Functional Additive Quantile Regression

YINGYING ZHANG 1 , HENG LIAN 2 , GUODONG LI 3 ZHONGYI ZHU 4

East China Normal University¹, City University of Hong Kong²,

University of Hong Kong³, Fudan University⁴

Supplementary Material

S1 Proof of Theorem 3.1

We first introduce some notations. Let $J_n = q(K_n + l) + 1$ and

$$\begin{split} \hat{\boldsymbol{W}}_{\mathcal{S}^*} &= (\boldsymbol{W}(\hat{\boldsymbol{\zeta}}_{1,\mathcal{S}^*}), \dots, \boldsymbol{W}(\hat{\boldsymbol{\zeta}}_{n,\mathcal{S}^*}))^T \in \mathbb{R}^{n \times J_n}, \\ \hat{\boldsymbol{W}}_{B,\mathcal{S}^*}^2 &= \hat{\boldsymbol{W}}_{\mathcal{S}^*}^T \boldsymbol{B}_n \hat{\boldsymbol{W}}_{\mathcal{S}^*} \in \mathbb{R}^{J_n \times J_n}, \text{ where } \boldsymbol{B}_n = \text{diag}(f_1(0), \dots, f_n(0)), \\ \tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^*}) &= \hat{\boldsymbol{W}}_{B,\mathcal{S}^*}^{-1} \boldsymbol{W}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^*}) \in \mathbb{R}^{J_n}, \\ \boldsymbol{\delta}_{\mathcal{S}^*} &= \hat{\boldsymbol{W}}_{B,\mathcal{S}^*}(\boldsymbol{\theta}_{\mathcal{S}^*} - \boldsymbol{\theta}_{\mathcal{S}^*}^0) \in \mathbb{R}^{J_n}, \\ R_i &= (\boldsymbol{W}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^*}) - \boldsymbol{W}(\boldsymbol{\zeta}_{i,\mathcal{S}^*}))^T \boldsymbol{\theta}_{\mathcal{S}^*}^0, \\ u_i &= \boldsymbol{W}(\boldsymbol{\zeta}_{i,\mathcal{S}^*})^T \boldsymbol{\theta}_{\mathcal{S}^*}^0 - \alpha(\tau) - \sum_{i=1}^q f_{s_j,\tau}(\boldsymbol{\zeta}_{i,s_j}). \end{split}$$

Define the oracle minimizer of δ_{S^*} as

$$\hat{\boldsymbol{\delta}}_{\mathcal{S}^*} = \arg\min_{\boldsymbol{\delta}} \frac{1}{n} \sum_{i=1}^n \rho_{\tau} (\epsilon_i - \tilde{\boldsymbol{W}} (\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^*})^T \boldsymbol{\delta} - R_i - u_i).$$

First we derive some technical lemmas used in the proof.

Lemma S1.1. We have the following properties for the spline basis vector:

- (1) $E(\|\mathbf{W}(\hat{\zeta}_{i,\mathcal{S}^*})\|_2) \leq b_1$, for some positive constant b_1 for all n sufficiently large.
- (2) $b_2K_n^{-1} \leq E(\lambda_{min}(\boldsymbol{W}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^*})\boldsymbol{W}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^*})^T)) \leq E(\lambda_{max}(\boldsymbol{W}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^*})\boldsymbol{W}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^*})^T)) \leq b_2^*K_n^{-1}$, for some positive constants b_2 and b_2^* for n sufficiently large.
- (3) $E(\|\hat{\mathbf{W}}_{B,S^*}^{-1}\|) \geq b_3 \sqrt{K_n/n}$, for some positive b_3 for all n sufficiently large.
- (4) $\max_i \|\tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^*})\|_2 = O_p(\sqrt{\frac{K_n}{n}}).$

Proof.

(1) The result follows if we can show $E(B_m^2(\hat{\zeta}_{i,s_j})) = O_p(\frac{1}{K_n})$ for all $1 \leq m \leq K_n + l$. It holds that $E(B_m^2(\zeta_{i,s_j})) = O_p(\frac{1}{K_n})$ by Lemma 2(1) in Sherwood and Wang (2016). Note that $E(B_m^2(\hat{\zeta}_{i,s_j})) = E(B_m(\hat{\zeta}_{i,s_j}) - B_m(\zeta_{i,s_j}) + B_m(\zeta_{i,s_j}))^2 = E(B_m^{(1)}(\zeta_{i,s_j}^*)(\hat{\zeta}_{i,s_j} - \zeta_{i,s_j}) + B_m(\zeta_{i,s_j}))^2$. By (S.3) in the supplement of Wong et al. (2018), we have $(\hat{\zeta}_{i,s_j} - \zeta_{i,s_j})^2 = O_p(\frac{s_j^2}{n})$, thus

For a matrix A, $||A|| = \sqrt{\lambda_{max}(A^TA)}$ denotes the spectral norm.

$$E(B_m^{(1)}(\zeta_{i,s_j}^*)(\hat{\zeta}_{i,s_j}-\zeta_{i,s_j}))^2 = O_p(\frac{K_n s_j^2}{n}) \text{ where } (B_m^{(1)}(\zeta_{i,s_j}^*))^2 = O_p(K_n).$$
 Note that $\frac{K_n s^2}{n} < \frac{1}{K_n}$. Thus The dominant term is $O_p(1/K_n)$.

- (2) By the proof of Lemma 2(2) in Sherwood and Wang (2016), we can see that this result follows if we can prove $E(\boldsymbol{a}_{s_j}^T\boldsymbol{w}(\hat{\zeta}_{i,s_j}))^2 \geq c_{s_j}\|\boldsymbol{a}_{s_j}\|_2^2K_n^{-1}$ for some constant c_{s_j} and any (K_n+l) -dimensional vector \boldsymbol{a}_{s_j} when n is sufficiently large. It holds that $E(\boldsymbol{a}_{s_j}^T\boldsymbol{w}(\zeta_{i,s_j}))^2 \geq c_{s_j}\|\boldsymbol{a}_{s_j}\|_2^2K_n^{-1}$. Note that $E(\boldsymbol{a}_{s_j}^T\boldsymbol{w}(\hat{\zeta}_{i,s_j}))^2 = E(\boldsymbol{a}_{s_j}^T\boldsymbol{w}(\zeta_{i,s_j}) + \boldsymbol{a}_{s_j}^T(\boldsymbol{w}(\hat{\zeta}_{i,s_j}) \boldsymbol{w}(\zeta_{i,s_j}))^2$ where the second term is $O_p(\frac{K_n^2s^2}{n})$ and dominated by $O_p(1/K_n)$.
- (3) Similar to Lemma2 (3) in Sherwood and Wang (2016), we can show that $E(\lambda_{\min}(\hat{\boldsymbol{W}}_{B,\mathcal{S}^*}^2)) \geq c'n/K_n \text{ for some positive } c' \text{ from arguments in (2)}.$ The proof finishes by $\|\hat{\boldsymbol{W}}_{B,\mathcal{S}^*}^{-1}\| = \lambda_{\min}^{-1/2}(\hat{\boldsymbol{W}}_{B,\mathcal{S}^*}^2).$
- (4) This is the same with Sherwood and Wang (2016) Lemma2 (4) which can be proved as Lemma 5.1 in Shi and Li (1995).

In the proofs C denotes a generic positive constant which may assume different values even on the same line.

Lemma S1.2. Under conditions (C1)-(C3), we have $\|\hat{\delta}_{S^*}\|_2 = O_p(K_n^{1/2} + s + K_n^{-r}n^{1/2}).$

Proof. We will prove that for $\forall \eta > 0$, there exits an L > 0 such that

$$P(\inf_{\|\boldsymbol{\delta}\|_{2}=L} d_{n}^{-2} \sum_{i=1}^{n} (Q_{i}(d_{n}\boldsymbol{\delta}) - Q_{i}(0)) > 0) \ge 1 - \eta, \tag{S1.1}$$

where $Q_i(\boldsymbol{\delta}) = \rho_{\tau}(\epsilon_i - \tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^*})^T\boldsymbol{\delta} - R_i - u_i)$ and $d_n = K_n^{1/2} + s + K_n^{-r}n^{1/2}$. Then the convexity implies $\|\hat{\boldsymbol{\delta}}_{\mathcal{S}^*}\|_2 = O_p(K_n^{1/2} + s + K_n^{-r}n^{1/2})$. Note that

$$d_n^{-2} \sum_{i=1}^n (Q_i(d_n \boldsymbol{\delta}) - Q_i(0))$$

$$= d_n^{-2} \sum_{i=1}^n D_i(d_n \boldsymbol{\delta}) + d_n^{-2} \sum_{i=1}^n E[Q_i(d_n \boldsymbol{\delta}) - Q_i(0)|X_i] - d_n^{-1} \sum_{i=1}^n \tilde{\boldsymbol{W}} (\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^*})^T \boldsymbol{\delta} \psi_{\tau}(\epsilon_i)$$

$$= G_1 + G_2 + G_3,$$

where $D_i(\boldsymbol{\delta}) = Q_i(\boldsymbol{\delta}) - Q_i(0) - E[Q_i(\boldsymbol{\delta}) - Q_i(0)|X_i] + \tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^*})^T \boldsymbol{\delta} \psi_{\tau}(\epsilon_i)$ and $\psi_{\tau}(u) = \tau - I(u < 0)$. Next we will prove (S1.1) by three steps. In the first step, we will prove that $\sup_{\|\boldsymbol{\delta}\|_2 \leq L} |G_1| = o_p(1)$. In the second step, we will show that asymptotically G_2 has a positive lower bound CL^2 when L is sufficiently large. In the third step, we obtain $G_3 = O_p(\|\boldsymbol{\delta}\|_2)$. This completes the proof.

