that does not use

side information.

5.3. Results for normal means problem with side information

Figure 2 illustrates the average losses over 200 simulations achieved by the

competing methods for N(0, 1), Unif(−2, 2), Exp(1), or sparse θ·1 and non-

informative, weakly informative, or strongly informative θ·2. Comparing the

performance of the oracle rule (3.3) with that of the method of Jiang and Zhang

(2009) shows that including auxiliary data did not degrade the estimation accu-
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Figure 2. Average losses for four different configurations of θ·1 and three degrees of
informativeness of θ·2. GMLEB: method of Jiang and Zhang (2009); KY, linear: method
of Kou and Yang (2017) with model θi1 = β0 + β1Xi2 + ei; KY, nonlinear: method of
Kou and Yang (2017) with model θi1 = β0 +β1|Xi2|1/2 + ei; ASUS: method of Banerjee,
Mukherjee and Sun (2018).

racy asymptotically when θ·2 was non-informative, and could greatly improve it

when θ·2 was informative.

The performance of the proposed data-driven estimator δt̂ρ (4.5) appeared to

converge to the oracle performance as the number of observations n increased,

consistent with Theorem 3. Unlike the oracle, however, incorporating non-
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informative X·2 in δt̂ρ resulted in worse performance compared with the other

methods for small n. This is expected, because non-informative Xi2 add extra

noise without decreasing the bias, and the data-driven method requires sufficient

samples to learn that the Xi2 are not useful. In contrast, δt̂ρ regained its competi-

tiveness for larger n, and when the auxiliary X·2 were at least weakly informative,

it frequently achieved the lowest risk among all methods. These results suggest

that incorporating X·2 using the proposed method is highly effective when X·2 is

informative, and does not do too much harm when it is not.

The proposed δt̂ρ was sometimes outperformed by the two implementations of

the procedure of Kou and Yang (2017), for example when the θi1 were generated

from Exp(1). This may be because this setting was particularly difficult for the

proposed method. Of the four configurations of θ·1, the maximum value of |θi1|
was largest under the Exp(1) configuration, and Assumption 1 makes it clear

that restricting this maximum value is important for the good performance of

δt̂ρ. On the other hand, when n = 1,000, δt̂ρ had essentially the same risk as

the methods of Kou and Yang (2017), and for other configurations of θi1, δt̂ρ
performed significantly better.

Finally, the proposed rule performed extremely well with sparse θ·1, even

though it was not designed for this scenario. When the auxiliary data were

strongly informative, it achieved the lowest risks among all implemented methods

when n ≥ 200. It would be interesting to explore extensions of the proposed

procedure to estimate sparse normal means.

6. Data Analysis

High-dimensional classification is an important problem in genomics. Shi

et al. (2010) studied the effectiveness of using gene expression microarray data

to develop classification rules for various phenotypes. This section focuses on

classification of two of these phenotypes: estrogen receptor status and treat-

ment response status in breast cancer patients. The training and validation data

sets they used are publicly available from the Gene Expression Omnibus (Edgar,

Domrachev and Lash (2002)) under accession number GSE20194.

Integrating auxiliary data may help improve classification accuracy. Wang

et al. (2005) developed a gene expression signature for distant metastasis-free

survival in estrogen receptor-positive and -negative breast cancer patients. It

may be possible to leverage data from Wang et al. (2005), publicly available under

accession number GSE2034, to more accurately classify the two outcomes from

Shi et al. (2010). However, it is not clear how to best integrate these auxiliary
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data.

The normal means estimation problem using side information, studied here,

provides one approach. Greenshtein and Park (2009) showed that minimizing the

squared error risk in the normal means problem is closely connected to minimizing

the misclassification rate in high-dimensional classification. Let ḠYi denote the

average expression level of gene i across all training subjects in class Y = 0, 1,

and let ŝYi denote its estimated standard deviation. Greenshtein and Park (2009)

considered classifying an observed gene expression vector (G1, . . . , Gn) using

I

(
n∑
i=1

θ̂i
Gi
ŝi
≥ c

)
(6.1)

for some cutoff c, where ŝi = {(ŝ1i )2/n1 + (ŝ0i )
2/n0}1/2 and θ̂i is an estimate of

the expected value of Zi = (Ḡ1
i −Ḡ0

i )/ŝi. They showed that using the f -modeling

procedure of Brown and Greenshtein (2009) to obtain θ̂i can lead to more accurate

classification than when simply using θ̂i = Zi.

Combined with the ideas presented in this paper, this framework leads to

a natural integrative classifier. Let Xi1 equal Zi, calculated for either estrogen

receptor status or treatment response status from the Shi et al. (2010) study, and

let Xi2 be the differential expression Z-score of the ith gene with respect to either

estrogen receptor status or distant metastasis-free survival from the Wang et al.

(2005) study. Integrating Xi2 into the estimate θ̂i1 should lead to more accurate

classification.

