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Abstract: We propose a new measure for stationarity in functional time series that is

based on an explicit representation of the L2-distance between the spectral density

operator of a nonstationary process and its best (L2-)approximation by a spec-

tral density operator corresponding to a stationary process. This distance can be

estimated by the sum of the Hilbert–Schmidt inner products of the periodogram op-

erators (evaluated at different frequencies). Furthermore, the asymptotic normality

of an appropriately standardized version of the estimator can be established for the

corresponding estimator under the null and alternative hypotheses. As a result, we

obtain a simple asymptotic frequency-domain level α-test (using the quantiles of the

normal distribution) to test for the hypothesis of stationarity of a functional time

series. We also briefly discuss other applications, such as asymptotic confidence

intervals for the measure of stationarity, or the construction of tests for “relevant

deviations from stationarity”. We demonstrate in a small simulation study that the

new method has very good finite-sample properties. Moreover, we apply our test

to annual temperature curves.

Key words and phrases: Functional data, local stationarity, measuring stationarity,

relevant hypotheses, spectral analysis, time series.

1. Introduction

In many applications of functional data analysis (FDA), data are recorded

sequentially over time and naturally exhibit dependence. As a result, researchers

are increasingly analyzing functional data from time series; we refer to the mono-

graphs of Bosq (2000) and Horváth and Kokoszka (2012), among others. An im-

portant assumption in most of the literature is that of stationarity, which allows

us to develop a unified statistical theory. For example, stationary processes with a

linear representation have been investigated by, among others, Mas (2000), Bosq

(2002), and Dehling and Sharipov (2005). Prediction methods (e.g., Antoniadis

and Sapatinas (2003); Aue, Dubart Nourinho and Hörmann (2015); Bosq (2000))
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and violations of the independent and identically distributed (i.i.d.) assumption

in the context of change point detection are also relatively well documented in

the literature (e.g., Aue et al. (2009); Berkes et al. (2009); Horváth, Hušková and

Kokoszka (2010)). Hörmann and Kokoszka (2010) provide a general framework

within which to examine temporal dependence between the functional observa-

tions of stationary processes. Frequency domain analysis of stationary functional

time series is considered by Panaretos and Tavakoli (2013) under the assumption

of functional generalizations of cumulant-mixing conditions.

In practice, however, it is not clear that the temporal dependence structure is

constant and, hence, that stationarity is satisfied. It is therefore desirable to have

tests for second-order stationarity or measures for deviations from stationarity

for data analyses of functional time series. In the context of Euclidean data (uni-

variate and multivariate), there exists a considerable amount of literature on this

problem. Early work can be found in Priestley and Subba Rao (1969), who pro-

posed testing the “homogeneity” of a set of evolutionary spectra. Von Sachs and

Neumann (2000) used coefficients with respect to a Haar wavelet series expansion

of time-varying periodograms for this purpose; see also Nason (2013), who pro-

vided an important extension of their approach and, Cardinali and Nason (2010)

and Taylor, Eckley and Nunes (2014) for further applications of wavelets to the

problem of testing for stationarity. Paparoditis (2009, 2010) proposed rejecting

the null hypothesis of second-order stationarity if there is a large L2-distance

between a local spectral density estimate and an estimate derived under the as-

sumption of stationarity. Dette, Preuß and Vetter (2011) suggested estimating

this distance directly using sums of periodograms evaluated at the Fourier fre-

quencies in order to avoid the problem of choosing additional bandwidths (see

also Preuß, Vetter and Dette (2013), for an empirical process approach). An

alternative method for investigating second-order stationarity can be found in

Dwivedi and Subba Rao (2011) and Jentsch and Subba Rao (2015), who use the

fact that the discrete Fourier transform (DFT) is asymptotically uncorrelated at

the canonical frequencies if and only if the time series is second-order stationary.

Recently, Jin, Wang and Wang (2015) proposed a double-order selection test for

checking the second-order stationarity of a univariate time series. Furthermore,

Das and Nason (2016) investigated an experimental empirical measure of nonsta-

tionarity based on the mathematical roughness of the time evolution of the fitted

parameters of a dynamic linear model.

On the other hand, despite the frequent assumption of second-order station-

arity in functional data analysis, much less work has been done investigating the

stationarity of functional data. A rigorous mathematical framework for locally
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stationary functional time series was recently developed by van Delft and Eichler

(2018), who extended the concept of local stationarity introduced by Dahlhaus

(1996, 1997) from univariate time series to functional data. To the best of our

knowledge, Aue and van Delft (2019) is the only work that applies this framework

to test for the second-order stationarity of a functional time series against smooth

alternatives. These authors follow the approach of Dwivedi and Subba Rao

(2011), showing that the functional discrete Fourier transform (fDFT) is asymp-

totically uncorrelated at distinct Fourier frequencies if and only if the process is

functional weakly stationary. This result is then used to construct a test statistic

based on an empirical covariance operator of the fDFTs, which is subsequently

projected onto a finite-dimensional subspace. The asymptotic properties of the

resulting quadratic form are shown to follow a chi-square distribution, both un-

der the null and under the alternative of functional local stationarity. Although

the authors thereby provide an explicit expression for the degree of departure

from weak stationarity, the test requires the specification of the parameter M ,

the number of included lagged fDFTs. This can be viewed as a disadvantage,

because it affects the power of the test.