Step 1. In this step, we prove that $\forall \varepsilon > 0$,

$$P(d_n^{-2} \sup_{\|\boldsymbol{\delta}\|_2 \le L} |\sum_{i=1}^n D_i(d_n\boldsymbol{\delta})| > \varepsilon) \to 0.$$

Let F_{n1} denote the event $\max_i \|\tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^*})\|_2 \leq \alpha_1 \sqrt{\frac{J_n}{n}}$ for some positive α_1 . Lemma S1.1(4) implies that $P(F_{n1}) \to 1$ as $n \to \infty$. Let F_{n2} denote the event $\max_i |u_i| \leq \alpha_2 K_n^{-r}$ for some positive α_2 . Then $P(F_{n2}) \to 1$ follows from Schumaker (1981). Let F_{n3} denote the event $\frac{1}{n} \sum_{i=1}^n |R_i| \leq \alpha_3 s / \sqrt{n}$ for some positive α_3 . In the following we will show that $P(F_{n3}) \to 1$.

Following the calculation

$$\frac{1}{n} \sum_{i=1}^{n} |R_{i}| \leq \frac{1}{n} \sum_{i=1}^{n} \sum_{t=1}^{q} |(\boldsymbol{W}(\hat{\boldsymbol{\zeta}}_{i,k_{t}}) - \boldsymbol{W}(\boldsymbol{\zeta}_{i,k_{t}}))^{T} \boldsymbol{\theta}_{k_{t}}^{0}|
= \frac{1}{n} \sum_{i=1}^{n} \sum_{t=1}^{q} |\boldsymbol{W}^{(1)}(\boldsymbol{\zeta}_{i,k_{t}})^{T} \boldsymbol{\theta}_{k_{t}}^{0}(\hat{\boldsymbol{\zeta}}_{i,k_{t}} - \boldsymbol{\zeta}_{i,k_{t}})|
\leq \left\{ \frac{1}{n} \sum_{i=1}^{n} \sum_{t=1}^{q} (\boldsymbol{W}^{(1)}(\boldsymbol{\zeta}_{i,k_{t}})^{T} \boldsymbol{\theta}_{k_{t}}^{0})^{2} \right\}^{1/2} \left\{ \frac{1}{n} \sum_{i=1}^{n} \sum_{t=1}^{q} (\hat{\boldsymbol{\zeta}}_{i,k_{t}} - \boldsymbol{\zeta}_{i,k_{t}})^{2} \right\}^{1/2}$$

By Lemma 11 in Stone (1985), we have $|\mathbf{W}^{(1)}(\zeta_{i,k_t})^T \boldsymbol{\theta}_{k_t}^0| \leq C \int_0^1 (\mathbf{W}(t)^T \boldsymbol{\theta}_{k_t}^0)^2 dt = C \int_0^1 (f_{k_t}(t) + K_n^{-r})^2 dt = O(1)$. By Lemma 3.1, we have $E(\hat{\zeta}_{ik} - \zeta_{ik})^2 \leq Ck^2/n$ uniformly for $k \leq s$. So $P(F_{n3}) \to 1$.

Then it's sufficient to show

$$P(d_n^{-2} \sup_{\|\boldsymbol{\delta}\|_2 \le L} |\sum_{i=1}^n D_i(d_n\boldsymbol{\delta})| > \varepsilon, F_{n1} \cap F_{n2} \cap F_{n3}) \to 0.$$

Define $\Delta = \{ \boldsymbol{\delta} \mid \| \boldsymbol{\delta} \|_2 \leq L, \boldsymbol{\delta} \in \mathbb{R}^{J_n} \}$. We can partition Δ as a union of disjoint regions $\Delta_1, \ldots, \Delta_{M_n}$, such that the diameter of each region does not exceed $m_0 = \frac{\varepsilon}{4\alpha_1 J_n^{1/2} n^{1/2} d_n^{-1}}$. This covering can be constructed such that $M_n \leq C(\frac{CJ_n^{1/2} n^{1/2} d_n^{-1}}{\varepsilon})^{J_n}$, where C is a positive constant. Let $\boldsymbol{\delta}_1^{\star}, \ldots, \boldsymbol{\delta}_{M_n}^{\star}$ be arbitrary

points in $\Delta_1, \ldots, \Delta_{M_n}$ respectively. Then

$$P(\sup_{\|\boldsymbol{\delta}\|_{2} \leq L} d_{n}^{-2} | \sum_{i=1}^{n} D_{i}(d_{n}\boldsymbol{\delta})| > \varepsilon, F_{n1} \cap F_{n2} \cap F_{n3})$$

$$\leq \sum_{m=1}^{M_{n}} P(\sup_{\boldsymbol{\delta} \in \Delta_{m}} d_{n}^{-2} | \sum_{i=1}^{n} D_{i}(d_{n}\boldsymbol{\delta})| > \varepsilon, F_{n1} \cap F_{n2} \cap F_{n3})$$

$$\leq \sum_{m=1}^{M_{n}} P(|\sum_{i=1}^{n} D_{i}(d_{n}\boldsymbol{\delta}_{m}^{\star})| + \sup_{\boldsymbol{\delta} \in \Delta_{m}} |\sum_{i=1}^{n} (D_{i}(d_{n}\boldsymbol{\delta}) - D_{i}(d_{n}\boldsymbol{\delta}_{m}^{\star}))| > d_{n}^{2}\varepsilon, F_{n1} \cap F_{n2} \cap F_{n3}).$$

We first show that
$$\sup_{\boldsymbol{\delta}\in\Delta_m}|\sum_{i=1}^n(D_i(d_n\boldsymbol{\delta})-D_i(d_n\boldsymbol{\delta}_m^\star))|I(F_{n1}\cap F_{n2}\cap F_{n3})|<$$

 $d_n^2\varepsilon/2$. Noting that $\rho_{\tau}(u)=\frac{1}{2}|u|+(\tau-\frac{1}{2})u$, we have $Q_i(\boldsymbol{\delta})-Q_i(0)=\frac{1}{2}[|\epsilon_i-1|^2]$

$$\tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^*})^T\boldsymbol{\delta} - R_i - u_i| - |\epsilon_i - R_i - u_i|] - (\tau - \frac{1}{2})\tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^*})^T\boldsymbol{\delta}$$
. So

$$\sup_{\boldsymbol{\delta} \in \Delta_{m}} |\sum_{i=1}^{n} D_{i}(d_{n}\boldsymbol{\delta}) - D_{i}(d_{n}\boldsymbol{\delta}_{m}^{\star})|I(F_{n1} \cap F_{n2} \cap F_{n3})$$

$$\leq 2nd_{n} \max_{i} ||\tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^{\star}})||_{2} \sup_{\boldsymbol{\delta} \in \Delta_{m}} ||\boldsymbol{\delta} - \boldsymbol{\delta}_{m}^{\star}||_{2}I(F_{n1} \cap F_{n2} \cap F_{n3})$$

$$\leq d_{n}^{2}\varepsilon/2.$$

The proof is complete if we can verify

$$\sum_{m=1}^{M_n} P(|\sum_{i=1}^n D_i(d_n \delta_m^*)| > d_n^2 \varepsilon / 2, F_{n1} \cap F_{n2} \cap F_{n3}) \to 0.$$

First applying the definition of D_i and the triangle inequality,

$$\max_{i} |D_{i}(d_{n}\boldsymbol{\delta}_{m}^{\star})|I(F_{n1} \cap F_{n2} \cap F_{n3})$$

$$\leq 2 \max_{i} ||\tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^{\star}})||_{2} d_{n}\boldsymbol{\delta}_{m}^{\star} I(F_{n1} \cap F_{n2} \cap F_{n3})$$

$$\leq C d_{n} J_{n}^{1/2} n^{-1/2},$$

for some positive C. Next,

$$\sum_{i=1}^{n} Var[D_{i}(d_{n}\boldsymbol{\delta}_{m}^{\star})I(F_{n1}\cap F_{n2}\cap F_{n3})|X_{i}] \leq \sum_{i=1}^{n} E[V_{i}^{2}(d_{n}\boldsymbol{\delta}_{m}^{\star})I(F_{n1}\cap F_{n2}\cap F_{n3})|X_{i}],$$

where
$$V_i(\boldsymbol{\delta}) = Q_i(\boldsymbol{\delta}) - Q_i(0) + \tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^*})^T \boldsymbol{\delta} \psi_{\tau}(\epsilon_i)$$
 and $D_i(\boldsymbol{\delta}) = V_i(\boldsymbol{\delta}) - E[V_i(\boldsymbol{\delta})|X_i]$ by definition. By Knight's identity,

$$V_{i}(d_{n}\boldsymbol{\delta}_{m}^{\star}) = \tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^{\star}})^{T}d_{n}\boldsymbol{\delta}_{m}^{\star}[I(\epsilon_{i}-R_{i}-u_{i}<0)-I(\epsilon_{i}<0)]$$

$$+ \int_{0}^{\tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^{\star}})^{T}d_{n}\boldsymbol{\delta}_{m}^{\star}}[I(\epsilon_{i}-R_{i}-u_{i}<0)-I(\epsilon_{i}-R_{i}-u_{i}<0)]$$

$$= V_{i1}+V_{i2}.$$

We have

$$\sum_{i=1}^{n} E[V_{i1}^{2}I(F_{n1} \cap F_{n2} \cap F_{n3})|X_{i}]$$

$$= \sum_{i=1}^{n} E[(\tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^{*}})^{T}d_{n}\boldsymbol{\delta}_{m}^{*})^{2}|I(\epsilon_{i} - R_{i} - u_{i} < 0) - I(\epsilon_{i} < 0)|I(F_{n1} \cap F_{n2} \cap F_{n3})|X_{i}]$$

