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S1 Proof of Theorem 3.1

We first introduce some notations. Let .J,, = ¢(K,, + 1) + 1 and

WS* = (W<él75*)7 sy W(éms*))T S RHXJn’

Wis = WEB,Ws. € R where B, = diag(f1(0), ...

~ -~

W(is) =Wy W({s) eRM,
53* = WB73* (93* — Og*) - RJ",
Ri=(W((is) — W(Cis)) 03,

U; = W(CZ,S*)TOg* - O-/(T) - Z fsJ-,T(Ci,sj')‘
j=1

, [n(0)),
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Define the oracle minimizer of 45+ as
. R < .
05 = arg min - ;pT(ei —W((is) 6 — R —u;).

First we derive some technical lemmas used in the proof.

Lemma S1.1. We have the following properties for the spline basis vector:

(1) E(|W({;.s+)

2) < by, for some positive constant by for all n sufficiently

large.

(2) by K7t < EQunin(W (Cis )W (Ci5)T)) < EAaa (W (&5 )W (Eis0)T)) <

b3 KL, for some positive constants by and by for n sufficiently large.

(3) E(|Wgk.

) > b3/ K, /n, for some positive bs for all n sufficiently large.ﬂ

(4) max; [W (Gis)ll2 = Op(1/52).

n

Proof.

(1) The result follows if we can show E(Bfn(f,s])) = OP(KLR) foralll1 <m <
K, + 1. It holds that E(B2,(G;s,)) = Op(Kin) by Lemma 2(1) in Sherwood
and Wang (2016). Note that E(B2((is,)) = E(Bn(Gis,) — Bum(Gis,) +
B(Gis;))? = E(B%)(Cz‘*,sj)(éi,sj — Gis;) + Bm(Gis;))?. By (S.3) in the

supplement of Wong et al. (2018), we have (Qsj — CLSJ.)Q = Op(%?), thus

For a matrix A, [|A]| = \/Amaz (AT A) denotes the spectral norm.
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Kps2 %
") where (B (¢F, )2 = Op(Ky).

1,85

E( ( zsj)(Cl S5 Ci,sj-))z = Op(

Note that 25 < % Thus The dominant term is O,,(1/K,,).

(2) By the proof of Lemma 2(2) in Sherwood and Wang (2016)), we can see
that this result follows if we can prove E(ag;w(@,sj))Z > ¢, la 3K,
for some constant c,; and any (k, + [)-dimensional vector a,, when n is
sufficiently large. It holds that E(a] w(Gis;))* > ¢, [|las, 3K, . Note that
B(aT w(C,)? = E<az.w<ci,sj> +aT (w(Cis)) — w(Gs))))? where the

second term is O (

) and dominated by O,(1/K,,).

(3) Similar to Lemma2 (3) in Sherwood and Wang (2016), we can show that
E()\min(Wé s+)) > n/K, for some positive ¢’ from arguments in (2).

The proof finishes by HWg}S | = A1 (W2 54)-

mlIl

(4) This is the same with Sherwood and Wang (2016) Lemma?2 (4) which can

be proved as Lemma 5.1 in|Shi and Li (1995)).

In the proofs C' denotes a generic positive constant which may assume dif-

ferent values even on the same line.
Lemma S1.2. Under conditions (C1)-(C3), we have ||ds+ ||z = O, (KX* + s + K, ™n'/2).

Proof. We will prove that for Vn > 0, there exits an L > 0 such that

l(siHn d: Zdeé Qi(0)) >0)>1—n, (SL.1)
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where Q;(8) = p,(e; — W((;.5:)76 — Ry — u;) and d,, = Ki? + s+ K, ™nl/2,

2 = O, (K + s + K;"n}/?). Note that

Then the convexity implies ||ds-

d,’ Z(@-(dné) —Q(0))

=d,? Z Dy(d,8) +d,” Z E[Qi(dn0) — Qi(0)|Xi] — d,,*! Z W (is)" 00, (e:)

i=1 i=1

=G+ Gy + G,

where D;(8) = Q;(8) — Qi(0) — E[Qi(8) — Q;(0)| Xi] + W (i.s+)"¢- (e;) and
¥, (u) = 7—1I(u < 0). Next we will prove by three steps. In the first step,
we will prove that sup5,<, |G1| = 0,(1). In the second step, we will show that
asymptotically G has a positive lower bound C'L? when L is sufficiently large.
In the third step, we obtain G3 = O,(||6]|2). This completes the proof.

Step 1. In this step, we prove that Ve > 0,

P(d;? sup \ZDi(dné)] >¢e) — 0.

