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Abstract: We propose a projection-based test to check partially linear models. The

proposed test achieves a reduction in dimension and, in the presence of multiple

linear regressors, behaves as though only a single covariate is present. The test

is shown to be consistent and can detect Pitman local alternative hypothetical

models. We further derive the asymptotic distributions of the proposed test under

the null hypothesis and the local and global alternatives. Most importantly, the

test’s numerical performance is consistently and remarkably superior to that of its

competitors. Real examples are presented for illustration. Although we assume that

the nonparametric component of the model has a univariate covariate, our model

can be generalized to partially linear additive models, partially linear single-index

models, and other models with linear and nonparametric components.
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1. Introduction

Regression models with linear and nonparametric components, or “semi-

parametric regression” are widely used in practice (Ruppert, Wand and Car-

roll (2003)). In particular the linearity assumption of the parametric component

means there is a need for methods to check whether these models provide a sat-

isfactory fit to data. Although a number of lack-of-fit tests have been developed,

they do not work well when the dimension of the parametric component is even

moderately high. To address this problem, we extend the projection-based lack-

of-fit test of Escanciano (2006) for parametric models to include semiparametric

models. This is the first theoretical study of Escanciano’s test applied to mod-

els with nonparametric components. We work only with a particular class of

semiparametric models, namely partially linear models (PLMs). Extensions to
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other semiparametric regression models, such as partially linear additive models

and partially linear single-index models, are important and straightforward in

practice, although an asymptotic study will require more work. Nonetheless, the

theory presented here should provide a good starting point for further research.

Consider the PLM

Y = X>β + g(T ) + ε, (1.1)

where Y ∈ R1 is the response variable, X ∈ Rp is a predictor vector, β ∈ Rp is an

unknown parameter vector, g(T ) is an unknown smooth function of a univariate

predictor T , and E(ε2|X,T ) <∞.
The PLM is important in the context of semiparametric regression owing

to the interpretability of the linear component and the flexibility of the non-

parametric part. Various estimation methods for parametric and nonparametric

components have been proposed and well studied in the literature (Ma, Chiou

and Wang (2006); Speckman (1988); Engle et al. (1986); Heckman (1986); Wahba

(1984)); for detailed information on estimators and their properties, see Härdle,

Liang and Gao (2000).

A number of methods have been proposed that check the lack-of-fit of a PLM.

Define the residual ε(U, β, g(T )) = Y −{X>β+g(T )}, where U> = (X>, T ), and

consider

H0 : Pr
{

E
{
ε(U, β, g(T ))

∣∣X,T} = 0
}

= 1,

for some β and g(t), (1.2)

against the alternative hypothesis:

H1 : Pr
{

E
{
ε(U, β, g(T ))

∣∣X,T} = 0
}
< 1, for all β ∈ Rp

and any function g(t).

Fan and Li (1996) developed a U-statistic-based test that is consistent for

general semiparametric models and is applicable for PLM diagnosis. Zhu and Ng

(2003) developed an empirical process-based test. Both methods have desirable

statistical properties such as consistency, and perform well in terms of empirical

size and power when the dimension of X is small. However, the performance

of the two methods deteriorates as the dimension of the covariates increases, as

noted by Xia (2009). This is further corroborated by the results of our simulation

studies in Section 6 and the online Supplementary Material. Here, we find that

with five-dimensional covariates in the linear part, the U-statistic-based statistic

sometimes degenerates, that is, becomes equal to zero, and the empirical process-
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based statistic yields low empirical size and power. This is not surprising because,

for the statistic proposed by Fan and Li (1996), one needs to estimate E(ε|X,T )

nonparametrically, which suffers from the curse of dimensionality. The statistic

proposed by Zhu and Ng (2003) involves the term I(X ≤ x, T ≤ t), which is

equivalent to {
∏p
j=1 I(Xj ≤ xj)}I(T ≤ t). When p becomes larger, this product

can easily degenerate for given sample sizes, causing the empirical process-based

statistic to degenerate.