$$\leq C\frac{J_{n}}{n}d_{n}^{2}\sum_{i=1}^{n} E[I(0 \leq |\epsilon_{i}| \leq |R_{i} + u_{i}|)I(F_{n1} \cap F_{n2} \cap F_{n3})|X_{i}]$$

$$= C\frac{J_{n}}{n}d_{n}^{2}\sum_{i=1}^{n} \int_{-|R_{i} + u_{i}|}^{|R_{i} + u_{i}|} f_{i}(s)ds$$

$$\leq C\frac{J_{n}}{n}d_{n}^{2}\sum_{i=1}^{n} |R_{i} + u_{i}|$$

$$\leq Cn^{-1/2}J_{n}d_{n}^{2}(s + K_{n}^{-r}\sqrt{n}),$$

On the other hand, we have

$$\sum_{i=1}^{n} E[V_{i2}^{2}I(F_{n1} \cap F_{n2} \cap F_{n3})|X_{i}]$$

$$\leq Cd_{n}J_{n}^{1/2}n^{-1/2}\sum_{i=1}^{n}\int_{0}^{\tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^{*}})^{T}d_{n}}\boldsymbol{\delta}_{m}^{\star}}[F_{i}(R_{i}+u_{i}+s)-F_{i}(R_{i}+u_{i})]I(F_{n1} \cap F_{n2} \cap F_{n3})ds$$

$$\leq Cd_{n}^{3}J_{n}^{1/2}n^{-1/2}[\boldsymbol{\delta}_{m}^{\star T}\sum_{i=1}^{n}f_{i}(0)\tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^{*}})\tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^{*}})^{T}\boldsymbol{\delta}_{m}^{\star}](1+o(1))$$

$$\leq Cd_{n}^{3}J_{n}^{1/2}n^{-1/2}.$$

The last inequality follows since $\sum_{i=1}^n f_i(0)\tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^*})\tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^*})^T = \hat{\boldsymbol{W}}_B^{-1}\hat{\boldsymbol{W}}B\hat{\boldsymbol{W}}^T\hat{\boldsymbol{W}}_B^{-1} =$

I. Therefore,

$$\sum_{i=1}^{n} Var[D_{i}(d_{n}\boldsymbol{\delta}_{m}^{\star})I(F_{n1}\cap F_{n2}\cap F_{n3})|X_{i}] \leq Cn^{-1/2}J_{n}d_{n}^{2}(s+K_{n}^{-r}\sqrt{n}).$$

By Bernstein's inequality,

$$\sum_{m=1}^{M_n} P(|\sum_{i=1}^n D_i(d_n \boldsymbol{\delta}_m^*)| > d_n^2 \varepsilon / 2, F_{n1} \cap F_{n2} \cap F_{n3})$$

$$\leq 2 \sum_{m=1}^{M_n} \exp(\frac{-d_n^4 \varepsilon^2 / 4}{Cn^{-1/2} J_n d_n^2 (s + K_n^{-r} \sqrt{n}) + C d_n^3 J_n^{1/2} n^{-1/2} \varepsilon / 2})$$

$$\leq 2 \sum_{m=1}^{M_n} \exp(\frac{-C d_n^2 n^{1/2}}{J_n (s + K_n^{-r} \sqrt{n})})$$

$$\leq C \exp(C J_n \log n - \frac{C d_n^2 n^{1/2}}{J_n (s + K_n^{-r} \sqrt{n})}),$$

which converges to zero as $\max\{K_n, s^2, K_n^{-2r}n\} \gg K_n^2\{\frac{s}{\sqrt{n}} + K_n^{-r}\} \log n$. Hence the proof of the first step is complete.

Step 2. In this step, we show that asymptotically $G_2 = d_n^{-2} \sum_{i=1}^n E[Q_i(d_n \delta) - Q_i(0)|X_i]$ has a positive lower bound CL^2 when L is sufficiently large. By

Knight's identity,

$$G_{2} = d_{n}^{-2} \sum_{i=1}^{n} E\left[\int_{R_{i}+u_{i}}^{\tilde{\mathbf{W}}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^{*}})^{T} d_{n} \boldsymbol{\delta} + R_{i} + u_{i}} (I(\epsilon_{i} < s) - I(\epsilon_{i} < 0)) ds | X_{i} \right]$$

$$= d_{n}^{-2} \sum_{i=1}^{n} \int_{R_{i}+u_{i}}^{\tilde{\mathbf{W}}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^{*}})^{T} d_{n} \boldsymbol{\delta} + R_{i} + u_{i}} f_{i}(0) s ds (1 + o(1))$$

$$= d_{n}^{-2} \sum_{i=1}^{n} f_{i}(0) \frac{1}{2} \{ (\tilde{\mathbf{W}}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^{*}})^{T} d_{n} \boldsymbol{\delta})^{2} + 2 (\tilde{\mathbf{W}}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^{*}})^{T} d_{n} \boldsymbol{\delta}) (R_{i} + u_{i}) \}$$

$$= C \|\boldsymbol{\delta}\|_{2}^{2} + C d_{n}^{-1} \boldsymbol{\delta}^{T} \hat{\mathbf{W}}_{B}^{-1} \hat{\mathbf{W}} \boldsymbol{B}_{n} (\boldsymbol{R}_{n} + \boldsymbol{u}_{n})$$

$$= C \|\boldsymbol{\delta}\|_{2}^{2} + C d_{n}^{-1} \boldsymbol{\delta}^{T} (\boldsymbol{R}_{n} + \boldsymbol{u}_{n}),$$

where $\mathbf{R}_n = (R_1, \dots, R_n)^T$ and $\mathbf{u}_n = (u_1, \dots, u_n)^T$. The second last equality follows from $\sum_{i=1}^n f_i(0) \tilde{\mathbf{W}} (\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^*}) \tilde{\mathbf{W}} (\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^*})^T = \hat{\mathbf{W}}_B^{-1} \hat{\mathbf{W}} B \hat{\mathbf{W}}^T \hat{\mathbf{W}}_B^{-1} = I$. Note that $\|\mathbf{u}_n\|_2 = O_p(\sqrt{n}K_n^{-r})$ and $\|\mathbf{R}_n\|_2 = \sqrt{\sum_{i=1}^n |R_i|^2} = O_p(s)$ by technical arguments similar with the proof of $P(F_{n3}) \to 1$ in Step 1. Thus $|Cd_n^{-1}\boldsymbol{\delta}^T(\mathbf{R}_n + \mathbf{u}_n)| = O_p(\|\boldsymbol{\delta}\|_2)$, and when L is sufficiently large, the quadratic term will dominant. This completes the proof of Step 2.

Step 3. In this step, we evaluate $G_3 = -d_n^{-1} \sum_{i=1}^n \tilde{\boldsymbol{W}} (\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^*})^T \boldsymbol{\delta} \psi_{\tau}(\epsilon_i)$ as Lemma 3.3 in He and Shi (1994). At almost all samples $T = \{X_1, X_2, \cdots, \}$

and for any real number M > 0, Chebychev inequality implies

$$P\{d_{n}^{-1} \| \sum_{i=1}^{n} \tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^{*}})(\tau - I(\epsilon_{i} < 0)) \|_{2} > M|T\}$$

$$\leq E[\| \sum_{i=1}^{n} \tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^{*}})(\tau - I(\epsilon_{i} < 0)) \|_{2}^{2}]/(d_{n}^{2}M^{2})$$

$$= E[\operatorname{trace}(\sum_{i=1}^{n} \tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^{*}})(\tau - I(\epsilon_{i} < 0)) \sum_{j=1}^{n} \tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{j,\mathcal{S}^{*}})^{T}(\tau - I(\epsilon_{j} < 0)))]/(d_{n}^{2}M^{2})$$

$$\leq \frac{\tau(1-\tau)K_{n}}{M^{2}d_{n}^{2}}, \tag{S1.2}$$

where the last equality follows from Lemma S1.1(4) and the fact that $E[(\tau - I(\epsilon_i < 0))(\tau - I(\epsilon_j < 0))] = 0$ for $i \neq j$. So we have $G_3 = O_p(\|\delta\|_2)$.