H5”2§L i=1

Let F,; denote the event max; |W (i s-)

2 < oy % for some positive
o;. Lemma 4) implies that P(F,;) — 1 as n — oo. Let F,,» denote the
event max; |u;| < ap K" for some positive ca. Then P(F,5) — 1 follows from
Schumaker (1981). Let F,,3 denote the event + 3" | |R;| < ays/+/n for some

positive ag. In the following we will show that P(F),3) — 1.
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Folllowing the calculation

%Z |Ri| < —ZZ| (Gike) = W (Cir,)) "6,
=1

i=1 t=1

= — Z Z |W Cz k;t Tekt (Cz ke — Ci,kt)’

zltl
n g

1
< {- ZZ (WO k) 0221 =55 (Con — Cin)?}?
i=1 t=1 n =1 t=1
By Lemma 11 in|Stone (1985), we have [W () (¢ 1,) 70, | < Cfo (t)"'6y )2dt =

C [o(fr,(t)+ K;7)2dt = O(1). By Lemma 3.1, we have E(Cx—Ci)® < CE*/n
uniformly for & < s. So P(F,3) — 1.
Then it’s sufficient to show

P(d;? sup |ZD d,8)| > €, Fyy N Fpy N Flg) — 0.

[6ll2<L ;=5

Define A = {§ | ||6]] < L,8 € R/}. We can partition A as a union of
disjoint regions Ay, ..., Ay , such that the diameter of each region does not

exceed my = ——»————. This covering can be constructed such that M, <
0= 4o JTlL/in/an1

C’J,l,,/2nl/2dn1 JIn : g * * :
C(=»"—"%)/n where C' is a positive constant. Let d7,...,d}, be arbitrary
€ 1> » Y M,
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points in Ay, ..., Ay, respectively. Then

P( sup d,*| Y " Di(dn8)| > &, Foy N Frp N Fys)

”‘SHQSL i=1

M, n
< > P(sup di?) " Di(dad)| > &, Foy N Foa N F3)

m=1 0€Am i—1

M, n n
< Y P(Y Di(dasy)| + Jup 1> (Di(dn8) — Di(dn8},))| > dag, Foy N Fra N ).
m=1 =1 =1

We first show that supsca, | D or; (Di(dn0)—D;(dn0,)) [ I (Foy N Frg N F3) <
d2e /2. Noting that p,(u) = 1|u| + (7 — 2)u, we have Q;(6) — Q;(0) = 3[|e; —
W ({is)76 — Ri —wi| — l&; — Ri — wil] — (1 — HW({;.5:)78. So

sup |~ D;(d,6) — Di(dn83) [ I(Foy N Fra N Fg)

sern T

< 2nd, max |W (¢, s-)

2 Sup ||(S - 6;1||2](Fn1 N Fn? N Fn3)
dcAnm,

< de/2.

The proof is complete if we can verify

Mn

> P> Di(dndy,)| > d2e/2, Fu 0 Fop 0 Foz) — 0.

m=1 i=1
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First applying the definition of D; and the triangle inequality,

< 2max |W({is-)

odn, 65 I(Fpy N Fro N F3)

< CdyJy*n 2,
for some positive C'. Next,
> Var[Di(d,85,)I(Fui N Foa N F3)[Xi] <> B[V (dn3,)I(Foi N Foa 0 Frg)| X4,
i=1

=1

where V;(8) = Qi(8) — Q:(0) + W ({;.5)" 00, (&) and D;(8) = Vi(8) —

E[V;(6)|X;] by definition. By Knight’s identity,

Vi(dn6:) = W (Cise)Tdnd%[I(e; — Ry —u; < 0) — I(e; < 0)]
W (& 5+) b,
0

Vi1 4+ Via.
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We have

ZE [VAI(Fo1 N Foz N F3)| X

= ZE (Ciso)Tdnd )2 I(e; — Ry — u; < 0) — I(e; < 0)|I(Fpy N Fpy N Fs)| X;]

< CF”dZZE[I(O < lei| < R+ wil ) I (Fa1 N Frz N Fr3)| X
= Cﬁdii / o fils)ds

n "= S R
<

J n
Cd2y |Ry +u;
AL

< CnY2J,d3 (s + K;"n),
On the other hand, we have

(E.5%) dntS*
Cd,y J M 112 Z/ Fi(R; +u; +s) — F;(R; + w;)|[I(Fy1 N Fe N Fu3)ds

IA

< Cd3JYp-12 et Z FOW (Cis )W (&i.5)T85)(1 + 0(1))

< Cd3JPn~12,

The last inequality follows since 3.7, fi(0)W (;.5- )W ((ise)T = W W BWITW ! =
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1. Therefore,
> Var[Di(dn83,)I(Far 0 Foo 0 F)| X < O 202 (s + K, "v/i).
i=1

By Bernstein’s inequality,

M, n
> P> Di(dn8})] > d2e/2, For 0 Frp N F)
m=1 =1
M,
: —die?/4
< 2 Z exp( - - T )
Cn=12J,d%(s + K;"\/n) + Cd3 J,' "'n=1/2¢/2

m=1

M,
. —Cd?n'/?
< 2 n
- ;eXp(Jn(s + K;7/n)
Cd2n*/?
Jn(s + Kymy/n) "

< Cexp(CJ,logn —

which converges to zero as max{K,, s’ K;*n} > K:{J= + K, }logn.
Hence the proof of the first step is complete.
Step 2. In this step, we show that asymptotically G, = d,,2 > | E[Q;(d,8)—

;(0)].X;] has a positive lower bound C'L? when L is sufficiently large. B
p y larg y
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Knight’s identity,

Cz S* )Tdn 0+Ri+u;

Gy = d ZE/ (I(e; < s) — I(e; < 0))ds|X;]