To overcome the problems caused by the curse of dimensionality, proposed so-

lutions include avoiding a high-dimensional nonparametric regression or applying

a simple indicator weighting function. Important results from these efforts include

applications of the integrated conditional moment (ICM) method proposed by

Bierens (1982). The principle of the ICM method is to transform the conditional

expectation condition of the null hypothesis, (i.e., E{ε(U, β, g(T ))|X,T} = E{Y −
{X>β + g(T )}|X,T} = 0) into an uncountable number of unconditional mo-

ment restrictions, specifically that E{ε(U, β, g(T ))w(X,T,x)} = 0. The weight-

ing function w(X,T,x) is chosen to guarantee that E{ε(U, β, g(T ))|X,T} = 0

is equivalent to E{ε(U, β, g(T ))w(X,T,x)} = 0 for all x. Note that the curse

of dimensionality occurs more often in model checking than it dose in estima-

tion, because we need to deal with the regression of ε(U, β, g(T )) against (p+ 1)

covariates (X>, T ), even we just check a multiple linear model.

Several weight functions have been proposed, including the exponential weig-

hting function (Bierens (1982)), linear indicator weighting function (Stute and

Zhu (2002); Escanciano (2006)), logistic weighting function (Lee, White and

Granger (2001)), and trigonometric weighting function (Bierens and Ploberger

(1997)). Some weighting functions lead to inconsistent model checking methods

and different weighting functions lead to different power properties. Further-

more, theoretically, there is no best choice among these weighting functions in

term of power, because, as shown by Bierens and Ploberger (1997), they all lead

to asymptotic admissible tests. Note that the statistics proposed by Fan and Li

(1996) and Zhu and Ng (2003) are special cases of the ICM test corresponding

to weighting functions E{ε(U, β, g(T ))|X,T} and I(X ≤ x, T ≤ t), respectively;

unfortunately, they may suffer from the curse of dimensionality.

A popular choice of weighting function is the linear indicator weighting func-

tion I(U>W ≤ u), where u ∈ R1, U is a vector of predictors, and W is a

projection direction. This function avoids both high-dimensional problems and

having to use a multiple integration to calculate a Crámer–von Mises type test

statistic (see Section 2). For example, Stute and Zhu (2005, 2002) and Xia et al.

(2004) applied this weighting function to check generalized linear models and
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single-index models. Ma et al. (2014) applied a similar idea to check partially

linear single-index models.

A critical step when using the ICM method with the linear indicator weight-

ing function is the selection of the projection direction, W . This direction should

ideally ensure (1) the equivalence of the null hypothesis and the weighted un-

conditional moment conditions, (2) the consistency of the associated tests, (3)

outstanding power performance under the alternatives, and (4) computational

expediency. Stute and Zhu (2002) and Xia et al. (2004) chose a vector of re-

gression parameters as the projection direction, and then weakened the testing

problem to that of testing the independence of the residuals and a linear combina-

tion of regressors (Escanciano (2006)). Ma et al. (2014) chose a fixed projection

direction by estimating a single-index model. Because only one fixed direction

is considered, the tests proposed in Xia et al. (2004), Stute, Xu and Zhu (2008),

and Ma et al. (2014) may be inconsistent , except under specific conditions.

Xia (2009) also developed a projection-based testing procedure for parametric

and semiparametric models by projecting the fitted residuals onto a direction via

a single-index model. The proposed method is applicable for general settings and

reduces the dimensionality. However, asymptotic distributions under the null

hypothesis are not available, making it difficult to control type-I errors.

To overcome these limitations, we also use projections, but allow the di-

rection to vary such that the null hypothesis is equivalent to an infinite collec-

tion of weighted unconditional moment restrictions. Recall that U = (X>, T )>

and E{ε(U, β, g(T ))|U} = 0 a.e. if and only if E{ε(U, β, g(T ))|U>W} = 0 a.e.

for every unit (p + 1)-vector W (Lavergne and Patilea (2008); Bierens (1990);

Stinchcombe and White (1998)). Therefore, if E{ε(U, β, g(T ))|U} 6= 0 a.e.,

then the set {W : E{ε(U, β, g(T ))|U>W} 6= 0} has a Lebesgue measure larger

than zero. Thus, it is critical that the test statistic contains as many projec-

tion directions as possible, which ensures that E{ε(U, β, g(T ))|U>W} 6= 0 if

E{ε(U, β, g(T ))|U} 6= 0.

This observation motivates us to assume that (1) W is independent of the

response variable, covariates, and model error, and (2) W follows a uniform distri-

bution on the unit ball in Rp+1 such that every possible projection is considered.