We propose a different test, based on an explicit representation of the L2-

distance between the spectral density operator of a nonstationary process and

its best (L2-)approximation by a spectral density operator corresponding to a

stationary process. This measure vanishes if and only if the time series is second-

order stationary. Consequently, a test can be obtained by rejecting the hypothesis

of stationarity for large values of a corresponding estimate. The L2-distance is es-

timated using a functional of sums of integrated periodogram operators for which,

after appropriate standardization, asymptotic normality can be established under

the null hypothesis and any fixed alternative. The resulting test for the hypoth-

esis of stationarity is extremely simple and, therefore, attractive to practitioners.

The test uses the quantiles of the standard normal distribution, and does not

require choosing a bandwidth in order to estimate the time-varying spectral den-

sity operators, or using bootstrap methods to obtain critical values. Therefore,

the proposed methodology is very efficient, from a computational point of view.

Although a similar concept has been investigated for univariate time series

(see Dette, Preuß and Vetter (2011)), the mathematical derivation of the asymp-

totic normality requires several sophisticated and new tools for spectral analysis

of locally stationary functional time series. In particular, in contrast to the cited

reference, our approach does not require a linear representation of the time se-

ries using an independent sequence, and we derive several new properties of the

periodogram operator, which are of independent interest. Owing to space con-
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straints, these results, together with the more technical arguments (which are

rather complicated), are relegated to the Supplementary Material. We specifi-

cally mention Theorem S3.1 in Section S3 of the Supplementary Material, which

provides a representation of the cumulants of the Hilbert–Schmidt inner prod-

ucts of local periodogram tensors (evaluated at different time points and different

frequencies) using the trace of cumulants of simple tensors of the local functional

discrete Fourier transforms. The Supplementary Material also contains a brief

discussion of several other applications of the asymptotic theory.

The rest of the paper is organized as follows. In Section 2, we introduce

the main concept of locally stationary functional time series, define a measure

of stationarity for these processes, and introduce its corresponding estimators.

Section 3 is devoted to the asymptotic properties of the proposed estimators. In

Section 4, we report a small simulation study to demonstrate that the new test

has very good finite-sample properties. In this section, we also apply our test to

annual temperature curves recorded at several measuring stations in Australia

over the past 135 years.

2. A Measure of Stationarity on the Function Space

2.1. Notation and the functional setup

Suppose H is a separable Hilbert space with the inner product 〈·, ·〉 and

induced norm ‖ · ‖. Let L(H) be the space of bounded linear operators from

H to H, and let {en}n≥1 be some orthonormal basis of H. An operator A ∈
L(H) is Hilbert–Schmidt if |||A|||22 =

∑
n≥1 ‖Aen‖2 < ∞, in which case, we write

A ∈ S2(H). The space S2(H) is a Hilbert space with the inner product given

by 〈A,B〉HS =
∑

n≥1〈Aen, Ben〉 for A,B ∈ S2(H). An operator A ∈ L(H) is a

trace-class operator, that is, A ∈ S1(H), if |||A|||1 =
∑

n≥1〈(A†A)1/2en, en〉 < ∞,

where A† denotes the adjoint of A. The trace of A ∈ L(H) is defined by TrA =∑
n≥1〈Aen, en〉, which converges if A ∈ S1(H). We commonly use the rank-one

operator x⊗ y ∈ L(H), with x, y ∈ H, defined by (x⊗ y)(z) = 〈z, y〉x, for z ∈ H.

Suppose that X is an H-valued random element. If E‖X‖ <∞, the expected

value EX can be defined as the unique element µ ∈ H that satisfies E〈X,x〉 =

〈µ, x〉, for all x ∈ H. Provided that E‖X‖2 <∞, the covariance operator of X is

defined as E((X −µ)⊗ (X −µ)). An H-valued sequence {Xt}t∈Z is second-order

(or weakly) stationary if E‖Xt‖2 <∞, EXt = µ, and E((Xs − µ)⊗ (Xt − µ)) =

E((Xs−t − µ) ⊗ (X0 − µ)), for all s, t ∈ Z. We say that {Xt}t∈Z is strictly

stationary if the joint distribution of {Xt1 , . . . , Xtn} and the joint distribution of

{Xt1+h, . . . , Xtn+h} coincide, for all t1, . . . , tn ∈ Z, n ≥ 1, and h ≥ 1.
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In this paper, we focus on the space H := L2
C([0, 1]k), for k ≥ 1, the space of

(the equivalence classes of) square integrable functions f : [0, 1]k → C, where we

denote the norm of L2
C([0, 1]k) by ‖·‖2. The corresponding space of real functions

is denoted by L2
R([0, 1]k), for k ≥ 1.