’L+u2
W (& s+)Tdnd+Ri+u;

= d Z/ £i(0)sds(1 + o(1))

R i+
— QZL W (Cis+) dnd)” + 2(W ({is0) " dn) (R + us)}
= O||6||2 + OdnléTWBlﬁan(Rn + u,)

= C|6|2 +Cd ' 6" (R, + u,),

where R, = (Ry,...,R,)T and w, = (uy,...,u,)’. The second last equal-
ity follows from X7, fi(O)W ({5 )W (Ci50)T = W WBWIWL = I
Note that [[u ], = O,(yaK;") and Ry = SILTRE = Oyfs)by
technical arguments similar with the proof of P(F,3) — 1 in Step 1. Thus
|Cd; 6T (R, + u,)| = O,(]|6]2), and when L is sufficiently large, the quadrat-
ic term will dominant. This completes the proof of Step 2.

Step 3. In this step, we evaluate Gz = —d,;' Y ", W(éi75*)T51/JT(Ei) as

Lemma 3.3 in He and Shi (1994). At almost all samples 7" = { X, X, -+, }
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and for any real number M > 0, Chebychev inequality implies

P{d MDY W (s )(m = I(e < 0)]2 > M|T}

=1

< Eff Z W (G5 ) (T = I(e; < 0))|[3]/(d5 M)

n

= Eltrace() W ((is ) (T — (e, < 0)) Z W (Es-) (1 — I(e; < 0)))]/(d>M?)

i=1
< (1 -7)K,
— M2d% ?
where the last equality follows from Lemma 4) and the fact that E[(T —
I(e; <0))(r —I(e; < 0))] =0fori # j. So we have G3 = O,(]|0]|2).

Proof of Theorem 3.1. From Lemma(S1.2| we have

105+l = Op(KY? + s+ K;"n'/?).

That is, we have |W5(8%. — 0%.)l» = O,(K»/* + s + K;"n/2). In the proof

of Lemma|[S1.1(3), Anin(W3) = O,(n/K,). So

K. K,

165 — 03. \/_:_1 s K, ).

2:Op(

(S1.2)



12 YINGYING ZHANG, HENG LIAN, GUODONG LI AND ZHONGYI ZHU

For the second argument, note that

nt S F(0)(g7 (G — 9(Grse)?

=1

=0 f(0)(W(Cis)T (05 — 03.) — R — u;)?
i=1

2

— * 1 * S —2r
< n7'C(03 — 05.) W5(05. — 05.) + Op(—) + Op(K*")

n
K, s°
=0, (—2 + =+ K ™).

S2 Proof of Theorem 3.2

Note that the SCAD penalized objective function can be written as S, (0) =

G.(0) — H,(0), where GG,,(0) and H,,(0) are convex functions,

Gn(0) =n""> pr(yi = W(E)0) + > N6kl
i=1 k=1
and

2 01|27 — 2X[|0 |1 + N2
1,(6) = > (P2 10 < ol < o+ (Bt DX 210 > o).
k=1

Here neither G,,(0) nor H,,(0) are differentiable, while H,, in/Sherwood and
Wang (2016) is differentiable everywhere. We formally define the subdifferen-

tials of G,,(@) and H,(0).
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0G, (0 s
89< ) = {71' = (77-0777?’ e 7775)T € R (Kn+l)+1 :
m o= —tnt Z K1y — W ()T > 0)
+(1—7)n Z K21 (y; — W ()P0 < 0)

—n~ Z K20, = 15(0);

i=1

m, = —mn~' > w(Cu)I(y; — W(()'0 > 0)
=1

n

+(1 =Y w(l) Iy — W(E:)70 < 0)

=1

—nt Z'w((fik)ai + Ay = v (0) + My, for 1 <k <s},

i=1

where a; = 0 if y; — W(éi)TO # 0 and a; € [r — 1,7] otherwise; 1, =
(lk‘la Cee lk:,Kn-i-l)T € RE* and lm, = sgn(@km) if Oi,, 7’é 0 and I, € [—1, 1]

otherwise for 1 < m < K,, + 1.

50 {w = (0,w!,..., =)l e RsEHD+L .
o, = 0, if 0 < HOkHl < )\,
@, = [([16kll = A)/(a = D]he, if A < [|0k[]1 < a),

wy, = Mhyg, if ||Og]]s > a), forall 1 <k < s},
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where hy, = (hg1, ... bk, 1)? € RE" and Ay, = sgn(Opy) if O # 0 and
him € [—1,1] otherwise for 1 < m < K, + [. In the following, we analyze
the subgradient of the unpenalized objective function, which is given by v/(0) =
(160(0),v1(0)T, ..., v(0)T)T where v4(0) = (11(0), ..., vk k,+1(0))". The
following lemma states the behavior of v/(6*) when being evaluated at the oracle

estimator.

Lemma S2.1. Assume conditions in Theorem 3.2 are satisfied. For the oracle
estimator 0%, there exists a® with a* = 0if y;— W (£)70* # 0and a* € [7—1, 7]
otherwise, such that for v(0*) with a; = a}, with probability approaching one,

(1) 1(0*) =0, v,(6*) = 0 for k € S*,

(2) Wk (0%)] <cAVe>0, k¢ S, 1 <m< K, +1,

(3) 16;ll2 = (a +1/2)A for k € S.