Therefore, the corresponding test can detect a deviation from the null hypothe-

sis in any direction. As a result, the proposed statistic is consistent against all

alternatives. Because U>W in I(U>W ≤ u) is scalar, the test avoids the curse

of dimensionality. Furthermore, we show that the proposed test is independent

of the data-sgeneration process (see the discussion following Theorem 3) and can

detect the alternative hypothesis, which approaches to the null hypothesis at the
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rate n−r with 0 ≤ r ≤ 1/2. To avoid complexity in calculating the critical value,

we suggest a robust bootstrap method. Extensive numerical experiments, in-

cluding two real examples, confirm our theoretical findings and demonstrate the

superiority of the test.

Note that the proposed procedure can be treated as an extension of Escan-

ciano (2006) to include partially linear models. However, such an extension, while

important, is by no means straightforward. Escanciano (2006) focused mainly on

parametric models and required an asymptotic expansion (A3(b)), for the esti-

mators of the parameters that does not hold for the estimators of the parametric

and nonparametric components in the PLM. Furthermore, in a comparison of

the projection test with the existing methods, Escanciano (2006) uses simula-

tions to show the power gain of the projection test. In this study, we focus on

both the superior power of the proposed procedure and its dimension-reduction

characteristics.

The rest of this paper is organized as follows. In Section 2, we develop

an empirical-process testing statistic using projection for (1.2). The asymptotic

properties of the testing statistic under the null and alternative hypothetical

models are shown in Sections 3 and 4, respectively. In Section 5, we develop

a wild bootstrap method to calculate the critical value. Simulation studies and

real-data analyses are conducted in Section 6. The assumptions and estimations

of β and g(·) are given in the Appendix. The proofs of the main results and

additional simulation results are presented in the online Supplemental Material.

2. The Proposed Test

Let {(Yi, Xi, Ti), i = 1, . . . , n} be a sample from (Y,X, T ), and let β̂n and ĝn(·)
be the estimators of β and g(·), respectively; see Appendix A.2 for the definitions.

Write ε̂(Ui, β̂n, ĝn(Ti)) = Yi − {X>i β̂n + ĝn(Ti)}, where U>i = (X>i , Ti). Define

Mn,pro(u,W ) =
1√
n

n∑
i=1

ε̂(Ui, β̂n, ĝn(Ti))I
(
U>i W ≤ u

)
,

for (u,W ) ∈ Π, where Π = R1 × Sp+1 and W is uniformly distributed on

Sp+1 = {w ∈ Rp+1 :‖ w ‖= 1}, the unit ball in Rp+1.

Our projection-based test statistic is

Tn,pro =

∫ ∞
−∞

∫
Sp+1

{Mn,pro(u,w)}2 Fnw(du)dw,

where Fnw(u) = 1/n
∑n

i=1 I(U>i w ≤ u) and W has been integrated out. When
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the test statistic is sufficiently large, we reject the null hypothesis. The estimated

empirical process Mn,pro(u,w) is actually the cumulative sum of the estimated

model error, and Tn,pro is a Crámer-von Mises type test statistic.

Note that the test statistic Tn,pro is equal to the summation

Tn,pro =
1

n2

n∑
i=1

n∑
j=1

n∑
l=1

ε̂(Ui, β̂n, ĝn(Ti))ε̂(Uj , β̂n, ĝn(Tj))Aijl,

where Aijl =
∫
I(U>i w ≤ U>l w)I(U>j w ≤ U>l w)dw. By an argument of Escan-

ciano (2006), we have

Aijl = Cq

∣∣∣∣π − arccos

{
(Ui − Ul)>(Uj − Ul)
|Ui − Ul| |Uj − Ul|

}∣∣∣∣ ,
with Cq = π(q/2)−1/Γ(q/2 + 1), where Γ(·) is the gamma function and q = p+ 1.

Thus, the calculation of the statistic can be transformed to a calculation of a

summation. This avoids the multiple integration in Härdle and Mammen (1993)

and makes the implementation easier.

3. Asymptotic Properties under the Null Hypothesis

We now study the asymptotic properties of the projection-based test statistic

under the null hypothesis. We show that, for fixed w, the estimated empirical

process Mn,pro(u,w), −∞ < u < ∞, converges to a centered Gaussian process,

and Tn,pro converges to an integrated squared Gaussian process. Let g1(t) =

E(X|T = t), g2(t) = E(Y |T = t), X̃ = X − g1(T ), Γ(u,w) = E{X̃>I(U>W ≤
u)|W = w}, Σ = E(X̃X̃>), and Ψu(U, Y, ε,W ) = ε[I(U>W ≤ u)− E{I(U>W ≤
u|T,W )}]− Γ(u,W )Σ−1εX̃. We have the following result.