This integrative classification was implemented using the proposed rule δt̂ρ
(4.5), the method of Kou and Yang (2017) using a model linear in Xi2, and the

procedure of Banerjee, Mukherjee and Sun (2018) for sparse normal means. These

were compared to five classifiers that do not use of auxiliary information: 1) the

method of Greenshtein and Park (2009), but implemented using the g-modeling

procedure of Jiang and Zhang (2009); 2) the naive Bayes classifier; 3) the logistic

lasso, using the R package glmnet (Friedman, Hastie and Tibshirani (2010)); 4)

random forest, using the R package ranger (Wright and Ziegler (2017)); and 5)

the regularized optimal affine discriminant analysis of Fan, Feng and Tong (2012)

using the R package TULIP (Pan, Mai and Zhang (2019)). Tuning parameters for

lasso and the method of Fan, Feng and Tong (2012) were chosen using 10-fold

cross-validation, and random forest was run using default parameters.

The integrative, naive Bayes, and Greenshtein and Park (2009) classifiers all

assume that the Xid are independent across i. For these procedures, we first

performed screening to ensure that the magnitude of the correlation between
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Figure 3. Average misclassification errors for treatment response status or estrogen
receptor (ER) status from Shi et al. (2010). GP: method of Greenshtein and Park (2009);
KY: method of Kou and Yang (2017); ASUS: method of Banerjee, Mukherjee and Sun
(2018); ROAD: method of Fan, Feng and Tong (2012). “+ ER status/survival”: using
differential expression with respect to either ER status or distant metastasis-free survival
from Wang et al. (2005) as auxiliary data.

every pair of genes in the training data was small, similarly to Dicker and Zhao

(2016). Specifically, we sorted genes from most to least significantly associated

with the outcome in the training data, with p-values calculated using the R

package limma (Smyth (2005)). Starting from the most significant gene, any

other gene with correlation greater than 0.2 in magnitude was removed from the

data set. No screening was performed for lasso, random forest, or the method of

Fan, Feng and Tong (2012).

Misclassification rates for estrogen receptor and treatment response status

were assessed using the same training and testing data sets used in Shi et al.

(2010). We then repeated classification was after swapping the roles of the train-

ing and testing data. The averages of the two resulting misclassification rates for

the different methods are displayed in Figure 3.

The results suggest that integrative classification can be a useful strategy.

Intuitively, the survival results from Wang et al. (2005) should be most infor-

mative for predicting treatment response, while the ER status data from Wang

et al. (2005) should be most useful for predicting ER status. Indeed, the pro-

posed integrative classifier using survival Z-scores to predict treatment response

gave the lowest misclassification rate of all the methods. The proposed method
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integrating ER status Z-scores to predict ER status outperformed all method

except random forest and lasso.

7. Conclusion

This study assumes that the primary data X·1 and the auxiliary data X·2
are statistically independent. However, in some practical settings Xi1 and Xi2

may be correlated for each i, for example, if X·1 and X·2 arise from case-control

studies with shared controls (Zaykin and Kozbur (2010)). The ideas proposed

in this paper can be extended to this correlated setting. Assuming (Xi1, Xi2)

were bivariate normal with a known correlation, the oracle integrative rule would

be similar to (3.3) and is given in (S1.1) in the Supplementary Material. An

asymptotically risk-optimal data-driven estimator could then be constructed by

minimizing an unbiased risk estimate derived using Stein’s lemma.

This setting is especially interesting because when Xi1 and Xi2 are correlated,

X·2 provides useful information for estimating θ·1, even when θ·2 and θ·1 are

completely unrelated. This is not true when Xi1 and Xi2 are independent. This

is verified by Figure 1 in the Supplementary Material, where the oracle integrative

rule outperformed the oracle non-integrative rule when |cor(Xi1, Xi2)| = 0.9, even

though θ·2 was generated to be non-informative for θ·1. Thus, rules such as (3.3)

can take full advantage of information about θ·1 contained in the auxiliary X·2,

whether that information comes in the form of informative θi2, correlated Xi2, or

both.

This study considered only a single sequence of auxiliary data, but it is

straightforward to extend the proposed procedure to multiple auxiliary sequences.

However, this would result in theoretical and computational difficulties. Given

D − 1 auxiliary data sets, Assumption 1 would require |θid| ≤ n1/(2D)−η, for

d = 1, . . . , D, and the proposed procedure would require optimizing over Dn

parameters. It would be of great interest to examine whether there exists a

convex surrogate of the unbiased risk estimate (4.2). An alternative approach

might be to use parametric or semiparametric methods, such as those proposed

by Kou and Yang (2017), but to endow them with data-driven model selection

capabilities.

It would be interesting to extend data integration ideas to other variants of

the classical normal means problem, such as heteroscedastic sequences, sparse

sequences, and non-normal observed data. It would also be interesting to con-

sider broader applications of the compound decision framework beyond the si-

multaneous estimation of a mean vector, such as the integrative high-dimensional
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classification problem in Section 6.

Although this study examined the highly stylized problem of normal means

estimation with side information, its results reveal several general principles of

integrative analysis. First, auxiliary data can be useful, even if they are statisti-

cally independent of, and have no clearly expressible functional relationship with

the primary data. The two data sets need only be related in the sense discussed

in Section 3. Second, in principle, integrating auxiliary data can only help and

not harm the primary analysis. This is because it is possible to learn from the

data the degree to which the auxiliary data are informative, and thus the degree

to which they should influence inference on the primary data. Third, nonpara-

metric methods, such as the proposed method (4.5), can asymptotically achieve

ideal performance.

Supplementary Material

The online Supplementary Material contains simulation results when the

primary and auxiliary data are correlated, as well as proofs of the theoretical

results.
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