To obtain the property of the SCAD penalized estimator, we require the fol-
lowing lemma which is a sufficient condition of a local minimizer for a convex-

difference objective function.

Lemma S2.2. (Lemma 2.1 inWang et al. (2012)). If there exists a neighborhood

U around the point 6* such that 8H” N 60"(0)\ # 0, v € U dom(G,),

then 0* is a local minimizer of G,,(0) — H,,(6).

Now we use Lemma|[S2.1]to prove that the oracle estimator satisfies Lemma
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Recall that

9G.,(0)
00

o x * T «T\T s(Kn+)+1 |
oo = {m" = (w3, T, w7 ¢ RSEnFDHL,

g = 1(0%); T = vp(0) + Ny, forl <k <s},

where U, = (ly1, ..., lrx, )" € RE"Tand Iy, = sgn(Okm) if Ogm # 0 and

lkm € [—1, 1] otherwise for 1 < m < K, + 1.

0 {w = (0,w!,..., =T ¢ RsEHD+L .
e = 0,if0 < [l <\,
wr = [([|0clli — A)/(a@ = D]y, if A < |6,]l; < al,

wy, = Ahyg, if ||Og]]s > a), forall 1 <k < s},

where hy, = (b1, ... bk, )T € RE"T and hy,, = sgn(Opy) if O # 0 and
him € [—1,1] otherwise for 1 < m < K, + L.

Consider any 8 € B(0*,\/(2(VK, +1))) where B(6*,\/(2(vVK, +1)))
denotes the ball with the center 8* and radius \/(2(v/K,, +1)). First consider
k € S8*. From Lemma [S2.1[1), there exists a; such that 7§ = 0 and 7} = .
On the other hand, from Lemma [S2.1(3) we have ||0x[|1 > [|0x/l> > |16} ]2 —

|0 — O%ll2 > (a+1/2)A — N/ (2v/K,, + 1) > a\. Thus wo, = Ahy. Obviously,
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Then consider k£ ¢ S*. From Lemma [S2.1(2), we have |1, (0*)| < A for
any k ¢ S*and 1 < m < K,,+I. By definition, 7} = (v41(0%), ..., vk, +1(0%)) "+
A, where 1, € [—1, 1]%»*!, Thus there exists I} such that 7w} = 0. On the other
hand, 6; = 0 for k ¢ S*. And ||0,]1 < VK, + 1|0kl < VK, +1(||0;]|2 +
|0 — 0%]]2) = A/2 < A. Thus zo;, = 0 from the definition.

We have shown that there exists a neighborhood U around the point 8* such

that Mgb(e) N 6G§(;9) lo- # 0,0 € U(dom(G,). Applying Lemma , we

can get Theorem 3.2.

Proof of Lemma [S2.1} (1) By convex optimization theory, O is in the subd-
ifferential of the oracle objective function. Thus, there exists a; as described in
the lemma such that (1) is satisfied.

(2) From the definition, we have

ven(07) = =S Bu(Ca) Iy — W(E)T0" > 0)+ (1= 7In ' Y Bu(Ci) Iy
=1 =1

~W()T0" <0) —n "> Bul(la)al,
=1

where k£ ¢ S*, 1 < m < K, + [ and a] satisfies the condition in (1). Let
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D= {i:y;— W(;)T0* = 0}. Then

Vi (67) *123 W(E)"0" <0)=r]—n"" > Bu()(a;+(1-7)).

€D

With probability one (Section 2.2 Koenker, 2005), |D| = K,,. Therefore,

n' Y Bu(Ca)(a; + (1= 1)) = O,(K,/n) = 0,(\),

1€D
since K/? /n < n~Y/2 = o(\). We will show that
P( max |n~ ZB (Can) (i — W(E)TO* <0) — 7] > e)) — 0.

keS*c
1<m<Kp,+I
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Define Og- ,, = B(62., %dn). Note that

P max oY Bu(G)ll(s — W(E)'8 <0) =) > o)

keS*e

1<m<Kp+l
< P( max |n-1ZBm<<1k>u<yi—W(@-)Te*so>—1<yz-—g(ci,3*)som>cA/2)
1<m<Kp+l )
1
+P( max |n” ZB (Gl I (i = 9(Gis) <0) = 7][ > eA/2)
1<m<Knp+l
< P( max  sup |n~ ZB (Cr) I (yi — W (Cis-)"0s- < 0)
1<7]%€<SK 419595
—I(y; — 9(Cis-) < 0)]| > C)\/2) + Ay
< P( max  sup [0~ ZB () (i — W (is+) 05+ < 0) — I(yi — 9(Cis+) <0

keS*¢
1<m<Kn-+1 93* 665* n

—P(y; — W({i5-)"0s- < 0) + P(y; — g(Cis+) < 0)]] > cA/4)

+P( max sup |n E B,, Czk P(y; W(éi73*)T95*§0)
1<k€<$;(C 05+€Os= n
<m<Kn+l

—P(y; — 9(Cis+) <0)]| > c)\/4) + A

= As+ Ay + Ay

Next we will show that A;, A, and A3 converge to zero one by one.
Step 1. By definition, we have
A; = P( max ZB (Ca) [ (i — g(Cise) < 0) = 7] > eA/2).

keS*e
1§m§Kn+l
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Since |B,,(Cax)| = Op(1/v/K,,), it holds by Hoeffding’s inequality
Ay < 25K, exp{—CnK,\*} = 2exp(Clog(n) — CnK,\*) — 0.
Step 2. By definition, we have

Ay = P( max sup |n_1ZBm(éik)[P(yi ~W(is-) 0s- <0)
1<K, 41957 €Osmn —

—P(yi — 9(Cis<) < 0)]| > cA/4).