Theorem 1. Suppose that Conditions (C1)–(C5) in the Appendix hold. Under

the null hypothesis (1.1), for any given nuisance parameter W = w ∈ Sp+1, the

estimated empirical process Mn,pro(u,w), ∞ < u < ∞, converges in distribution

to Mpro(u,w), ∞ < u < ∞, in the Skorohod space S[−∞,∞], where Mpro(u,w)

is a centered Gaussian process with covariance function

cov{Mpro(u1, w),Mpro(u2, w)} = E{Ψu1
(U, Y, ε,W )Ψu2

(U, Y, ε,W )|W = w}.

For the test statistic Tn,pro, we have

Tn,pro
L−→
∫
{Mpro(u,w)}2Fw(du)dw,
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where Fw is the conditional distribution of U>W , given W .

In Tn,pro, if the weighting function is taken to be one, then Tn,pro reduces to

a score-type statistic. However, this score-type test cannot detect an alternative

that satisfies E
[
Y −

{
X>β + g(T )

}]
= 0 a.e., but E[Y −{X>β+g(T )}|X,T ] 6= 0

a.e.

4. Analysis of the Asymptotic Power

In the following, we investigate the power behavior of the statistic under local

and global alternatives. We consider the local alternative with a deviation of a

nonlinear measurable function of (X,T ) from the null hypothesis; that is,

H1n : Pr
{
Y = X>β + g(T ) + n−1/2D(X,T ) + ε

}
= 1, (4.1)

where E(ε|X,T ) = 0, and D(X,T ) cannot take the form of X>β + g(T ) for

any β and g(T ) and is a measurable function of (X,T ) satisfying with 0 <

E{D2(X,T )} <∞. Let Ω(u,w) = E{D̃(X,T )I(U>W ≤ u)|W = w}−Γ(u,w)Σ−1

E{X̃D̃(X,T )}, with D̃(X,T ) = D(X,T ) − E{D(X,T )|T}. Then, we have the

following result.

Theorem 2. Under Conditions (C1)–(C5) in the Appendix and the alternatives

in (4.1), we have

Tn,pro
L−→
∫
{Mpro(u,w) + Ω(u,w)}2Fw(du)dw,

where Mpro(u,w) is defined in Theorem 1.

Compared with the results of Theorem 1, Theorem 2 indicates that there is an

additional component Ω(u,w) in the asymptotic distribution of the statistic Tn,pro
under the local alternatives in (4.1). The quantity Ω(u,w) reflects the distance

between the null and the alternative hypotheses. Therefore, the proposed statistic

can detect a local alternative that approaches the null hypothetical model at the

parametric rate. Such a detection cannot be achieved if one uses the local test

methods (Härdle and Mammen (1993); Li and Wang (1998)).

We further consider the following global alternative hypotheses:

H1n : Pr
{
Y = X>β + g(T ) +D(X,T ) + ε

}
= 1. (4.2)

We have the following results.
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Theorem 3. Under Conditions (C1)–(C5) in the Appendix and the alternatives

in (4.2), we have Tn,pro−→∞ as n→∞.

Theorem 3 shows that the statistic Tn,pro diverges to infinity under the global

alternative hypothesis in (4.2). Therefore, it has asymptotic power one and is

consistent. Note that the results of Theorems 1–3 do not depend on distributional

assumptions on the model error, but do allow for error heteroscedasticity.

We also consider the following local alternative hypothetical models:

H1n : Pr
{
Y = X>β + g(T ) + nαD(X,T ) + ε

}
= 1. (4.3)

Theorem 4. Under Conditions (C1)–(C5) in Appendix and the alternatives in

(4.3), with −1/2 < α < 0, we have Tn,pro−→∞ as n→∞.

When −1/2 < α < 0, the convergence rate of model (4.3) to the null hypo-

thetical model is between those of models (4.1) and (4.2). Theorems 1, 3, and

4 show that the test can detect alternative models converging to the null model

with rates nα, for −1/2 ≤ α ≤ 0.

5. A Bootstrap Option for Critical Value Calculation

Theorem 1 gives the asymptotic distribution of the statistic Tn,pro under the

null hypothesis. An immediate concern is that this distribution may be case-

dependent, which complicates the calculation of the critical value. To overcome

this potential difficulty, we suggest using the bootstrap method to determine the

critical value.