2.2. Locally stationary functional time series

The second-order dynamics of weakly stationary time series of functional data

{Xh}h∈Z can be described completely by the Fourier transform of the sequence

of covariance operators, acting on L2
C([0, 1]); that is,

Fω =
1

2π

∑
h∈Z

E
(
(Xh − µ)⊗ (X0 − µ)

)
e−iωh ω ∈ [−π, π], (2.1)

where µ = EX0 denotes the mean function. Following most of the literature on

testing for second-order stationarity (see, i.a., Paparoditis (2009); Dwivedi and

Subba Rao (2011)), we assume that our data are centered and, hence, µ = 0.

This is without loss of generality, because the mean can be estimated without

affecting the properties of our test; see Remark 1. If second-order stationarity is

violated, we can no longer speak of a frequency distribution over all time and,

hence, if it exists, (2.1) must become time-dependent. To allow for a meaningful

definition of this object if stationarity is violated, we consider a triangular array

{Xt,T : 1 ≤ t ≤ T}T∈N as a doubly indexed functional time series, where Xt,T

is a random element with values in L2
R([0, 1]), for each 1 ≤ t ≤ T and T ∈ N.

The processes {Xt,T : 1 ≤ t ≤ T} are extended on Z by setting Xt,T = X1,T

for t < 1, and Xt,T = XT,T for t > T . Following van Delft and Eichler (2018),

the sequence of stochastic processes {Xt,T : t ∈ Z} indexed by T ∈ N is called

locally stationary if, for all rescaled times u ∈ [0, 1], there exists a L2
R([0, 1])-valued

strictly stationary process {X(u)
t : t ∈ Z}, such that∥∥∥Xt,T −X(u)

t

∥∥∥
2
≤
(∣∣∣∣ tT − u

∣∣∣∣+
1

T

)
P

(u)
t,T a.s., (2.2)

for all 1 ≤ t ≤ T , where P
(u)
t,T is a positive real-valued process, such that for some

ρ > 0 and C <∞, the process satisfies E
(∣∣P (u)

t,T

∣∣ρ) < C for all t and T , uniformly

in u ∈ [0, 1]. If the second-order dynamics are changing gradually over time, the

second-order dynamics of the stochastic process {Xt,T : t ∈ Z}T∈N are completely
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described by the time-varying spectral density operator given by

Fu,ω =
1

2π

∑
h∈Z

E
(
X

(u)
t+h ⊗X

(u)
t

)
e−iωh, (2.3)

for each u ∈ [0, 1] and {X(u)
t : t ∈ Z}. Under the technical assumptions stated

in Section 3, this object is a Hilbert–Schmidt operator. Note that if the process

is, in fact, second-order stationary, then (2.3) reduces to the form (2.1). This

framework thus lends itself in a natural way to testing for changing dynamics in

the second-order structure.

2.3. Minimum distance and its estimation

In this study, we are interested in testing the hypothesis

H0 : Fu,ω ≡ Fω a.e. on [−π, π]× [0, 1] (2.4)

versus

Ha : Fu,ω 6= Fω, on a subset of [−π, π]× [0, 1] of positive Lebesgue measure,

(2.5)

where Fω is an unknown nonnegative definite Hilbert–Schmidt operator for each

ω ∈ [−π, π] that does not depend on rescaled time u ∈ [0, 1]. We measure

deviations from stationarity using the minimum distance principle. To explain the

main idea of this approach, consider a square integrable function g : [0, 1] → R.

Note that for any constant a ∈ R, we have

d2(a) =

∫ 1

0
|g(u)− a|2du =

∫ 1

0
|g(u)− ḡ|2du+

∫ 1

0
|ḡ − a|2du,

where ḡ =
∫ 1
0 g(u)du. Therefore, minimizing d2(a) with respect to a ∈ R gives

the best approximation of the function g by a constant function. The minimum

is attained for the choice a = ḡ and d2(ḡ) =
∫ 1
0 |g(u)|2du −

( ∫ 1
0 g(u)du

)2
. In

particular, the function g is constant if and only if mina∈R d
2(a) vanishes.

We now transfer this idea to the setting of functional times series, and define

a measure for the deviation from second-order stationarity by

m2 = min
G

∫ π

−π

∫ 1

0
|||Fu,ω − Gω|||22dudω, (2.6)

where the minimum is taken over all mappings G : [−π, π]→ S2(L
2
C([0, 1])). Note
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that the hypotheses in (2.4) and (2.5) can be rewritten as

H0 : m2 = 0 versus Ha : m2 > 0, (2.7)

and a statistical test can be obtained by rejecting the null hypothesis H0 for large

values of an appropriate estimator of m2. In order to construct such an estimator,

we first derive an alternative representation of the minimum distance m2.

Lemma 1. The minimum distance m2, defined in (2.6), can be expressed as

m2 =

∫ π

−π

∫ 1

0
|||Fu,ω − F̃ω|||22dudω, (2.8)

where the operators F̃ω are defined by

F̃ω :=

∫ 1

0
Fu,ωdu, (2.9)

for each ω ∈ [−π, π]. We refer to this operator F̃ω as the time-integrated local

spectral density operator, because it acts on L2
C([0, 1]), such that F̃ω no longer

depends on u ∈ [0, 1], for each ω ∈ [−π, π].