Note that

max  sup |n~ ZB (C) [Py — W (Cis-)Os- < 0) — Py — g(Cisr) < 0)]|
1<mSK 41957 €057

= max sup [n° ZB G [ (W ({i50)" (85 — 03.) — Ry — u;) — Fy(0)]]

1<m< K, +1 957 €Os.n i=1
< CK;Y? sup 12 (W ((is-)T (0s- — 0%.) + R + uy]) (52.1)
08*668* n
< CKI? sup [yn (05— 00T WWI(0s —05) + 3|, -+ sup ]
95*695 n i1
1/2 S —ry d _
< CK, /O( /2 erKn )—Op(m)—f?()\)a

where the second inequality applies Jensen’s inequality (similar to Lemma B.5 in

Sherwood and Wang (2016)) and the last inequality follows from .« (WWT) =

Op(3;) (Lemma ST.1(3)), 371, |Ril /n = Oy (53

;) and sup, [u;] = O,(K;").

n
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Since max{n=/2, sK,/*n=1/2} = o()), we have the last equality. Thus we
can conclude that A, — 0.
Step 3. By definition, we have
A3=P( max  sup |n~ Z B (Ca) I (i = W (Cis-) s+ < 0) — I(yi — g(Cis+) < 0)

keS*c
1<m<Kn—+1 95*693* n

— P(y; — W(Cis-)"0s- < 0) + P(y; — g(Cis+) < 0)]] > cA/4).

The set ©s-,, can be covered by a set of balls denoted as {O§. ,,,...,0%. .}
with radius C'y/£2 % with cardinality N < n*@ 0+ Denote by 5., | =
1,...,N, the centers in the balls. Let ¢;(8s-) = y; — W ((i5+)70s-, we have
for each k and m,

P( sup |ZB Czk (€i(0s+) <0) —I(e; <0)— P(e;(0s+) <0)+ P(e; <0)]| > nA)

0566571 i=1

IN

ZP|ZB (Cin) [ (e:(05.) < 0) — I(e; < 0) — P(e;(05.) < 0) + P(e; < 0)]] > nA/2)

+ZP sup \ZB (Cin) I (€i(0s+) < 0) — I(e:(B5.) < 0) — P(es(fs+) < 0)
=1 93*69
+P(e;(05.) < 0)]| > n)\/2)

= Tllcm + Tka-

In the following, we will show that T, < Cexp(K, log(n) — CnK,/ ’)) and

Torm < Cexp(K, log(n) — CnkK,/ ?)). If so, then the following completes the
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proof:

AS S Z (lem + Tka)

keS*¢
1<m<Knp+l

< CsK,exp(K,log(n) — CnK?)\)

= Cexp(Clog(n) 4+ K,log(n) — CnK?X) = o(1).

To evaluate lem7 let ﬁzkm = Bm(ézk) [1(61(0}5*) < 0) —I(El < O) —P(gz(gé*) <

0) + P(e; < 0)]. Note that max; |9, | < \/;KT and

Z Var(Wipm) < Z EBp, (i) I(e5(0%.) < 0) — I(e; < 0))?

1 - “\T(pl 0
< E;Pﬂei! < W (&) (05, — 0%.) + R+ wi)
C - ~ nl/an
< 2 2o WG (05— 03) + Ri+w] = Oy(—= ),
i=1

where the last equality follows from (S2.1)). Applying Bernstein’s inequality,

Cn?)\? )
Cn'2d, K1 + CnaK, ?
< Nexp(—CnKY?)\) = Cexp(K,, log(n) — CnKL/?)).

Tigm < Nexp(—

To evaluate Thy,y,, note that I(e;(8s- < 0) = I(¢;(0%.) < W ({is-)T (05 —
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0%.)) and I(x < s) is an increasing function of s. Thus we have

sup |ZBm(éik)[I(€i(éS*) < 0) — I(€;(65.) < 0) — Pei(Bs) < 0) + P(e;(65.) < 0)]]

05* G@g*’n =1

“ . A K,d,
< Z | B (Cin)| % [1(e:(05.) < [|W(Ci,5+) 7@) — I(&(65.) < 0)
=1
A K, d,
—P(e;(05.) < =W (Cis+) \/ 7@) + P(e;(05.) < 0)]
- X s K,d,
< Z | B (Cire)| % |1(€5(05.) < |W (Cise) 7@) — I((65.) < 0)
=1

\/?%) + P(e;(65.) <0)|

Ky dy,

—P(e(05.) < ||W(ézS)

+Z | B (Gire)| % |P(e:(05.) < |[W (¢ s+) 7@) — P(&i(65.) < —[W ({50 7@)"
=1
Note that
n . - K, d, 2 K, d,
Z | By (Cir)| x | P(€:(05.) < W (Cise) 7@) — P(ei(05.) < — W (Cis+) 7@)\

<

[ Ky dy, -
= 0,(d,n™%?) = 0,(n)).