To begin bootstrapping, generate an independent and identically distributed

(i.i.d.) random variable sequence {Vi, i = 1, . . . , n} with mean zero and variance

one, that also satisfies the condition that |Vi| ≤ c for some finite constant c. Let

Y ∗i = X>i β̂n + ĝn(Ti) + [Yi − {X>i β̂n + ĝn(Ti)}]Vi. Then, calculate the statis-

tic Tn,pro, denoted by T ∗n,pro, based on the bootstrap sample {(Y ∗i , Xi, Ti), i =

1, . . . , n}. Repeat the above processB times and obtain T ∗n1,pro, . . . , T ∗nB,pro. Then,

calculate the 1−α empirical quantile of the bootstrap statistic based on {T ∗n1,pro,
. . . , T ∗nB,pro}, which is taken as the α-level critical value.

Note that for the bootstrap procedure, it is not necessary to estimate any

new quantities, such as the influential function. In addition, the testing proce-

dure is data-driven. Given only the sample {(Y1, X1, T1), . . . , (Yn, Xn, Tn)}, the

proposed testing procedure using the bootstrap-generated critical value can de-

termine whether the partially linear model fits the data adequately, without any

other information on the data-generation process.
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For the bootstrap testing statistic T ∗n,pro, we have the following result.

Theorem 5. Under the null hypothesis (1.1) or alternative hypothesis (4.2), if

Conditions (C1)–(C5) in the Appendix are satisfied, the conditional distribution

of T ∗n,pro converges in distribution to the limiting null distribution of Tn,pro, given

{(Y1, X1, T1), . . . , (Yn, Xn, Tn), . . .}.

Theorem 5 shows that the bootstrap test statistic has the same asymptotic

distribution as that of the proposed test. By repeatedly generating series of

i.i.d. random variables {Vi, i = 1, . . . , n}, we can obtain a series of bootstrap

test statistics that can be viewed as a sample coming from the population Tn,pro.
Then, we can calculate the empirical quantile of the distribution of Tn,pro. The

critical value determined using this method approximates the theoretical value,

regardless of whether the data are from the null hypothetical model (1.1) or the

alternative hypothetical model (4.2).

6. Simulations and Real Data Analyses

6.1. Simulation studies

In this section, we report simulation results to evaluate the finite sample

performance of the proposed method. For the comparisons, four tests (i.e., Fan

and Li’s test, T un ; Zhu and Ng’s test, T sn, Xia’s test, TXian ; and the proposed

test, Tn,Pro) were evaluated. Two settings with were considered, namely, with

two-dimensional, and 20-dimensional covariates in the linear part were consid-

ered. Additional simulation results for the settings with five- and 10-dimensional

linear covariates are presented in the online Supplemental Material. In the esti-

mation procedure (see Appendix A.2), we used a Gaussian kernel and bandwidth

hn = 1.06 min(std(T ), 3Q̂r/4) n−1/3, where std(T ) and Q̂r are the sample stan-

dard deviation and interquantile of {T1, . . . , Tn}, respectively. This choice of

bandwidth is a combination of a rule of thumb and an undersmoothing method.

We considered three different sample sizes: n = 60, 100, and 200. All simula-

tion results are based on 1,000 replications. For each replication, the bootstrap

process was repeated 300 times. The nominal level was set to 0.05 and 0.1.

Example 1. We consider candidate models with two-dimensional linear covari-

ates and possible interaction between the linear covariates:

Y = β1X1 + β2X2 + g(T ) +
CX1X2

2
+ ε (6.1)

with X1, X2 ∼ U(0, π), g(T ) = exp(T 2 − 2T ), T ∼ U(0, 1), ε ∼ N (0, 1), and
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β1 = 2, β2 = 3. To examine the empirical size and power of each test, we took

C = 0, 0.2, 0.4, 0.6, 0.8, 1.0.

Example 2. We consider candidate models with 20-dimensional linear covari-

ates:

Y = X>β + g(T ) + C
∑
r

log(X2
r + T 2) + ε, (6.2)

where X = (X1, . . . , X20)
>, g(T ) = T 2, T ∼ N (0, 1), ε ∼ N (0, 0.5), and β = 120

(a 20-dimensional vector of ones). Let X follow a multivariate normal distri-

bution N20(0,Σ), with Σ = (σjj′) and σjj′ = 0.1, j, j′ = 1, . . . , 20. We used

C = 0, 0.1, 0.2, 0.3, 0.4, 0.5.