The proof is given in Section S2 of the Supplementary Material. Using the

definition of the Hilbert–Schmidt norm, we can rewrite expression (2.8) as

m2 =

∫ π

−π

∫ 1

0
|||Fu,ω|||22dudω −

∫ π

−π
|||F̃ω|||22dω, (2.10)

where F̃ω is given by (2.9). The two terms in (2.10) can now be easily estimated

from the available data {Xt,T : 1 ≤ t ≤ T} using sums of periodogram operators.

In order to estimate the two integrals in (2.10), we split the sample into M

blocks, with N elements inside each block such that T = MN = M(T )N(T )

for each T ∈ N, where M,N ∈ N, and N is an even number. Here, M and N

correspond to the number of terms used in a Riemann sum that approximates

the integrals in (2.10) with respect to du and dω and, therefore, they have to be

reasonably large. The number of elements in the blocks must grow faster than

the number of blocks, but more slowly than the cube number of blocks. The

choice of the number of blocks is discussed in Subsection 3.1, and an empirical

investigation can be found in Section 4. Throughout this paper, we make the

following assumption for the asymptotic analysis.
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Assumption 1. M →∞, N →∞ as T →∞, such that

N

M
→∞ and

N

M

3

→ 0.

For u ∈ [0, 1], ω ∈ [−π, π], and N ≥ 1, the fDFT evaluated around time u is

defined as a random function with values in L2
C([0, 1]) given by

Du,ω
N :=

1√
2πN

N−1∑
s=0

XbuT c−N/2+s+1,T e
−iωs. (2.11)

The periodogram tensor is then defined by

Iu,ωN := Du,ω
N ⊗Du,ω

N . (2.12)

Let ωk = 2πk/N , for k = 1, . . . , N , and uj = (N(j − 1) + N/2)/T for j =

1, 2, . . . ,M , be the midpoint of each block. Observe that only the jth block of

the sample determines the value of I
uj ,ωk

N , for each k = 1, . . . , N . We estimate

the two terms in (2.10) by

F̂1,T :=
1

T

bN/2c∑
k=1

M∑
j=1

〈Iuj ,ωk

N , I
uj ,ωk−1

N 〉HS , (2.13)

(note that F̂1,T is real-valued for each T ∈ N, because 〈Iu,λN , Iu,ωN 〉HS = |〈Du,λ
N ,

Du,ω
N 〉|2) and

F̂2,T :=
1

N

bN/2c∑
k=1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ 1

M

M∑
j=1

I
uj ,ωk

N

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

2

, (2.14)

respectively. We show that the estimation of
∫ π
−π|||F̃ω|||

2
2dω using (2.14) introduces

a bias term

BN,T =
N

T

∫ π

−π

∫ 1

0
[Tr(Fu,ω)]2dudω. (2.15)

Because this term is nonvanishing in a
√
T -consistent estimator under Assump-

tion 1, it has to be taken into account. We therefore define the estimator of the

minimum distance m2 in (2.10) as

m̂T = 4π(F̂1,T − F̂2,T + B̂N,T ) , (2.16)
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where

B̂N,T =
1

T

bN/2c∑
k=1

M∑
j=1

Tr(Iuj ,ωk) Tr(Iuj ,ωk−1) =
1

T

bN/2c∑
k=1

M∑
j=1

‖Duj ,ωk

N ‖22‖D
uj ,ωk−1

N ‖22.

(2.17)

We prove in Section S3 (S3.1) of the Supplementary Material that, under the

conditions of Theorem 1,

√
T
(
B̂N,T −BN,T

) p→ 0 as T →∞.

Therefore, the bias correction does not affect the asymptotic distribution of the

test statistic.

As is the case with the periodogram of a real-valued time series, the peri-

odogram tensor defined by (2.12) is not a consistent estimator. However, the

estimators F̂1,T and F̂2,T are consistent for the quantities appearing in the mea-

sure of stationarity defined in (2.10), because they are obtained by averaging

periodogram tensors with respect to different Fourier frequencies. These heuris-

tic arguments will be made more precise in the following section, where we state

our main asymptotic results.

3. Asymptotic Normality and Statistical Applications

In this section, we establish the asymptotic normality of an appropriately

standardized version of the statistic m̂T defined in (2.16) and, as a by-product,

its consistency for estimating the measure of stationarity m2. We denote the

joint cumulant of X1, . . . , Xk by Cum(X1, . . . , Xk), where X1, . . . , Xk are H-

valued random elements, such that E‖Xt‖k < ∞, for each t = 1, . . . , k. The

definition of the joint cumulant of H-valued random variables is intricate and,

hence, postponed to Section S1 of the Supplementary Material. The functional

process {Xt,T : t ∈ Z}T∈N is assumed to satisfy the following set of conditions.