Hence for n sufficiently large, 1oy, < Zf\; L PO Siem = nA/4), where

i=1
C < 2
" oi=1

= = Kn dn
Sitkem = [ B (Cit)| X [1(€:(05:) < [W(Gis-)llay/ —=—3) = I (ei(6.) < 0)

Kn dn l
21/ 7@) + P(ei(0s-) < 0)].

— P(e(65.) < [W(&is+)
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Similarly to the evaluation of 77,,, we cam show that

= n 2 K, d, d,
S Var(sim) < - [W (s )ll2y) 2 = Op(—"75).
> Varlsuim) < W (Gl S8 = Ol
Applying Bernstein’s inequality, we have
Cn2\?

Tkm S NeXp -
? ( Cn*3/2dnK;1/2+Cn)\K;1/2)

< Nexp(—CnKY?)\) = Cexp(K, log(n) — CnK1/?)).

(3) Note that mingeg+

0|2 > mines- [|69]|> — maxges- |6 — 62|. From

the proof of Theorem 3.1, we have maxjcgs- g =

0, — 02 < 1165, — 5.

Op(%+ £ng). By Condition 5, we have minyes- [|05]|> > C’(Ij—%—l— En ),

Thus for k € S*, [|6; ]2 > C(T& + 1/ f2s)n® > (a + 1/2)\.
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S3 Proof of Theorem 3.3

For each candidate model S, similarly we can define Js = (K,, + [)|S| + 1 and

Ws = (W(lLs),...,W(lns))" e R™s,

Wi s = WiB,Ws € R**’s  where B, = diag(f,(0), ..., f,(0)),
W (lis) = W5 sW (Gis) € RS,

ds = Wps(0s — 0%) € R’s.

Ris=(W(Cs)— W(s)) 02,
We first show lemmas used in proof. With condition (C5), the following

lemma holds parallelly with Lemma All constants in the following lemma

do not depend on S.
Lemma S3.1. We have the following properties for the spline basis vector:

(1) E(|W ((is)ll2) < bi|S|, for some positive constant by for all n sufficiently

large.

(2) bo Kt < EQunin(W (s )W (i6)T)) < EMnan(W (&i5)W (Cis)T)) <

b3 K.Y, for some positive constants by and b for n sufficiently large.

(3) E("W§}SH) > byy/ K, /n, for some positive b for all n sufficiently large.ﬂ

For a matrix A, [|A]| = \/Amaz (AT A) denotes the spectral norm.
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(4) max; [W(Eis)llz = Op(y/ %),
Let MO9F = {S : §&* C S} be the set of overfitted model and B, (S) =
{6 € R’s : ||§|| < n}. We denote the maximum of Js over S € MO by J.

For S € MOF, §5 is defined as
. 1 <& - .
0s = in — (6 — W(Cis) 8s — Ris — u;).
s afgfgiﬂn;ﬂ& (Gis)" s — Ris — w;)

Denote Q;(8s) = p- (i — W ((is)"8s — Ris — ;) and Di(8s) = Qi(ds) —
Qi(0) — E[Qi(6s) — Qi(0)| X:] + W (Ci.s)T 65ty () and ¥, (u) = 7 — I (u < 0).
Lemma S3.2. Assume conditions in Theorem 3.3 hold. Then for any sequence
L, = O(n") with small v > 0 satisfying L3 /\/n — 0 and L?(s++/K,,)//n —
0, we have

sup  sup  |dg® ) Di(8s)| = o,(1), (S3.1)
=1

SeMOF ||§s||<Lnds
where ds = \/Js + s.

This lemma provides a uniform approximation of = > | Q;(ds) — Q:(0)
and can be proved by the same technical arguments in the proof of step 1 for
Lemma[ST.2
Proof. It’s equivalent to show

sup  sup |dg? Y Di(Lndsds)| = o,(1). (S3.2)
SEMOF 5SGB1($) i=1
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Let F,, denote the event max; HW(@S)HQ < agy/ ‘%5 for some positive «;.
Lemma 4) implies that P(F,,4) — 1 as n — 00. F,5 and F,3 is defined in

the proof of Lemma Then it’s sufficient to show for any € > 0

P( sup sup dg°| Z D;(L,dséds)| > €, Fro N Fp3 N Fry) — 0.
SEMOF §seB1(S) i=1

Partition B;(S) as a union of balls with radius my =

3
sa
day JY P01 /2L ,d 5" y

CJY 2012 L, d7t

Ay, ..., Ay, . Wehave M, < C Jn_where C is a positive con-
stant. Let 835, ..., 5™ be arbitrary points in Ay, ..., Ay, respectively. Similar-
ly we can show for all S:

(@) supsgen,, | Yorq (Di(Lndsds) — Di( Lydsdd )| I(Fuo N Fos N Fy) < dze/2.
(ii) max; | D;(L,ds6T)|I(Foy N Fos N Fuy)< CLyds Js *n=1/2,

(i)D", Var[D;(L,ds63)I(Fna N Fu3 N Foy)|X;) < CJSLde?S(\/iﬁ + K"+

CL3d3.JY n=12
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By Bernstein inequality, we have

P( sup sup d§2| Z D;i(L,dséds)| > e, FroN Fr3 N Fry)
SEMOF 68631(3) i=1

IA

My, n
Z Z P(] ZDi(LndS(sgn)‘ > dée /2, Fra N Frg N Fy)

SEMOF m=1 i=1

2 Z iexp( —ds="/4 )

sor il OnTV2 s L2d3 (s + Kymy/n) + CLAE TS *n=V? + Cdi L, J§ *n=12 /2
M,
z —Cdnl/?
2 exp( S )
2 X_Z JsL2(s + K;7y/n) + CLidsJg”

C’nl/2
CL2(s+ K-m/n) + Li;;)’

IN

IN

which converges to zero. Hence the proof of the first step is complete.

Lemma S3.3. Assume conditions in Theorem 3.3 hold. We have

lim lim P(||ds|| < Lds(logn)"/? forall S € M°F) =1. (S3.3)

L—00 n—o0

This lemma is different with Lemma [S1.2| in that we provide a uniform
bound for d5 for all S € MOF
Proof. By the convexity of p,, it suffices to show that, for any ¢ > 0, there exists
a large constant L > 0 such that

liminf P( _inf inf D Qi(6s) — Qi(0) > 0) > 1—e. (S34)
=1

n SEMOF ||5s||=Lds (logn)!/?
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From Lemma if follows that for any &5 : ||0s|| = Lds(logn)'/? with

S € MOF,

n

Z Qi(ds) — Qi(0) = - Z W (Gis) 8st- (&) + > E[Qi(8s) — Qi(0)|X,] + dFo,(1)

=1

= An((ss) + Bn(53> + d?sop(l).

For A,,(8s), we get |4, (8s)| < maxi << || 327, W (Ci)"r () 15172185 .

Since max;<p<, .1, |W (in)||? < MK, for sufficiently large M, we have

P(max [W(&p)vr () = MPK, logn|T)

1<k<s
< sk, IQ%XP(’ Z W (&) or(e1)| > {M Z(Wm(éi,k))zlog n}V2|T)
’ i=1 i=1

< 2sK,exp(—M logn/8),
where the last inequality is from Hoeffding’s inequality. This implies
max [|[W(G)vr(6)l| = Op((Knlogn)'/?).

1<k<s

Consequently, we have
P(|A,(8s5)| < (Jslogn)/?||8s]| forall S € MOF) — 1.

We deal with B,,(ds) similar with step 2 of Lemma Applying Knight’s
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identity twice,

n W(&i,s)Tds+R: s+u;
B,(ds) = Y E[/ (I(e; < s) — I(e; < 0))ds|X;]

i=1 Ri,s+u

= C||ds|* + C||ds](s + K, "v/n).

The last equality holds because R; s = I?; s« for any overfitted model S. Con-

sequently, for sufficient large L, C/||ds||* dominates all other terms and impies

(53.4).

Lemma S3.4. Assume conditions in Theorem 3.3 hold. Then given a constant
1n > 0 we have

sup sup | gi(v/nds)| = O,((nJlogn)"/?)

|S|<s 8s€Bn(S) 5

where g;(ds) = ;07(51'_W(ﬁi,S)TJS_Ri,S_Ui) —pr(6i—Ris—u;)—E(pr(&;—

W(éi,S)T(SS - Ri,S - Uz) - Pr(ﬁi - Ri,S - Uz)’Xz)

Proof. This lemma can be proved by the arguments of Lemma A.3 in|Lee et al.
(2014), where chain technique is used. For m > 0, let ©,(27™n,S) denote
a grid of points in B, (S) such that for every ds € B,(S) there exists 63" €

©,(27™n, S) such that ||ds — 6%'|| < 27™n. For a given constant C' > 0, define
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M, = min{m : 27"y < (C/8M)n~'/2(logn)'/?}. Then

NIQ

(nJslogn)'/2.

sup ngz (Vnds)—gi(v/ndg™) !<4fZ!W Cis)" (8s—05"™)| <

8sEBy(S) =

Consequently, we have

I,(X) = P(sup sup Izgz (vnds)| > C(n.Jlogn)'/*|T)
1S|<s 85€B(S) =3

< P(sup sup |Zgz Vg g(n(]logn)1/2|T)
|S|<s 8s€By(S) 5 2
C
< P( su i(v/nd (V™ Y| > = (nJlogn)Y?|T
< ||Z o ;|;gfs g:(vndg )| = 5 (nJ logn)'/?|T)
Mp