Proof of Theorem 3.1. From Lemma S1.2, we have

$$\|\hat{\delta}_{\mathcal{S}^*}\|_2 = O_p(K_n^{1/2} + s + K_n^{-r}n^{1/2}).$$

That is, we have $\|\hat{W}_B(\theta_{S^*}^* - \theta_{S^*}^0)\|_2 = O_p(K_n^{1/2} + s + K_n^{-r}n^{1/2})$. In the proof of Lemma S1.1(3), $\lambda_{\min}(\hat{W}_B^2) = O_p(n/K_n)$. So

$$\|\boldsymbol{\theta}_{\mathcal{S}^*}^* - \boldsymbol{\theta}_{\mathcal{S}^*}^0\|_2 = O_p(\frac{K_n}{\sqrt{n}} + \sqrt{\frac{K_n}{n}}s + K_n^{-r+1/2}).$$

For the second argument, note that

$$n^{-1} \sum_{i=1}^{n} f_{i}(0) (g^{*}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^{*}}) - g(\boldsymbol{\zeta}_{i,\mathcal{S}^{*}}))^{2}$$

$$= n^{-1} \sum_{i=1}^{n} f_{i}(0) (\boldsymbol{W}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^{*}})^{T} (\boldsymbol{\theta}_{\mathcal{S}^{*}}^{*} - \boldsymbol{\theta}_{\mathcal{S}^{*}}^{0}) - R_{i} - u_{i})^{2}$$

$$\leq n^{-1} C (\boldsymbol{\theta}_{\mathcal{S}^{*}}^{*} - \boldsymbol{\theta}_{\mathcal{S}^{*}}^{0})^{T} \hat{\boldsymbol{W}}_{B}^{2} (\boldsymbol{\theta}_{\mathcal{S}^{*}}^{*} - \boldsymbol{\theta}_{\mathcal{S}^{*}}^{0}) + O_{p}(\frac{s^{2}}{n}) + O_{p}(K_{n}^{-2r})$$

$$= O_{p}(\frac{K_{n}}{n} + \frac{s^{2}}{n} + K_{n}^{-2r}).$$

S2 Proof of Theorem 3.2

Note that the SCAD penalized objective function can be written as $S_n(\theta) = G_n(\theta) - H_n(\theta)$, where $G_n(\theta)$ and $H_n(\theta)$ are convex functions,

$$G_n(\boldsymbol{\theta}) = n^{-1} \sum_{i=1}^n \rho_{\tau}(y_i - \boldsymbol{W}(\hat{\boldsymbol{\zeta}}_i)^T \boldsymbol{\theta}) + \sum_{k=1}^s \lambda \|\boldsymbol{\theta}_k\|_1,$$

and

$$H_n(\boldsymbol{\theta}) = \sum_{k=1}^s \left\{ \frac{\|\boldsymbol{\theta}_k\|_1^2 - 2\lambda \|\boldsymbol{\theta}_k\|_1 + \lambda^2}{2(a-1)} I(\lambda \le \|\boldsymbol{\theta}_k\|_1 \le a\lambda) + [\lambda \|\boldsymbol{\theta}_k\|_1 - (a+1)\lambda^2/2] I(\|\boldsymbol{\theta}_k\|_1 > a\lambda) \right\}.$$

Here neither $G_n(\theta)$ nor $H_n(\theta)$ are differentiable, while H_n in Sherwood and Wang (2016) is differentiable everywhere. We formally define the subdifferentials of $G_n(\theta)$ and $H_n(\theta)$.

$$\frac{\partial G_n(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \{ \boldsymbol{\pi} = (\pi_0, \boldsymbol{\pi}_1^T, \dots, \boldsymbol{\pi}_s^T)^T \in \mathbb{R}^{s(K_n+l)+1} :
\pi_0 = -\tau n^{-1} \sum_{i=1}^n K_n^{-1/2} I(y_i - \boldsymbol{W}(\hat{\boldsymbol{\zeta}}_i)^T \boldsymbol{\theta} > 0)
+ (1-\tau)n^{-1} \sum_{i=1}^n K_n^{-1/2} I(y_i - \boldsymbol{W}(\hat{\boldsymbol{\zeta}}_i)^T \boldsymbol{\theta} < 0)
- n^{-1} \sum_{i=1}^n K_n^{-1/2} a_i \equiv \nu_0(\boldsymbol{\theta});
\boldsymbol{\pi}_k = -\tau n^{-1} \sum_{i=1}^n \boldsymbol{w}(\hat{\boldsymbol{\zeta}}_{ik}) I(y_i - \boldsymbol{W}(\hat{\boldsymbol{\zeta}}_i)^T \boldsymbol{\theta} > 0)
+ (1-\tau)n^{-1} \sum_{i=1}^n \boldsymbol{w}(\hat{\boldsymbol{\zeta}}_{ik}) I(y_i - \boldsymbol{W}(\hat{\boldsymbol{\zeta}}_i)^T \boldsymbol{\theta} < 0)
- n^{-1} \sum_{i=1}^n \boldsymbol{w}(\hat{\boldsymbol{\zeta}}_{ik}) a_i + \lambda \boldsymbol{l}_k \equiv \boldsymbol{\nu}_k(\boldsymbol{\theta}) + \lambda \boldsymbol{l}_k, \text{ for } 1 \leq k \leq s \},$$

where $a_i = 0$ if $y_i - \boldsymbol{W}(\hat{\boldsymbol{\zeta}}_i)^T \boldsymbol{\theta} \neq 0$ and $a_i \in [\tau - 1, \tau]$ otherwise; $\boldsymbol{l}_k = (l_{k1}, \dots, l_{k,K_n+l})^T \in \mathbb{R}^{K_n+l}$ and $l_{km} = sgn(\theta_{km})$ if $\theta_{km} \neq 0$ and $l_{km} \in [-1, 1]$ otherwise for $1 \leq m \leq K_n + l$.

$$\frac{\partial H_n(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \{ \boldsymbol{\varpi} = (0, \boldsymbol{\varpi}_1^T, \dots, \boldsymbol{\varpi}_s^T)^T \in \mathbb{R}^{s(K_n + l) + 1} :$$

$$\boldsymbol{\varpi}_k = \mathbf{0}, \text{ if } 0 \le \|\boldsymbol{\theta}_k\|_1 < \lambda,$$

$$\boldsymbol{\varpi}_k = [(\|\boldsymbol{\theta}_k\|_1 - \lambda)/(a - 1)]\boldsymbol{h}_k, \text{ if } \lambda \le \|\boldsymbol{\theta}_k\|_1 \le a\lambda,$$

$$\boldsymbol{\varpi}_k = \lambda \boldsymbol{h}_k, \text{ if } \|\boldsymbol{\theta}_k\|_1 > a\lambda, \text{ for all } 1 \le k \le s \},$$

where $\boldsymbol{h}_k = (h_{k1}, \dots, h_{k,K_n+l})^T \in \mathbb{R}^{K_n+l}$ and $h_{km} = sgn(\theta_{km})$ if $\theta_{km} \neq 0$ and $h_{km} \in [-1,1]$ otherwise for $1 \leq m \leq K_n + l$. In the following, we analyze the subgradient of the unpenalized objective function, which is given by $\boldsymbol{\nu}(\boldsymbol{\theta}) = (\nu_0(\boldsymbol{\theta}), \boldsymbol{\nu}_1(\boldsymbol{\theta})^T, \dots, \boldsymbol{\nu}_s(\boldsymbol{\theta})^T)^T$ where $\boldsymbol{\nu}_k(\boldsymbol{\theta}) = (\nu_{k1}(\boldsymbol{\theta}), \dots, \nu_{k,K_n+l}(\boldsymbol{\theta}))^T$. The following lemma states the behavior of $\boldsymbol{\nu}(\boldsymbol{\theta}^*)$ when being evaluated at the oracle estimator.

Lemma S2.1. Assume conditions in Theorem 3.2 are satisfied. For the oracle estimator $\boldsymbol{\theta}^*$, there exists a_i^* with $a_i^* = 0$ if $y_i - \boldsymbol{W}(\hat{\boldsymbol{\zeta}}_i)^T \boldsymbol{\theta}^* \neq 0$ and $a_i^* \in [\tau - 1, \tau]$ otherwise, such that for $\boldsymbol{\nu}(\boldsymbol{\theta}^*)$ with $a_i = a_i^*$, with probability approaching one,

(1)
$$\nu_0(\boldsymbol{\theta}^*) = 0$$
, $\boldsymbol{\nu}_k(\boldsymbol{\theta}^*) = 0$ for $k \in \mathcal{S}^*$,

(2)
$$|\nu_{km}(\boldsymbol{\theta}^*)| \leq c\lambda$$
, $\forall c > 0$, $k \notin \mathcal{S}^*$, $1 \leq m \leq K_n + l$,

(3)
$$\|\boldsymbol{\theta}_k^*\|_2 \ge (a+1/2)\lambda \text{ for } k \in \mathcal{S}^*.$$

To obtain the property of the SCAD penalized estimator, we require the following lemma which is a sufficient condition of a local minimizer for a convexdifference objective function.

Lemma S2.2. (Lemma 2.1 in Wang et al. (2012)). If there exists a neighborhood U around the point θ^* such that $\frac{\partial H_n(\theta)}{\partial \theta} \cap \frac{\partial G_n(\theta)}{\partial \theta}|_{\theta^*} \neq \emptyset$, $\forall \theta \in U \cap dom(G_n)$, then θ^* is a local minimizer of $G_n(\theta) - H_n(\theta)$.

Now we use Lemma S2.1 to prove that the oracle estimator satisfies Lemma

S2.2. Recall that

$$\frac{\partial G_n(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}|_{\boldsymbol{\theta}^*} = \{\boldsymbol{\pi}^* = (\pi_0^*, \boldsymbol{\pi}_1^{*T}, \dots, \boldsymbol{\pi}_s^{*T})^T \in \mathbb{R}^{s(K_n+l)+1} :$$

$$\pi_0^* = \nu_0(\boldsymbol{\theta}^*); \ \boldsymbol{\pi}_k^* = \boldsymbol{\nu}_k(\boldsymbol{\theta}^*) + \lambda \boldsymbol{l}_k, \ for \ 1 \le k \le s\},$$

where $l_k = (l_{k1}, \dots, l_{k,K_n+l})^T \in \mathbb{R}^{K_n+l}$ and $l_{km} = sgn(\theta_{km})$ if $\theta_{km} \neq 0$ and $l_{km} \in [-1, 1]$ otherwise for $1 \leq m \leq K_n + l$.

$$\frac{\partial H_n(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \{ \boldsymbol{\varpi} = (0, \boldsymbol{\varpi}_1^T, \dots, \boldsymbol{\varpi}_s^T)^T \in \mathbb{R}^{s(K_n + l) + 1} :$$

$$\boldsymbol{\varpi}_k = \mathbf{0}, \text{ if } 0 \le \|\boldsymbol{\theta}_k\|_1 < \lambda,$$

$$\boldsymbol{\varpi}_k = [(\|\boldsymbol{\theta}_k\|_1 - \lambda)/(a - 1)]\boldsymbol{h}_k, \text{ if } \lambda \le \|\boldsymbol{\theta}_k\|_1 \le a\lambda,$$

$$\boldsymbol{\varpi}_k = \lambda \boldsymbol{h}_k, \text{ if } \|\boldsymbol{\theta}_k\|_1 > a\lambda, \text{ for all } 1 \le k \le s \},$$

where $\mathbf{h}_k = (h_{k1}, \dots, h_{k,K_n+l})^T \in \mathbb{R}^{K_n+l}$ and $h_{km} = sgn(\theta_{km})$ if $\theta_{km} \neq 0$ and $h_{km} \in [-1, 1]$ otherwise for $1 \leq m \leq K_n + l$.