Assumption 2. Assume that {Xt,T : t ∈ Z}T∈N is a locally stationary zero-

mean stochastic process, as introduced in Section 2, and, for even k ∈ N, let

κk;t1,...,tk−1
: L2([0, 1]k/2) → L2([0, 1]k/2) be a positive operator independent of T ,

such that, for all j = 1, . . . , k − 1 and some ` ∈ N,∑
t1,...,tk−1∈Z

(1 + |tj |`)|||κk;t1,...,tk−1
|||1 <∞. (3.1)
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Denote

Y
(T )
t = Xt,T −X(t/T )

t and Y
(u,v)
t =

X
(u)
t −X(v)

t

(u− v)
, (3.2)

for T ∈ N, 1 ≤ t ≤ T , and u, v ∈ [0, 1], such that u 6= v. Suppose, furthermore,

that the kth order joint cumulants satisfy

(i) |||Cum(Xt1,T , . . . , Xtk−1,T , Y
(T )
tk )|||1 ≤ (1/T )|||κk;t1−tk,...,tk−1−tk |||1,

(ii) |||Cum(X
(u1)
t1 , . . . , X

(uk−1)
tk−1

, Y
(uk,v)
tk )|||1 ≤|||κk;t1−tk,...,tk−1−tk |||1,

(iii) supu|||Cum(X
(u)
t1 , . . . , X

(u)
tk−1

, X
(u)
tk )|||1 ≤|||κk;t1−tk,...,tk−1−tk |||1,

(iv) supu|||∂`Cum(X
(u)
t1 , . . . , X

(u)
tk−1

, X
(u)
tk )|||1/∂u` ≤|||κk;t1−tk,...,tk−1−tk |||1.

Note that these assumptions allow for a meaningful definition of local cu-

mulant spectral operators of order k, from which we can obtain a closed-form

expression of the variance of m̂T . For further detail, we refer to Section S1

and Section S5 of the Supplementary Material. In addition note that, using

the Cauchy–Schwarz inequality, we can bound the 2k + 1th joint cumulant and

moment tensors in terms of the 2k + 2th joint cumulant and moment tensors.

The following result establishes the asymptotic normality of m̂T (appropri-

ately standardized). The proof is given in Section S3 of the Supplementary Ma-

terial.

Theorem 1. Suppose that Assumption 1 and Assumption 2 hold. Then,

√
T (m̂T −m2)

d−→ N(0, ν2) as T →∞,

where the expression for the asymptotic variance ν2 can be found in Section S3

of the Supplementary Material.

Remark 1. The assumption of a zero or constant mean function is common in the

context of testing for stationarity in the frequency domain (see, i.a.,Paparoditis

(2009); Dwivedi and Subba Rao (2011); Jentsch and Subba Rao (2015)). Note

that Theorem 1 remains true if µ = 0 does not hold. For example, to address

this problem, we define µ̂T = T−1
∑T

t=1Xt,T , replace Du,ω
N by

D̃u,ω
N = (2πN)−1/2

N−1∑
s=0

(XbuT c−N/2+s+1,T − µ̂T )e−iωs,

and replace Iu,ωN with Ĩu,ωN = D̃u,ω
N ⊗ D̃u,ω

N in the quantities (2.13), (2.14), and

(2.15), which define the statistic (2.16). A proof of our claim can be found
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in Subsection S5.6 of the Supplementary Material. In the general case, where

the mean functions vary smoothly in time, a local-window estimator has to be

subtracted (see e.g., Dette, Preuß and Sen (2017) who considered this scenario

for one-dimensional locally stationary long-range dependent time series).

Under the null hypothesis, the statistic has a very succinct form.

Corollary 1. Suppose that Assumption 1 and Assumption 2 hold. Then, under

the null hypothesis H0, we have

√
Tm̂T

d−→ N(0, ν2H0
) as T →∞,

where the asymptotic variance v2H0
is given by

ν2H0
= 4π

∫ π

−π
|||F̃ω|||42dω. (3.3)

Observing the equivalent representation of the hypotheses in (2.7), it is reasonable

to reject the null hypotheses (2.4) of a stationary functional process whenever

m̂T >
v̂H0√
T
u1−α, (3.4)

where u1−α denotes the (1− α)-quantile of the standard normal distribution,

and v̂2H0
is an appropriate estimator of the asymptotic variance under the null

hypothesis given in (3.3). The asymptotic variance v2H0
can be estimated using

the statistic

v̂2H0
=

16π2

N

bN/2c∑
k=1

 1

M

M∑
j=1

〈Iuj ,ωk

N , I
uj ,ωk−1

N 〉HS

2

. (3.5)

Corollary 1 and the following result show that the test defined by (3.4) is an

asymptotic level α-test. The proof is given in Section S5.5 of the Supplementary

Material.

Lemma 2. Under the assumptions of Theorem 1, the estimator defined in (3.5)

is consistent; that is, v̂2H0
→ v2H0

in probability as T →∞.