IA
(]
M\
X
&
=2

(8) % max P(IS 0:(Vi6g) — 0:(Viiog )| = S an(nlogn) 1),
=1

For the first inequality, note that 6‘24" depends on ds. For the second inequality,
we take 2" = 0 when m = 0. For the last inequality, N,,(S) is the cardinal-
ity of the set ©,,(27™n, S) which is bounded by (1 + 4 - 2™)’s; q,, is positive
numbers such that Z me1 Gm < 1; and max, is taken over all 63" and (5&”‘1
such that [|67 — 827" < 3(27™n). Note that |g;(v/n6%) — g;(v/nde )| <
AW (Cs)T(07 — 63") and S0, W (C,)7 (8% — 8512 < 02-2my?

for some constant f > 0since .7, fi(0)W ({;.5)W (Cis)T = BSWSBWSTW,;S =
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I. Similar to (A.14) in|Lee et al. (2014), we can take

96 f1/227™n(log(1 + 4 - 2m))1/2}

o -m, . 1/2
Ay, = max{2”"m"*/8, Cllogn) 72

Applying Hoeffding’s inequality, we get that

C?a?,Jlogn

My
L(X)<2) ) exp(2/log(l+4-2") = 2220 oz

]<s m=1

),

which converges to zero for sufficiently large C' > 0.
Proof of Theorem 3.3. Let MU = {S : §* ¢ S} denote the underfitted

model. It suffices to show that

P min BIC BIC(S*)) — 1 S3.5
<S€MO},S7£S* (S) - ( )> ’ ( )
P( min BIC(S BIC(S*)) — 1. S3.6
(SGA}lUF ( ) > ( )) ( )

First we prove (S53.5). Using similar arguments as in the proof of Lemma

S3.3| and the fact that | B,,(ds)| < C||ds

2, we can choose a sequence { L, }, not

depending on S, such that é—: — 0 and %,"—ij — 0, and

| ZQi(SS) — Q(0)| < Lnd%logn, (S3.7)
=1
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for any S € MOF with probability tending to one. Then we have

min  BIC(S) — BIC(S™)

SeMOF §£8%
N n ; 5 - ) 8 *

= min log(1 + n Zz:l Qﬁ( J>:> Qz( s*) )

SGM0F7S7£S* n—l Z?:l pT(Ei — W(CI,S*)(sS* —_ RZ — uz)

logn
+ (Js — Js+) o C,
- n % 8 - 7 8 * 1

> min =~ —2| n 201 Qilds) — Qi(ds-) |+ (Js — Js) ()Qinon

- SeEMOF S£S* nil Z?:l pT(Gi — W(CA’LS*)SS* — RZ — 'LLl)
logn

> ' — CL,(Js + s
> i 4= CLa(Us + %)=

logn
2n

+ (Js — Js+) Ch},

where the first inequality follows from log(1+x) > —2|z| forany x : |z| < 1/2.
This completes the proof of (S3.5)).

Now we prove (53.6). By assumption, we can take 7 > O(not depending on
n) such that minges- ||0%]] > +/K,n (every B-spline covariate is O,(1/v/K,)).
Let S = SUS*. Then S € MOF. Let’s extend O from R’S to R”s by setting
zero on elements in S/S. Denote the extended vector by 0 5(S). Note that it’s
different with @ s which is the estimator under model S. Clearly, [|64(S)— 6% >
VE,n. Accordingly, define §5(S) = W, 5(85(S) — 6%) and 105(S)|| > v/nn

(from Lemma 3)). On the other hand, we have ||d5| < v/nn from Lemma
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By the convexity of p, (), there exists d with ||§5|| = /77 such that

Z pT(yz’ - W(é@s)T@AS)
= Z prlei = W(C,5)35(S) = Ri — w,)

Consequently,

1. - e _
> b 370000 ~0001
— sup [ [Qi(0s) — Qi(0)] = (Y ElQi(0s) — Qi(0)|Xi])]
865€B 5, (S) =1 i=1
- (Z[Qi(ss) —Qi(0)])]- (53.8)

Similar to arguments in Lemma|S3.3| n~!in 5€Bfn §) 2imr ElQi(d5)—Qi(0)|Xi]

is positive and bounded away uniformly over S € OF. From Lemma the
second term converges to 0. From (S3.7), the third term converges to 0. So we

can take a constant ¢ > 0 not depending on S such that

1 & ~ .
_ \Yi — i,S - T z_ ~5 _R_ % 22 07
n;:lp(y W (Cis)" Ep () u;) > 2¢ >
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for all S € SUT" with probability tending to one. Then we have

min BIC(S) — BIC(S)

SeMUF
~ o log(1 4 S pr(Yi — W (Cis) Os) — 5+ > prles — W((,.5)05 — Ri — Ui))
semur Iy pr(ei — W (G 5)05 — Ri — ;)
logn
> min min{log 2, S }— ]S*\Knloﬂ(?n > 0,
SemMur %Z?:l pr(€i — W(ng)ﬁg — R — u;) 2n

with probability tending to 1. The first inequality follows from log(1 + z) >

min{z/2,log 2} for any x > 0. Then we have

<Din, [BIC(S) — BIC(S")]

= _min_[BIC(S) — BIC(S) + BIC(S) — BIC(S")]

> min [BIC(S) — BIC
> Iin [BIC(S) (8)] >0,

where the first inequality comes from (53.5). This completes the proof.
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