Consider any $\boldsymbol{\theta} \in \mathcal{B}(\boldsymbol{\theta}^*, \lambda/(2(\sqrt{K_n+l})))$ where $\mathcal{B}(\boldsymbol{\theta}^*, \lambda/(2(\sqrt{K_n+l})))$ denotes the ball with the center $\boldsymbol{\theta}^*$ and radius $\lambda/(2(\sqrt{K_n+l}))$. First consider $k \in \mathcal{S}^*$. From Lemma S2.1(1), there exists a_i^* such that $\pi_0^* = 0$ and $\boldsymbol{\pi}_k^* = \lambda \boldsymbol{l}_k$. On the other hand, from Lemma S2.1(3) we have $\|\boldsymbol{\theta}_k\|_1 \geq \|\boldsymbol{\theta}_k\|_2 \geq \|\boldsymbol{\theta}_k^*\|_2 - \|\boldsymbol{\theta}_k - \boldsymbol{\theta}_k^*\|_2 \geq (a+1/2)\lambda - \lambda/(2\sqrt{K_n+l}) \geq a\lambda$. Thus $\boldsymbol{\varpi}_k = \lambda \boldsymbol{h}_k$. Obviously, $\boldsymbol{\varpi}_k = \boldsymbol{\pi}_k^*$ if $\boldsymbol{l}_k = \boldsymbol{h}_k$.

Then consider $k \notin \mathcal{S}^*$. From Lemma S2.1(2), we have $|\nu_{km}(\boldsymbol{\theta}^*)| < \lambda$ for any $k \notin \mathcal{S}^*$ and $1 \leq m \leq K_n + l$. By definition, $\boldsymbol{\pi}_k^* = (\nu_{k1}(\boldsymbol{\theta}^*), \dots, \nu_{k,K_n + l}(\boldsymbol{\theta}^*))^T + \lambda \boldsymbol{l}_k$ where $\boldsymbol{l}_k \in [-1,1]^{K_n + l}$. Thus there exists \boldsymbol{l}_k^* such that $\boldsymbol{\pi}_k^* = \mathbf{0}$. On the other hand, $\boldsymbol{\theta}_k^* = \mathbf{0}$ for $k \notin \mathcal{S}^*$. And $\|\boldsymbol{\theta}_k\|_1 \leq \sqrt{K_n + l} \|\boldsymbol{\theta}_k\|_2 \leq \sqrt{K_n + l} (\|\boldsymbol{\theta}_k^*\|_2 + \|\boldsymbol{\theta}_k - \boldsymbol{\theta}_k^*\|_2) = \lambda/2 \leq \lambda$. Thus $\boldsymbol{\varpi}_k = \mathbf{0}$ from the definition.

We have shown that there exists a neighborhood U around the point θ^* such that $\frac{\partial H_n(\theta)}{\partial \theta} \cap \frac{\partial G_n(\theta)}{\partial \theta}|_{\theta^*} \neq \emptyset$, $\forall \theta \in U \cap dom(G_n)$. Applying Lemma S2.2, we can get Theorem 3.2.

Proof of Lemma S2.1. (1) By convex optimization theory, $\mathbf{0}$ is in the subdifferential of the oracle objective function. Thus, there exists a_i^* as described in the lemma such that (1) is satisfied.

(2) From the definition, we have

$$\nu_{km}(\boldsymbol{\theta}^*) = -\tau n^{-1} \sum_{i=1}^n B_m(\hat{\boldsymbol{\zeta}}_{ik}) I(y_i - \boldsymbol{W}(\hat{\boldsymbol{\zeta}}_i)^T \boldsymbol{\theta}^* > 0) + (1 - \tau) n^{-1} \sum_{i=1}^n B_m(\hat{\boldsymbol{\zeta}}_{ik}) I(y_i - \boldsymbol{W}(\hat{\boldsymbol{\zeta}}_i)^T \boldsymbol{\theta}^* < 0) - n^{-1} \sum_{i=1}^n B_m(\hat{\boldsymbol{\zeta}}_{ik}) a_i^*,$$

where $k \notin S^*$, $1 \leq m \leq K_n + l$ and a_i^* satisfies the condition in (1). Let

$$\mathcal{D} = \{i: y_i - \boldsymbol{W}(\boldsymbol{\hat{\zeta}}_i)^T \boldsymbol{\theta}^* = 0\}.$$
 Then

$$\nu_{km}(\boldsymbol{\theta}^*) = n^{-1} \sum_{i=1}^n B_m(\hat{\boldsymbol{\zeta}}_{ik}) [I(y_i - \boldsymbol{W}(\hat{\boldsymbol{\zeta}}_i)^T \boldsymbol{\theta}^* \le 0) - \tau] - n^{-1} \sum_{i \in \mathcal{D}} B_m(\hat{\boldsymbol{\zeta}}_{ik}) (a_i^* + (1 - \tau)).$$

With probability one (Section 2.2 Koenker, 2005), $|\mathcal{D}| = K_n$. Therefore,

$$n^{-1} \sum_{i \in \mathcal{D}} B_m(\hat{\zeta}_{ik})(a_i^* + (1 - \tau)) = O_p(K_n^{1/2}/n) = o_p(\lambda),$$

since $K_n^{1/2}/n \ll n^{-1/2} = o(\lambda)$. We will show that

$$P(\max_{\substack{k \in \mathcal{S}^{*c} \\ 1 \le m \le K_n + l}} |n^{-1} \sum_{i=1}^n B_m(\hat{\boldsymbol{\zeta}}_{ik})[I(y_i - \boldsymbol{W}(\hat{\boldsymbol{\zeta}}_i)^T \boldsymbol{\theta}^* \le 0) - \tau]| > c\lambda) \to 0.$$

Define $\Theta_{\mathcal{S}^*,n}=\mathcal{B}(\pmb{\theta}_{\mathcal{S}^*}^0,\sqrt{\frac{K_n}{n}}d_n).$ Note that

$$P(\max_{\substack{k \in \mathcal{S}^{*c} \\ 1 \leq m \leq K_{n} + l}} | n^{-1} \sum_{i=1}^{n} B_{m}(\hat{\zeta}_{ik})[I(y_{i} - \boldsymbol{W}(\hat{\zeta}_{i})^{T}\boldsymbol{\theta}^{*} \leq 0) - \tau]| > c\lambda)$$

$$\leq P(\max_{\substack{k \in \mathcal{S}^{*c} \\ 1 \leq m \leq K_{n} + l}} | n^{-1} \sum_{i=1}^{n} B_{m}(\hat{\zeta}_{ik})[I(y_{i} - \boldsymbol{W}(\hat{\zeta}_{i})^{T}\boldsymbol{\theta}^{*} \leq 0) - I(y_{i} - g(\zeta_{i,\mathcal{S}^{*}}) \leq 0)]| > c\lambda/2)$$

$$+ P(\max_{\substack{k \in \mathcal{S}^{*c} \\ 1 \leq m \leq K_{n} + l}} | n^{-1} \sum_{i=1}^{n} B_{m}(\hat{\zeta}_{ik})[I(y_{i} - g(\zeta_{i,\mathcal{S}^{*}}) \leq 0) - \tau]| > c\lambda/2)$$

$$\leq P(\max_{\substack{k \in \mathcal{S}^{*c} \\ 1 \leq m \leq K_{n} + l}} \sup_{\boldsymbol{\theta} \mathcal{S}^{*} \in \Theta_{\mathcal{S}^{*}, n}} | n^{-1} \sum_{i=1}^{n} B_{m}(\hat{\zeta}_{ik})[I(y_{i} - \boldsymbol{W}(\hat{\zeta}_{i,\mathcal{S}^{*}})^{T}\boldsymbol{\theta}_{\mathcal{S}^{*}} \leq 0)$$

$$- I(y_{i} - g(\zeta_{i,\mathcal{S}^{*}}) \leq 0)]| > c\lambda/2) + A_{1}$$

$$\leq P(\max_{\substack{k \in \mathcal{S}^{*c} \\ 1 \leq m \leq K_{n} + l}} \sup_{\boldsymbol{\theta} \mathcal{S}^{*} \in \Theta_{\mathcal{S}^{*}, n}} | n^{-1} \sum_{i=1}^{n} B_{m}(\hat{\zeta}_{ik})[I(y_{i} - \boldsymbol{W}(\hat{\zeta}_{i,\mathcal{S}^{*}})^{T}\boldsymbol{\theta}_{\mathcal{S}^{*}} \leq 0) - I(y_{i} - g(\zeta_{i,\mathcal{S}^{*}}) \leq 0)$$

$$- P(y_{i} - \boldsymbol{W}(\hat{\zeta}_{i,\mathcal{S}^{*}})^{T}\boldsymbol{\theta}_{\mathcal{S}^{*}} \leq 0) + P(y_{i} - g(\zeta_{i,\mathcal{S}^{*}}) \leq 0)]| > c\lambda/4)$$

$$+ P(\max_{\substack{k \in \mathcal{S}^{*c} \\ 1 \leq m \leq K_{n} + l}} \sup_{\boldsymbol{\theta} \mathcal{S}^{*} \in \Theta_{\mathcal{S}^{*}, n}} | n^{-1} \sum_{i=1}^{n} B_{m}(\hat{\zeta}_{ik})[P(y_{i} - \boldsymbol{W}(\hat{\zeta}_{i,\mathcal{S}^{*}})^{T}\boldsymbol{\theta}_{\mathcal{S}^{*}} \leq 0)$$

$$- P(y_{i} - g(\zeta_{i,\mathcal{S}^{*}}) \leq 0)]| > c\lambda/4) + A_{1}$$

$$= A_{2} + A_{2} + A_{1}.$$

Next we will show that A_1 , A_2 and A_3 converge to zero one by one.