3.1. The choice of M and N

Here, we provide heuristic arguments on how to choose the number of blocks

M and the number of elements in the blocks N . Because we assume that T =

MN , the choice of M determines the value of N , and vice versa. Our test is
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based on the estimator of the distance m2 defined by (2.6). One way to choose

the values of M and N is to choose those values that minimize the leading terms

in the asymptotic expansion of the mean squared error (MSE) of the estimator

of m2. We have that

MSE(m̂T ) = Var m̂T + |E m̂T −m2|2, (3.6)

with Var m̂T = (4π)2{Var F̂1,T + Var F̂2,T − 2 Cov[F̂1,T , F̂2,T ]} and E m̂T = 4π(

E F̂1,T − E F̂2,T ). Note that we ignore the estimator B̂N,T of the bias defined in

(2.17) because it is of lower order in (3.6). The asymptotic expressions of E F̂1,T ,

E F̂2,T , Var F̂1,T , Var F̂2,T , and Cov[F̂1,T , F̂2,T ] are given in Section S5 of the

Supplementary Material. Here, we assume Gaussianity in order to avoid dealing

with the fourth-order terms. The leading terms of the asymptotic expression

of the MSE are double Riemann sums. In addition, M and N determine the

error that we make by approximating double integrals using double Riemann

sums. Suppose that g : [0, 1] × [0, π] → R is a Riemann integrable function,

twice differentiable in its first argument, and once in its second. Using the error

bounds for the midpoint and the right endpoint approximations of the integrals,

we obtain∣∣∣∣∣ 1

N

bN/2c∑
k=1

1

M

M∑
j=1

g(uj , ωk)−
1

2π

∫ π

0

∫ 1

0
g(u, ω)dudω

∣∣∣∣∣
≤ 1

24M2
· 1

N

bN/2c∑
k=1

max
u∈[0,1]

|g′′u(u, ωk)|+
π2

2N

∫ 1

0
max
ω∈[0,π]

|g′ω(u, ω)|du, (3.7)

where uj = (N(j − 1) + N/2)/T for 1 ≤ j ≤ M , and ωk = 2πk/N for 1 ≤ k ≤
bN/2c. Rather than give the complete bound of the MSE, we only explain the

idea behind the bound. One of the terms in the expression of T Var F̂1,T is given

by

RNM =
1

T

bN/2c∑
k=1

M∑
j=1

〈Fuj ,ωk
,Fuj ,ωk−1

〉HS〈Fuj ,−ωk
,Fuj ,−ωk−1

〉HS .

We have that

RNM ≤

∣∣∣∣∣RNM − 1

2π

∫ π

0

∫ 1

0
|||Fu,ω|||42dudω

∣∣∣∣∣+
1

2π

∫ π

0

∫ 1

0
|||Fu,ω|||42dudω. (3.8)

The second term in (3.8) does not depend on the choice of M and N . We use the

inequality (3.7) to bound the first term in (3.8). Provided that the integral is finite



TESTING STATIONARITY IN FUNCTIONAL TIME SERIES 1387

and the Riemann sum in (3.7) converges, similar arguments applied to the other

terms in the MSE show that we need to minimize the expression C1/M
2 +C2/N

over all possible values of M and N , where C1 and C2 are two positive constants

that are unknown, because these depend on the time-varying spectral density

operator. The right-hand side of (3.7) is minimized for

M =

(
2C1

C2

)1/3

· T 1/3 and N =

(
2C1

C2

)−1/3
· T 2/3.

Unfortunately, because C1 and C2 are unknown, we cannot determine the optimal

values of M and N . However, this suggests M ≈ T 1/3 and N ≈ T 2/3 might be a

reasonable choice, given that (2C1/C2)
1/3 ≈ 1. We provide empirical evidence of

this rule in Section 4.

4. Finite-Sample Properties

In this section, we investigate the finite-sample properties of the proposed

methods proposed using a simulation study, and illustrate potential applications

by analyzing annual temperature curves.

4.1. Simulation study

In order to investigate the finite-sample performance of the test (3.4) for the

hypothesis H0 : m2 = 0 using simulated data, we consider a similar setup to

that in Aue and van Delft (2019), who used a Fourier basis representation on the

interval [0, 1] to generate functional data. Specifically, let {ψl}∞l=1 be the Fourier

basis functions. Consider the pth-order time-varying functional autoregressive

process (tvFAR(p)), {Xt}t∈Z, defined as

Xt(τ) =

p∑
t′=1

At,t′(Xt−t′)(τ) + εt(τ), τ ∈ [0, 1], (4.1)

where At,1, . . . , At,p are time-varying auto-covariance operators, and {εt(τ)}t∈Z is

a sequence of mean zero innovations. We have

〈Xt, ψl〉 =

∞∑
l′=1

p∑
t′=1

〈Xt−t′ , ψl〉〈At,t′(ψl), ψl′〉+ 〈εt, ψl〉

≈
Lmax∑
l′=1

p∑
t′=1

〈Xt−t′ , ψl〉〈At,t′(ψl), ψl′〉+ 〈εt, ψl〉. (4.2)
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Therefore, the first Lmax Fourier coefficients of the process Xt are generated using

the pth-order vector autoregressive process

X̃t =

p∑
t′=1

Ãt,t′X̃t−t′ + ε̃t,

where X̃t := (〈Xt, ψ1〉, . . . , 〈Xt, ψLmax
〉)> is the vector of Fourier coefficients, the

(l, l′)th entry of Ãt,j is given by 〈At,j(ψl), ψl′〉, and ε̃t := (〈εt, ψ1〉, . . . , 〈εt, ψLmax
〉)>.