We calculated the proportions of times the null hypothesis was rejected

among the 1,000 replicates. This yields the empirical size under the null hy-

pothesis (i.e., C = 0) and the empirical power under the alternative hypothesis

(i.e., C 6= 0). We report the rejection proportions of the tests in Figures 1 and

2, where Tn,Pro, T sn, T un , and TXian denote the proposed test (solid line with filled

diamond), Zhu and Ng’s test (dotted line with filled circle), Fan and Li’s test

(dashed line with filled square), and Xia’s test (dot-dash line with filled triangle),

respectively. The thin horizontal line indicates the nominal level of 0.05 or 0.1.

In Example 1, the empirical sizes of T sn and Tn,Pro are close to the nominal

levels, while the empirical sizes of T un and TXian are lower than the nominal levels.

With regard to the power curves, Tn,Pro clearly performs best, followed by TXian ,

T sn, and T un in a consistent order for all configurations.

In Example 2, the performance of Tn,Pro is still very promising, while the

other tests almost crash. Specifically, T un is always equal to zero, which causes

the empirical size and power to be zero. Furthermore, T sn and its bootstrap

version may degenerate to zero, which results in large empirical sizes. Though

TXian is free from any degeneration, its power curve indicates that it does not

perform well when the dimension of X is moderate or large.

We report the failure times of the tests T un , T sn, TXian , and Tn,Pro under

Example 2 in Table 1. There were no failures for the four tests in Example 1.

In Example 2, T un and T sn almost always degenerated in all configurations. This

may explain why the power curves of these two tests in Figure 2 are so flat.

Overall, the proposed test performs best, with satisfactory empirical size and

power. Most importantly, the proposed test is free from the curse of dimension-

ality. This feature becomes more significant with higher-dimensional covariates.
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Figure 1. Simulation results for model (6.1) in Example 1. Rejection proportions of four
methods against C with different sample sizes and test levels 0.05, 0.1.

6.2. Real-data analyses

Additive models are perhaps the most realistic, parsimonious option when the

relationship between the dependent variable and the covariates may not be linear.

On the other hand, if some nonparametric components can be simplified to linear

components, the estimation can be more efficient and easy to interpret. In this

case, partially linear models are preferable to additive models. In the real-data

analysis, our preliminary exploration indicates that the relationship between the

dependent variable and the covariates is not linear. However, whether a partially
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Figure 2. Simulation results for model (6.2) in Example 2. The legend is the same as
that in Figure 1.

linear model can parsimoniously reflect this relationship is unclear. We therefore

apply the proposed method.

In this section, we apply the proposed test Tn,Pro and the three tests T un ,

T sn, and TXian used in the simulation studies to analyze two real data sets. We

test whether the partially linear model in (1.1) can adequately fit the data sets.

The choices of the kernel function and bandwidth are the same as those in the

simulation studies, in principle.

Example 3. (Analysis of hitters’ salary data) In this example, we apply the
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Table 1. Failure times among the 1,000 replicates for the four tests in model (6.2) with
different sample sizes and different C-values.

n=60 n=100 n=200

C Fu F s Fu F s Fu F s FXia FPro

0.0 1,000 995 1,000 998 1,000 946 0 0
0.5 1,000 996 1,000 987 1,000 953 0 0
1.0 1,000 999 1,000 985 1,000 949 0 0
2.0 1,000 997 1,000 989 998 946 0 0
3.0 1,000 994 1,000 983 1,000 950 0 0
4.0 1,000 999 1,000 980 1,000 945 0 0

Fu, F s, FXia, and FPro: corresponding to the tests by Fan and Li (1996), Zhu and Ng
(2003), Xia (2009), and the proposed test, respectively.

four tests to analyze hitters’ salary data, which were analyzed previously by Xia

et al. (2002). After removing 59 missing values from the original data set of 322

observations, we were left with 263 observations. The annual salary in 1987 served

as the response variable Y . We treated home runs during their entire career up

to 1986 (CHmRun) as the nonlinear component, and the following 15 covariates as

linear components: times at bat in 1986 (AtBat), hits in 1986 (Hits), home runs

in 1986 (HmRun), runs in 1986 (Runs), runs batted in 1986 (RBI), walks in 1986

(Walks), years in major leagues (Years), times at bat during their entire career

up to 1986 (CAtBat), hits during their entire career up to 1986 (CHits), runs

during their entire career up to 1986 (CRuns), runs batted in during their entire

career up to 1986 (CRBI), walks during their entire career up to 1986 (CWalks),

put-outs (PutOuts), assistances (Assists), and errors (Errors). For numerical

convenience, all predictors were standardized to have mean zero and variance

one.