Step 1. By definition, we have

$$A_1 = P(\max_{\substack{k \in \mathcal{S}^{*c} \\ 1 \le m \le K_n + l}} |n^{-1} \sum_{i=1}^n B_m(\hat{\zeta}_{ik})[I(y_i - g(\zeta_{i,\mathcal{S}^*}) \le 0) - \tau]| > c\lambda/2).$$

Since $|B_m(\hat{\zeta}_{ik})| = O_P(1/\sqrt{K_n})$, it holds by Hoeffding's inequality

$$A_1 \le 2sK_n \exp\{-CnK_n\lambda^2\} = 2\exp(C\log(n) - CnK_n\lambda^2) \to 0.$$

Step 2. By definition, we have

$$A_{2} = P(\max_{\substack{k \in \mathcal{S}^{*c} \\ 1 \leq m \leq K_{n}+l}} \sup_{\boldsymbol{\theta}_{\mathcal{S}^{*}} \in \Theta_{\mathcal{S}^{*},n}} | n^{-1} \sum_{i=1}^{n} B_{m}(\hat{\boldsymbol{\zeta}}_{ik}) [P(y_{i} - \boldsymbol{W}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^{*}})^{T} \boldsymbol{\theta}_{\mathcal{S}^{*}} \leq 0) - P(y_{i} - g(\boldsymbol{\zeta}_{i,\mathcal{S}^{*}}) \leq 0)]| > c\lambda/4).$$

Note that

$$\max_{\substack{k \in \mathcal{S}^{*c} \\ 1 \le m \le K_n + l}} \sup_{\boldsymbol{\theta}_{\mathcal{S}^*} \in \Theta_{\mathcal{S}^*, n}} |n^{-1} \sum_{i=1}^n B_m(\hat{\boldsymbol{\zeta}}_{ik})[P(y_i - \boldsymbol{W}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^*})^T \boldsymbol{\theta}_{\mathcal{S}^*} \le 0) - P(y_i - g(\boldsymbol{\zeta}_{i,\mathcal{S}^*}) \le 0)]|$$

$$= \max_{\substack{k \in \mathcal{S}^{*c} \\ 1 \le m \le K_n + l}} \sup_{\boldsymbol{\theta}_{\mathcal{S}^*} \in \Theta_{\mathcal{S}^*, n}} |n^{-1} \sum_{i=1}^n B_m(\hat{\boldsymbol{\zeta}}_{ik})[F_i(\boldsymbol{W}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^*})^T (\boldsymbol{\theta}_{\mathcal{S}^*} - \boldsymbol{\theta}_{\mathcal{S}^*}^0) - R_i - u_i) - F_i(0)]|$$

$$\leq CK_n^{-1/2} \sup_{\boldsymbol{\theta}_{\mathcal{S}^*} \in \Theta_{\mathcal{S}^*, n}} n^{-1} \sum_{i=1}^n (|\boldsymbol{W}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^*})^T (\boldsymbol{\theta}_{\mathcal{S}^*} - \boldsymbol{\theta}_{\mathcal{S}^*}^0) + R_i + u_i|)$$

$$\leq CK_n^{-1/2} \sup_{\boldsymbol{\theta}_{\mathcal{S}^*} \in \Theta_{\mathcal{S}^*, n}} [\sqrt{n^{-1}(\boldsymbol{\theta}_{\mathcal{S}^*} - \boldsymbol{\theta}_{\mathcal{S}^*}^0)^T \hat{\boldsymbol{W}} \hat{\boldsymbol{W}}^T (\boldsymbol{\theta}_{\mathcal{S}^*} - \boldsymbol{\theta}_{\mathcal{S}^*}^0)} + \sum_{i=1}^n |R_i|/n + \sup_i |u_i|]$$

$$\leq CK_n^{-1/2} O_p(\frac{d_n}{n^{1/2}} + \frac{s}{n^{1/2}} + K_n^{-r}) = O_p(\frac{d_n}{K_n^{1/2} n^{1/2}}) = o(\lambda),$$

where the second inequality applies Jensen's inequality (similar to Lemma B.5 in Sherwood and Wang (2016)) and the last inequality follows from $\lambda_{\max}(\hat{\boldsymbol{W}}\hat{\boldsymbol{W}}^T) = O_p(\frac{n}{K_n})$ (Lemma S1.1(3)), $\sum_{i=1}^n |R_i|/n = O_p(\frac{s}{n^{1/2}})$ and $\sup_i |u_i| = O_p(K_n^{-r})$.

Since $\max\{n^{-1/2}, sK_n^{-1/2}n^{-1/2}\} = o(\lambda)$, we have the last equality. Thus we can conclude that $A_2 \to 0$.

Step 3. By definition, we have

$$A_{3} = P(\max_{\substack{k \in \mathcal{S}^{*c} \\ 1 \le m \le K_{n} + l}} \sup_{\boldsymbol{\theta}_{\mathcal{S}^{*}} \in \Theta_{\mathcal{S}^{*}, n}} | n^{-1} \sum_{i=1}^{n} B_{m}(\hat{\boldsymbol{\zeta}}_{ik}) [I(y_{i} - \boldsymbol{W}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^{*}})^{T} \boldsymbol{\theta}_{\mathcal{S}^{*}} \le 0) - I(y_{i} - g(\boldsymbol{\zeta}_{i,\mathcal{S}^{*}}) \le 0) - I(y_{i} - g(\boldsymbol{\zeta}_{i,\mathcal{S}^{*}})^{T} \boldsymbol{\theta}_{\mathcal{S}^{*}} \le 0) - I(y_{i} - g(\boldsymbol{\zeta}_{i,\mathcal{S}^{*}}) \le 0) - I(y_{$$

The set $\Theta_{\mathcal{S}^*,n}$ can be covered by a set of balls denoted as $\{\Theta^1_{\mathcal{S}^*,n},\ldots,\Theta^N_{\mathcal{S}^*,n}\}$ with radius $C\sqrt{\frac{K_n}{n}}\frac{d_n}{n^2}$ with cardinality $N\leq n^{2(q(K_n+l)+1)}$. Denote by $\boldsymbol{\theta}^l_{\mathcal{S}^*}$, $l=1,\ldots,N$, the centers in the balls. Let $\epsilon_i(\boldsymbol{\theta}_{\mathcal{S}^*})=y_i-\boldsymbol{W}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^*})^T\boldsymbol{\theta}_{\mathcal{S}^*}$, we have for each k and m,

$$P(\sup_{\boldsymbol{\theta}_{\mathcal{S}^*} \in \Theta_{\mathcal{S}^*,n}} | \sum_{i=1}^{n} B_m(\hat{\boldsymbol{\zeta}}_{ik})[I(\epsilon_i(\boldsymbol{\theta}_{\mathcal{S}^*}) \leq 0) - I(\epsilon_i \leq 0) - P(\epsilon_i(\boldsymbol{\theta}_{\mathcal{S}^*}) \leq 0) + P(\epsilon_i \leq 0)]| > n\lambda)$$

$$\leq \sum_{l=1}^{N} P(|\sum_{i=1}^{n} B_m(\hat{\boldsymbol{\zeta}}_{ik})[I(\epsilon_i(\boldsymbol{\theta}_{\mathcal{S}^*}^l) \leq 0) - I(\epsilon_i \leq 0) - P(\epsilon_i(\boldsymbol{\theta}_{\mathcal{S}^*}^l) \leq 0) + P(\epsilon_i \leq 0)]| > n\lambda/2)$$

$$+ \sum_{l=1}^{N} P(\sup_{\tilde{\boldsymbol{\theta}}_{\mathcal{S}^*} \in \Theta_{\mathcal{S}^*,n}^l} |\sum_{i=1}^{n} B_m(\hat{\boldsymbol{\zeta}}_{ik})[I(\epsilon_i(\tilde{\boldsymbol{\theta}}_{\mathcal{S}^*}) \leq 0) - I(\epsilon_i(\boldsymbol{\theta}_{\mathcal{S}^*}^l) \leq 0) - P(\epsilon_i(\tilde{\boldsymbol{\theta}}_{\mathcal{S}^*}) \leq 0) + P(\epsilon_i(\tilde{\boldsymbol{\theta}}_{\mathcal{S}^*}) \leq 0) + P(\epsilon_i(\tilde{\boldsymbol{\theta}}_{\mathcal{S}^*}) \leq 0)$$

$$+ P(\epsilon_i(\boldsymbol{\theta}_{\mathcal{S}^*}^l) \leq 0)]| > n\lambda/2)$$

$$= T_{1km} + T_{2km}.$$

In the following, we will show that $T_{1km} \leq C \exp(K_n \log(n) - CnK_n^{1/2}\lambda)$ and $T_{2km} \leq C \exp(K_n \log(n) - CnK_n^{1/2}\lambda)$. If so, then the following completes the