The entries of the matrix Ãt,j are generated as N
(
0, ν

(t,j)
l,l′

)
, with ν

(t,j)
l,l′ specified

below. To ensure stationarity or the existence of a causal solution, the norms κt,j
of At,j are required to satisfy certain conditions (see Bosq (2000) for stationary

and van Delft and Eichler (2018) for locally stationary functional time series). If

At,j ≡ Aj , for all t in (4.1), and the error sequence (εt, t ∈ Z) is an i.i.d. sequence,

we obtain the stationary functional autoregressive (FAR) model of order p. In

that case, we generate the entries of the operator matrix from N
(
0, ν

(j)
l,l′

)
distri-

butions. Functional white noise can be thought of as a FAR model of order zero.

Throughout this section, the number of Monte Carlo replications is always 1,000.

We use the fda package from R to generate the functional data, where Lmax is

taken to be 15. The periodogram kernels are evaluated on a 100 × 100 grid on

the square [0, 1]2, and their integrals are calculated by averaging the functional

values at the grid points. The asymptotic variance under the null hypothesis is

estimated using (3.5). In Table 1, we report the simulated nominal levels of the

test (3.4) for the hypotheses in (2.7) for the sample sizes T = 128, 256, 512,

and 1,024, where we consider the following three (stationary) data-generating

processes:

(I) The functional white noise variables ε1, . . . , εT are i.i.d., with coefficient

variances Var(〈εt, ψl〉) = exp((l − 1)/10).

(II) The FAR(2) variables X1, . . . , XT , with operators specified by variances

ν
(1)
l,l′ = exp(−l − l′) and ν

(2)
l,l′ = 1/(l + l′3/2), with norms κ1 = 0.75 and

κ2 = −0.4 and with innovations ε1, . . . , εT , as in (I).

(III) The FAR(2) variables X1, . . . , XT , as in (II), but with κ1 = 0.4 and κ2 =

0.45.

Recall that the test requires that we choose the number M of blocks, which

determines the number N of observations in each block via the equation T =

MN . As mentioned before, the quantities M and N have to be reasonably

large, because they correspond to the number of terms used in the Riemann
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Table 1. Empirical rejection probabilities (percentage) of the test (3.4) for the hypotheses
in (2.7) under the null hypothesis.

I II III

T N M 10% 5% 1% 10% 5% 1% 10% 5% 1%
128 32 4 6.0 2.8 0.7 7.4 3.7 0.7 6.4 2.5 0.3
128 16 8 5.9 2.7 0.4 7.3 2.8 0.8 5.2 2.5 0.5

256 32 8 7.0 3.2 0.5 7.1 4.1 0.7 6.8 3.5 0.7
256 16 16 7.5 2.9 0.5 7.4 3.6 0.7 7.0 3.0 0.5

512 64 8 7.5 3.1 0.5 8.6 4.2 0.3 7.9 3.5 0.6
512 32 16 6.7 2.4 0.4 7.1 3.3 0.7 6.4 2.4 0.2

1,024 128 8 8.8 4.2 1.0 9.6 4.1 1.0 8.9 3.9 0.9
1,024 64 16 9.7 4.7 1.1 10.0 5.3 1.4 9.8 4.6 0.9
1,024 32 32 8.0 3.3 0.5 9.3 5.2 1.3 8.0 3.6 0.5

sum that approximates the integral with respect to du and dω in (2.10). We

investigate the effect of this choice in more detail in the next section. Here, we

consider those combinations for which Assumption 1 is satisfied. Interestingly,

the results reported in Table 1 are rather robust with respect to this choice, and

we observe a reasonable approximation of the nominal level in nearly all cases

under consideration, albeit the test being slightly undersized for the small samples

sizes.

Next, we investigate the performance of the test (3.4) under the alternative,

where we consider the following (nonstationary) data-generating processes:

(IV) The tvFAR(1) variables X1, . . . , XT , with the operator specified by the vari-

ances ν
(t,1)
l,l′ = ν

(1)
l,l′ = exp(−l − l′) and the norm κ1 = 0.8, and with innova-

tions as in (I), with a multiplicative time-varying variance

σ2(t) = cos

(
1

2
+ cos

(
2πt

1024

)
+ 0.3 sin

(
2πt

1024

))
.

(V) The tvFAR(2) variables X1, . . . , XT , with operators as in (IV), but with the

time-varying norm

κ1,t = 1.8 cos

(
1.5− cos

(
4πt

T

))
,

constant norm κ2 = −0.81, and innovations as in (I).

(VI) The structural break FAR(2) variables X1, . . . , XT , generated as follows:
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Table 2. Empirical rejection probabilities (percentage) of the test (3.4) for the hypotheses
in (2.7) under the alternative hypothesis.