Having conducted 5,000 bootstrap replications, we obtained the p-values

based on T un , T sn, and Tn,Pro to be 0.3756, 0.2538, and 0.0170, respectively. We

also had SCVn = 0.9820 < TSSn = 0.9962 for the test TXian . Here, SCVn and

TSSn are the single-indexing cross-validation values and the average residual sum

of squares, respectively, that is,
∑n

i=1(ε̂i −
∑n

j=1 ε̂j/n)2/n. See Xia (2009) for

the calculation of SCVn and TSSn. Therefore, the proposed method and Xia’s

method both suggest that we should reject the null hypothesis, while the tests of

Fan and Li (1996) and Zhu and Ng (2003) suggest not rejecting the null hypoth-

esis of the partially linear model. Based on our simulation results, we prefer to

reject the null hypothesis.

We show scatter plots of the estimated residuals ε̂n versus CHmRun and X>β̂n
in Figure 3 (a) and (b), and a nonparametric regression of salary against Hits and
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Figure 3. Results for the hitters salary data. The estimated residuals ε̂n versus CHmRun

(a) and X>β̂n (b) along the nonparametric estimated curves with 95% confidence bands.
The estimated curves of the salary against hits in 1986 (c) and home runs in 1986 (d)
via the gam fitting.

HmRun via the gam fitting in Figure 3 (c) and (d). Both curves show significant

nonlinear patterns. This evidence further supports the finding that a partially

linear model is not adequate to fit this data set, supporting the conclusion of the

proposed method and of Xia’s method.

Example 4. (Analysis of body fat data) We studied a body fat data set, available

at http://lib.stat.cmu.edu/datasets/bodyfat, with 249 observations after

removing three outliers from the original data set. The logarithm of the per-

centage of body fat serves as the response variable Y . There are 11 predictors in

the linear part: age (Age), weight (Weight), height (Height), chest circumference

(CChest), abdomen circumference (CAbdomen), hip circumference (CHip), thigh

circumference (CThigh), ankle circumference (CAnkle), bicep (extended) circum-

ference (CBiceps), forearm circumference (CForearm), and wrist circumference

(CWrist).

http://lib.stat.cmu.edu/datasets/bodyfat
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Following the editor’s suggestion, we apply our method to a partially linear

model with a two-dimensional nonparametric component; that is, we consider

Y = X>β + g(CKnee, CNeck) + ε.

The procedure and theory are still valid for this situation, with mild ad-

ditional assumptions, although we focus only on univariate T . For numerical

convenience, all predictors were standardized with mean zero and variance one.

Based on 5,000 bootstrap replications, we obtained the p-values based on

T sn and Tn,Pro to be 0.1022 and 0.0058, respectively, while the test based on the

U-statistic T un degenerated. For the test TXian , we obtained SCVn = 1.2615 >

TSSn = 0.9960 and, therefore, the null hypothetical partially linear model should

not be rejected. Thus, the tests T sn and TXian suggest not rejecting the null

hypothesis, and the test T un is not applicable. However, the proposed test suggests

that we reject the null hypothesis, which means that the hypothesized partially

linear model does not adequately fit this body fat data.

To investigate whether the above results seem sensible, we plot the estimated

surface of the nonparametric function g(T ) with T = (T1, T2)
> = (CKnee, CNeck)>

in Figure 4 (a), indicating that it is difficult to find a suitable form to model the

function g(T ). We also provide scatter plots of the estimated residuals ε̂n versus

CKnee, CNeck, and X>β̂n in Figure 4 (b), (c), and (d), respectively. Figures 4 (b)

and (c) indicate that the nonparametric model for knee circumference and neck

circumference fits reasonably well. However, Figure 4 (d) shows a nonlinear trend

between the residuals and X>β̂n, which casts suspicion on the model adequacy.