proof:

$$A_{3} \leq \sum_{\substack{k \in \mathcal{S}^{*c} \\ 1 \leq m \leq K_{n} + l}} (T_{1km} + T_{2km})$$

$$\leq CsK_{n} \exp(K_{n} \log(n) - CnK_{n}^{1/2}\lambda)$$

$$= C \exp(C \log(n) + K_{n} \log(n) - CnK_{n}^{1/2}\lambda) = o(1).$$

To evaluate T_{1km} , let $\vartheta_{ikm} = B_m(\hat{\boldsymbol{\zeta}}_{ik})[I(\epsilon_i(\boldsymbol{\theta}_{\mathcal{S}^*}^l) \leq 0) - I(\epsilon_i \leq 0) - P(\epsilon_i(\boldsymbol{\theta}_{\mathcal{S}^*}^l) \leq 0) + P(\epsilon_i \leq 0)]$. Note that $\max_i |\vartheta_{ikm}| \leq \frac{1}{\sqrt{K_n}}$ and

$$\sum_{i=1}^{n} Var(\vartheta_{ikm}) \leq \sum_{i=1}^{n} EB_{m}(\hat{\boldsymbol{\zeta}}_{ik})^{2} [I(\epsilon_{i}(\boldsymbol{\theta}_{\mathcal{S}^{*}}^{l}) \leq 0) - I(\epsilon_{i} \leq 0)]^{2}$$

$$\leq \frac{1}{K_{n}} \sum_{i=1}^{n} P(|\epsilon_{i}| \leq |\boldsymbol{W}(\hat{\boldsymbol{\zeta}}_{i})^{T}(\boldsymbol{\theta}_{\mathcal{S}^{*}}^{l} - \boldsymbol{\theta}_{\mathcal{S}^{*}}^{0}) + R_{i} + u_{i}|)$$

$$\leq \frac{C}{K_{n}} \sum_{i=1}^{n} |\boldsymbol{W}(\hat{\boldsymbol{\zeta}}_{i})^{T}(\boldsymbol{\theta}_{\mathcal{S}^{*}}^{l} - \boldsymbol{\theta}_{\mathcal{S}^{*}}^{0}) + R_{i} + u_{i}| = O_{p}(\frac{n^{1/2}d_{n}}{K_{n}}),$$

where the last equality follows from (S2.1). Applying Bernstein's inequality,

$$T_{1km} \le N \exp(-\frac{Cn^2\lambda^2}{Cn^{1/2}d_nK_n^{-1} + Cn\lambda K_n^{-1/2}})$$

 $\le N \exp(-CnK_n^{1/2}\lambda) = C \exp(K_n \log(n) - CnK_n^{1/2}\lambda).$

To evaluate T_{2km} , note that $I(\epsilon_i(\tilde{\boldsymbol{\theta}}_{\mathcal{S}^*} \leq 0) = I(\epsilon_i(\boldsymbol{\theta}_{\mathcal{S}^*}^l) \leq \boldsymbol{W}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^*})^T(\tilde{\boldsymbol{\theta}}_{\mathcal{S}^*} - 1)$

 $\theta_{S^*}^l)$) and $I(x \leq s)$ is an increasing function of s. Thus we have

$$\sup_{\bar{\boldsymbol{\theta}}_{\mathcal{S}^*} \in \Theta_{\mathcal{S}^*,n}^l} |\sum_{i=1}^n B_m(\hat{\boldsymbol{\zeta}}_{ik})[I(\epsilon_i(\tilde{\boldsymbol{\theta}}_{\mathcal{S}^*}) \leq 0) - I(\epsilon_i(\boldsymbol{\theta}_{\mathcal{S}^*}^l) \leq 0) - P(\epsilon_i(\tilde{\boldsymbol{\theta}}_{\mathcal{S}^*}) \leq 0) + P(\epsilon_i(\boldsymbol{\theta}_{\mathcal{S}^*}^l) \leq 0)]|$$

$$\leq \sum_{i=1}^n |B_m(\hat{\boldsymbol{\zeta}}_{ik})| \times |I(\epsilon_i(\boldsymbol{\theta}_{\mathcal{S}^*}^l) \leq \|\boldsymbol{W}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^*})\| \sqrt{\frac{K_n}{n}} \frac{d_n}{n^2}) - I(\epsilon_i(\boldsymbol{\theta}_{\mathcal{S}^*}^l) \leq 0)$$

$$-P(\epsilon_i(\boldsymbol{\theta}_{\mathcal{S}^*}^l) \leq -\|\boldsymbol{W}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^*})\| \sqrt{\frac{K_n}{n}} \frac{d_n}{n^2}) + P(\epsilon_i(\boldsymbol{\theta}_{\mathcal{S}^*}^l) \leq 0)|$$

$$\leq \sum_{i=1}^n |B_m(\hat{\boldsymbol{\zeta}}_{ik})| \times |I(\epsilon_i(\boldsymbol{\theta}_{\mathcal{S}^*}^l) \leq \|\boldsymbol{W}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^*})\| \sqrt{\frac{K_n}{n}} \frac{d_n}{n^2}) - I(\epsilon_i(\boldsymbol{\theta}_{\mathcal{S}^*}^l) \leq 0)$$

$$-P(\epsilon_i(\boldsymbol{\theta}_{\mathcal{S}^*}^l) \leq \|\boldsymbol{W}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^*})\| \sqrt{\frac{K_n}{n}} \frac{d_n}{n^2}) + P(\epsilon_i(\boldsymbol{\theta}_{\mathcal{S}^*}^l) \leq 0)|$$

$$+ \sum_{i=1}^n |B_m(\hat{\boldsymbol{\zeta}}_{ik})| \times |P(\epsilon_i(\boldsymbol{\theta}_{\mathcal{S}^*}^l) \leq \|\boldsymbol{W}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^*})\| \sqrt{\frac{K_n}{n}} \frac{d_n}{n^2}) - P(\epsilon_i(\boldsymbol{\theta}_{\mathcal{S}^*}^l) \leq -\|\boldsymbol{W}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^*})\| \sqrt{\frac{K_n}{n}} \frac{d_n}{n^2})|.$$

Note that

$$\sum_{i=1}^{n} |B_{m}(\hat{\zeta}_{ik})| \times |P(\epsilon_{i}(\boldsymbol{\theta}_{S^{*}}^{l}) \leq ||\mathbf{W}(\hat{\zeta}_{i,S^{*}})|| \sqrt{\frac{K_{n}}{n}} \frac{d_{n}}{n^{2}}) - P(\epsilon_{i}(\boldsymbol{\theta}_{S^{*}}^{l}) \leq -||\mathbf{W}(\hat{\zeta}_{i,S^{*}})|| \sqrt{\frac{K_{n}}{n}} \frac{d_{n}}{n^{2}})|$$

$$\leq \frac{C}{\sqrt{K_{n}}} \sum_{i=1}^{n} ||\mathbf{W}(\hat{\zeta}_{i,S^{*}})|| \sqrt{\frac{K_{n}}{n}} \frac{d_{n}}{n^{2}} = O_{p}(d_{n}n^{-3/2}) = o_{p}(n\lambda).$$

Hence for n sufficiently large, $T_{2km} \leq \sum_{l=1}^{N} P(\sum_{i=1}^{n} \varsigma_{ilkm} \geq n\lambda/4)$, where

$$\varsigma_{ilkm} = |B_m(\hat{\boldsymbol{\zeta}}_{ik})| \times |I(\epsilon_i(\boldsymbol{\theta}_{\mathcal{S}^*}^l) \leq ||\boldsymbol{W}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^*})||_2 \sqrt{\frac{K_n}{n}} \frac{d_n}{n^2} - I(\epsilon_i(\boldsymbol{\theta}_{\mathcal{S}^*}^l) \leq 0) \\
- P(\epsilon_i(\boldsymbol{\theta}_{\mathcal{S}^*}^l) \leq ||\boldsymbol{W}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^*})||_2 \sqrt{\frac{K_n}{n}} \frac{d_n}{n^2} + P(\epsilon_i(\boldsymbol{\theta}_{\mathcal{S}^*}^l) \leq 0)|.$$

Similarly to the evaluation of T_{1km} , we can show that

$$\sum_{i=1}^{n} Var(\varsigma_{ilkm}) \leq \frac{n}{K_n} \| \mathbf{W}(\hat{\zeta}_{i,\mathcal{S}^*}) \|_2 \sqrt{\frac{K_n}{n}} \frac{d_n}{n^2} = O_p(\frac{d_n}{n^{3/2} K_n^{1/2}}).$$

Applying Bernstein's inequality, we have

$$T_{2km} \le N \exp(-\frac{Cn^2\lambda^2}{Cn^{-3/2}d_nK_n^{-1/2} + Cn\lambda K_n^{-1/2}})$$

 $\le N \exp(-CnK_n^{1/2}\lambda) = C \exp(K_n \log(n) - CnK_n^{1/2}\lambda).$

(3) Note that $\min_{k\in\mathcal{S}^*}\|\boldsymbol{\theta}_k^*\|_2 \geq \min_{k\in\mathcal{S}^*}\|\boldsymbol{\theta}_k^0\|_2 - \max_{k\in\mathcal{S}^*}\|\boldsymbol{\theta}_k^* - \boldsymbol{\theta}_k^0\|_2$. From the proof of Theorem 3.1, we have $\max_{k\in\mathcal{S}^*}\|\boldsymbol{\theta}_k^* - \boldsymbol{\theta}_k^0\|_2 \leq \|\boldsymbol{\theta}_{\mathcal{S}^*}^* - \boldsymbol{\theta}_{\mathcal{S}^*}^0\|_2 = O_p(\frac{K_n}{\sqrt{n}} + \sqrt{\frac{K_n}{n}}s)$. By Condition 5, we have $\min_{k\in\mathcal{S}^*}\|\boldsymbol{\theta}_k^0\|_2 \geq C(\frac{K_n}{\sqrt{n}} + \sqrt{\frac{K_n}{n}}s)n^{\alpha}$. Thus for $k\in\mathcal{S}^*$, $\|\boldsymbol{\theta}_k^*\|_2 \geq C(\frac{K_n}{\sqrt{n}} + \sqrt{\frac{K_n}{n}}s)n^{\alpha} \geq (a+1/2)\lambda$.