IV V VI

T N M 10% 5% 1% 10% 5% 1% 10% 5% 1%
128 32 4 65.8 55.8 31.8 55.2 43.1 19.1 72.8 59.7 34.2
128 16 8 66.7 57.1 36.9 46.4 37.9 24.1 41.6 30.1 12.6

256 32 8 99.9 99.8 99.7 73.1 65.2 46.3 65.1 53.6 30.2
256 16 16 99.5 99.4 99.2 54.2 48.8 37.6 70.8 59.0 34.0

512 64 8 99.9 99.9 99.9 89.3 85.1 71.6 90.6 82.5 62.2
512 32 16 100.0 100.0 100.0 80.2 75.3 66.6 92.2 87.8 70.1

1,024 128 8 100.0 100.0 100.0 92.2 90.1 83.9 99.6 98.4 92.9
1,024 64 16 100.0 100.0 99.9 90.2 88.2 83.5 99.7 99.1 96.5
1,024 32 32 99.9 99.9 99.9 81.4 79.8 74.6 99.3 98.5 95.9

– for t ≤ 3T/8, the operators are as in (II), with norms κ1 = 0.7 and

κ2 = 0.2, and innovations as in (I).

– for t > 3T/8, the operators are as in (II), with norms κ1 = 0 and

κ2 = −0.2, and innovations as in (I), but with coefficient variances

Var(〈εt, ψl〉) = 2 exp((l − 1)/10).

The results of the test (3.4) under the alternative are displayed in Table 2. We

observe that the test has very good power for models IV and VI, even for small

sample sizes. For model V, the power is lower than that of the other two models,

but is still very good, and not completely unintuitive, because it can be explained

by its data-generating mechanism. Depending on the draw of the operators, the

resulting process in finite samples can be highly dependent, or may show barely

any dependence at all.

4.2. Choice of M and N

In order to examine how the choice of M and N affects the test’s perfor-

mance, we considered a simulation study with a sample size equal to T = 4,096,

because this allows us to vary M from M = 4, 8, . . . , 1,024. Note that we thus

also include choices of M for which Assumption 1 does not hold. The study

was again performed over 1,000 replications for each of the above models. Fig-

ure 1(a)–(c) provides the estimated densities for each M for model I, II, and III,

respectively. The estimated densities for model I appear well-aligned with the

standard normal for all values of M . However, the best fit appears to be for
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16 ≤ M ≤ 128. For models II and III, we clearly observe that for M > N ,

the distribution becomes skewed and flatter. This is intuitive, because the as-

sumptions underlying Theorem 1 do not hold. The difference with the standard

normal curve seems to become more pronounced as the dependence increases.

From these three models, the dependence is strongest for model II. In order to

quantify our observations, we computed the mean absolute error to measure the

difference between the estimated density of the test statistic and the standard

normal density (see Figure 1(d)). The results indicate that a relatively small

value of M compared to N leads to the best approximation. However, M should

not be too small. Specifically, a minimal error is attained with M = 32 for

model I and model III, and with M = 16 for model II.

Figure 2 shows the rejection probabilities for α = 0.1, 0.05, 0.01 under the

three alternatives. For model IV and model VI, we find perfect power for all

choices of M and all critical values. For model V, there is some sensitivity, and

the power seems best for 8 ≤ M ≤ 32. As previously remarked, the sensitivity

for model V is due to its data-generating mechanism. To summarize, it appears

that our test is very robust to different choices of M that satisfy Assumption

1. This empirical study indicates particularly good performance for the range

16 < M < 64 for T = 4,096, which corroborates our findings in Section 3.

4.3. Data example

We illustrate the proposed methodology by analyzing annual temperature

curve data, recorded at several measuring stations across Australia. The recorded

daily minimum temperatures for each year are treated as functional data. The

locations of the measuring stations and the lengths of the time series are reported

in Table 3. Figure 3 depicts the minimum temperature curves for Sydney and

Boulia Airport as three-dimensional plots, visualizing also the annual dynamics.

We use the proposed test in (3.4) to investigate whether these temperature

curves are realizations of a stationary process. For the the number of blocks, we

use the above findings; that is, M = dT 1/3e. Given the number of curves for

each station, this value can be rather small thus, we also consider bT 1/2c. As

a fixed comparison for all curves, we take M = 8, because the sample length

is closest to T = 128 (and often slightly larger). The data are centered, as

explained in Remark 1. The corresponding values of the test statistic (3.4) for

the hypothesis of stationarity are reported in Table 3. It is clear that we reject

the null of stationarity in all cases at the 1% significance level. Therefore, the

test provides strong evidence against the null hypothesis of stationarity for all
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Figure 1. (a)–(c) Estimated densities for different choices of M with T = 4,096 compared
to a standard normal distribution (black); (d) Natural logarithm of the mean absolute
error compared to the standard normal distribution.
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Figure 2. Rejection probabilities for the three alternative models for T = 4,096.
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Figure 3. Minimum temperature curves, plotted by year.

Table 3. Values of the test statistic (3.4) for the hypothesis of stationarity of the annual
temperature curve data.

Measuring Station T M = dT 1/3e M=8 M = bT 1/2c
Boulia Airport 120 3.21 2.95 4.55
Cape Otway 149 3.87 4.42 4.48
Gayndah Post Office 117 3.19 4.46 4.16
Gunnedah Pool 133 4.33 3.72 5.04
Hobart 121 4.99 4.60 5.13
Melbourne 158 2.88 3.68 4.36
Robe 129 2.88 2.91 3.65
Sydney 154 3.30 3.71 4.30

measuring stations.

Supplementary Material

The file online Supplementary Material contains proofs and additional back-

ground information.
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