To explore this further, we depict the estimated effects for ankle circumference

(CAnkle) in Figure 4 (e) and bicep (extended) circumference (CBiceps) in Fig-

ure 4 (f). The evidence of nonlinear patterns indicates that a partially linear

model is not adequate to fit this data set. As shown, the proposed test is more

powerful than the tests T sn and TXian .

7. Conclusion

We have proposed a projection-based method for checking the adequacy of

a PLM. The method is consistent and reduces dimensionality, which may be

of interest in dealing with high-dimensional observations. In summary, the pro-

posed procedure is computationally expedient, theoretically reliable, intuitively

appealing, and practically useful. We have shown both theoretically and numer-

ically that the proposed procedure has advantages over the existing methods.

However, note that we do not claim that the proposed method will always be
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Figure 4. Results for the body fat data. The estimated surface of the nonparametric
function g(CKnee, CNeck) (a). The estimated residuals ε̂n versus CKnee (b), CNeck (c),

and X>β̂n (d) along the nonparametric estimated curves with 95% confidence bands.
The estimated curves of log(fat) against ankle circumference (e) and bicep (extended)
circumference (f) via the gam fitting.

best. Different circumstances may favor other methods, based on the assertion of

Bierens and Ploberger (1997) that the aforementioned four weighting functions

and the simple indicator function lead to asymptotic admissible tests. However,

our overall numerical comparison suggests that the proposed procedure is very

promising.

The proposed projection-based methodology is not limited to the PLM, but,

in fact, is applicable to more general semiparametric models. While a theoretical

investigation in this direction would be challenging,we believe the success of our
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projection-based method on the PLM makes further research warranted. Future

studies should also examine the cases when (i) the number of covariates increases

with the sample size, and (ii) the response variable is not continuous.

Supplementary Material

The online Supplementary Material provides proofs for Theorems 1 – 5 and

additional simulation studies.
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Appendix

A. Appendix

In what follows, we denote X̃ = X − g1(T ) and X̃i = Xi − g1(Ti).

A.1. Assumptions

We begin this section by giving the conditions needed in the proofs of the

theorems.

(C1) The functions g(t), g1(t) = E(X|T = t) and g2(t) = E(Y |T = t) are

second-order continuously differentiable and satisfy Lipschitz condition of

order 1.

(C2) The matrix Σ = E(X̃X̃>) is positively definite and supx,tE(Y 2|X = x, T =

t) <∞.

(C3) (i) The density of T , ft(t), exists and satisfies

0 < inf
t∈R1

ft(t) ≤ sup
t∈R1

ft(t) <∞;

(ii) ft(t) is second-order continuously differentiable.

(C4) The kernel function K(·) is a bounded kernel function of order 2 with

bounded support.

(C5) The bandwidths satisfy hn → 0, nhn →∞ and nh4n → 0 as n→∞.
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Remark 1. Conditions (C1) and (C2) are necessary for the asymptotic normality

of the model estimating procedure. Condition (C3) aims at avoiding tedious

proofs of the theorems. Conditions (C4)–(C5) are generally needed to obtain the

convergence rates of the nonparametric estimates.

A.2. Estimation of β and g(t)

Let Sj(t, h) = 1/n
∑n

i=1(Ti − t)jKh(t − Ti), j = 0, 1, 2, with K(·) being a

kernel function, hn a bandwidth sequence and Kh(t) = 1/hnKh(t/hn). We first

estimate the function g1(t) and g2(t) by the local linear method:

ĝ1n(t) =
1

n

n∑
i=1

{S2(t, h)− S1(t, h)(Ti − t)}Kh(t− Ti)Xi

S0(t, h)S2(t, h)− S2
1(t, h)

,

ĝ2n(t) =
1

n

n∑
i=1

{S2(t, h)− S1(t, h)(Ti − t)}Kh(t− Ti)Yi
S0(t, h)S2(t, h)− S2

1(t, h)
.

Then we can estimate β and g(t) as follows:

β̂n =

[
n∑
i=1

{Xi − ĝ1n(Ti)}{Xi − ĝ1n(Ti)}>
]−1 n∑

i=1

{Xi − ĝ1n(Ti)}{Yi − ĝ2n(Ti)}

and

ĝn(t) = ĝ2n(t)− ĝ1n(t)>β̂n.

Therefore we can estimate the model error ε for the ith subject by ε̂(Ui, β̂n, ĝn(Ti))

= Yi − {X>β̂n + ĝn(Ti)}.
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