S3 Proof of Theorem 3.3

For each candidate model S, similarly we can define $J_S = (K_n + l)|S| + 1$ and

$$\hat{m{W}}_{\mathcal{S}} = (m{W}(\hat{m{\zeta}}_{1,\mathcal{S}}), \dots, m{W}(\hat{m{\zeta}}_{n,\mathcal{S}}))^T \in \mathbb{R}^{n imes J_{\mathcal{S}}},$$
 $\hat{m{W}}_{B,\mathcal{S}}^2 = \hat{m{W}}_{\mathcal{S}}^T m{B}_n \hat{m{W}}_{\mathcal{S}} \in \mathbb{R}^{J_{\mathcal{S}} imes J_{\mathcal{S}}}, \text{ where } m{B}_n = \mathrm{diag}(f_1(0), \dots, f_n(0)),$
 $\tilde{m{W}}(\hat{m{\zeta}}_{i,\mathcal{S}}) = \hat{m{W}}_{B,\mathcal{S}}^{-1} m{W}(\hat{m{\zeta}}_{i,\mathcal{S}}) \in \mathbb{R}^{J_{\mathcal{S}}},$
 $m{\delta}_{\mathcal{S}} = \hat{m{W}}_{B,\mathcal{S}}(m{ heta}_{\mathcal{S}} - m{ heta}_{\mathcal{S}}^0) \in \mathbb{R}^{J_{\mathcal{S}}}.$
 $R_{i,\mathcal{S}} = (m{W}(\hat{m{\zeta}}_{i,\mathcal{S}}) - m{W}(m{\zeta}_{i,\mathcal{S}}))^T m{ heta}_{\mathcal{S}}^0,$

We first show lemmas used in proof. With condition (C5), the following lemma holds parallelly with Lemma S1.1. All constants in the following lemma do not depend on S.

Lemma S3.1. We have the following properties for the spline basis vector:

- (1) $E(\|\mathbf{W}(\hat{\zeta}_{i,S})\|_2) \leq b_1 |S|$, for some positive constant b_1 for all n sufficiently large.
- (2) $b_2K_n^{-1} \leq E(\lambda_{min}(\boldsymbol{W}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}})\boldsymbol{W}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}})^T)) \leq E(\lambda_{max}(\boldsymbol{W}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}})\boldsymbol{W}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}})^T)) \leq b_2^*K_n^{-1}$, for some positive constants b_2 and b_2^* for n sufficiently large.
- (3) $E(\|\hat{\mathbf{W}}_{B,S}^{-1}\|) \ge b_3 \sqrt{K_n/n}$, for some positive b_3 for all n sufficiently large.

For a matrix A, $||A|| = \sqrt{\lambda_{max}(A^T A)}$ denotes the spectral norm.

(4)
$$\max_{i} \|\tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}})\|_{2} = O_{p}(\sqrt{\frac{J_{\mathcal{S}}}{n}}).$$

Let $\mathcal{M}^{OF} = \{\mathcal{S} : \mathcal{S}^* \subseteq \mathcal{S}\}$ be the set of overfitted model and $B_{\eta}(\mathcal{S}) = \{\boldsymbol{\delta} \in \mathbb{R}^{J_{\mathcal{S}}} : \|\boldsymbol{\delta}\| \leq \eta\}$. We denote the maximum of $J_{\mathcal{S}}$ over $\mathcal{S} \in \mathcal{M}^{OF}$ by J. For $\mathcal{S} \in \mathcal{M}^{OF}$, $\hat{\boldsymbol{\delta}}_{\mathcal{S}}$ is defined as

$$\hat{\boldsymbol{\delta}}_{\mathcal{S}} = \arg\min_{\boldsymbol{\delta}_{\mathcal{S}}} \frac{1}{n} \sum_{i=1}^{n} \rho_{\tau} (\epsilon_{i} - \tilde{\boldsymbol{W}} (\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}})^{T} \boldsymbol{\delta}_{\mathcal{S}} - R_{i,\mathcal{S}} - u_{i}).$$

Denote
$$Q_i(\boldsymbol{\delta}_{\mathcal{S}}) = \rho_{\tau}(\epsilon_i - \tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}})^T \boldsymbol{\delta}_{\mathcal{S}} - R_{i,\mathcal{S}} - u_i)$$
 and $D_i(\boldsymbol{\delta}_{\mathcal{S}}) = Q_i(\boldsymbol{\delta}_{\mathcal{S}}) - Q_i(0) - E[Q_i(\boldsymbol{\delta}_{\mathcal{S}}) - Q_i(0)|X_i] + \tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}})^T \boldsymbol{\delta}_{\mathcal{S}} \psi_{\tau}(\epsilon_i)$ and $\psi_{\tau}(u) = \tau - I(u < 0)$.

Lemma S3.2. Assume conditions in Theorem 3.3 hold. Then for any sequence $L_n = O(n^{\gamma})$ with small $\gamma > 0$ satisfying $L_n^3/\sqrt{n} \to 0$ and $L_n^2(s+\sqrt{K_n})/\sqrt{n} \to 0$, we have

$$\sup_{\mathcal{S} \in \mathcal{M}^{OF}} \sup_{\|\delta_{\mathcal{S}}\| \le L_n d_{\mathcal{S}}} |d_{\mathcal{S}}^{-2} \sum_{i=1}^n D_i(\boldsymbol{\delta}_{\mathcal{S}})| = o_p(1), \tag{S3.1}$$

where $d_{\mathcal{S}} = \sqrt{J_{\mathcal{S}}} + s$.

This lemma provides a uniform approximation of $\frac{1}{n} \sum_{i=1}^{n} Q_i(\boldsymbol{\delta}_{\mathcal{S}}) - Q_i(0)$ and can be proved by the same technical arguments in the proof of step 1 for Lemma S1.2.

Proof. It's equivalent to show

$$\sup_{\mathcal{S} \in \mathcal{M}^{OF}} \sup_{\boldsymbol{\delta}_{\mathcal{S}} \in B_1(\mathcal{S})} |d_{\mathcal{S}}^{-2} \sum_{i=1}^n D_i(L_n d_{\mathcal{S}} \boldsymbol{\delta}_{\mathcal{S}})| = o_p(1).$$
 (S3.2)

Let F_{n4} denote the event $\max_i \|\tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}})\|_2 \leq \alpha_1 \sqrt{\frac{J_{\mathcal{S}}}{n}}$ for some positive α_1 . Lemma S3.1(4) implies that $P(F_{n4}) \to 1$ as $n \to \infty$. F_{n2} and F_{n3} is defined in the proof of Lemma S1.2. Then it's sufficient to show for any $\varepsilon > 0$

$$P(\sup_{\mathcal{S}\in\mathcal{M}^{OF}}\sup_{\boldsymbol{\delta}_{\mathcal{S}}\in B_{1}(\mathcal{S})}d_{\mathcal{S}}^{-2}|\sum_{i=1}^{n}D_{i}(L_{n}d_{\mathcal{S}}\boldsymbol{\delta}_{\mathcal{S}})|>\varepsilon, F_{n2}\cap F_{n3}\cap F_{n4})\to 0.$$

Partition $B_1(\mathcal{S})$ as a union of balls with radius $m_0 = \frac{\varepsilon}{4\alpha_1 J_{\mathcal{S}}^{1/2} n^{1/2} L_n d_{\mathcal{S}}^{-1}}$, say $\Delta_1, \ldots, \Delta_{M_n}$. We have $M_n \leq C(\frac{CJ_{\mathcal{S}}^{1/2} n^{1/2} L_n d_n^{-1}}{\varepsilon})^{J_n}$, where C is a positive constant. Let $\boldsymbol{\delta}_{\mathcal{S}}^1, \ldots, \boldsymbol{\delta}_{\mathcal{S}}^{M_n}$ be arbitrary points in $\Delta_1, \ldots, \Delta_{M_n}$ respectively. Similarly we can show for all \mathcal{S} :

(i)
$$\sup_{\boldsymbol{\delta}_{\mathcal{S}} \in \Delta_m} |\sum_{i=1}^n (D_i(L_n d_{\mathcal{S}} \boldsymbol{\delta}_{\mathcal{S}}) - D_i(L_n d_{\mathcal{S}} \boldsymbol{\delta}_{\mathcal{S}}^m)|I(F_{n2} \cap F_{n3} \cap F_{n4}) < d_{\mathcal{S}}^2 \varepsilon/2.$$

(ii)
$$\max_{i} |D_{i}(L_{n}d_{\mathcal{S}}\boldsymbol{\delta}_{\mathcal{S}}^{m})|I(F_{n2}\cap F_{n3}\cap F_{n4}) \leq CL_{n}d_{\mathcal{S}}J_{\mathcal{S}}^{1/2}n^{-1/2}.$$

(iii)
$$\sum_{i=1}^{n} Var[D_{i}(L_{n}d_{\mathcal{S}}\boldsymbol{\delta}_{\mathcal{S}}^{m})I(F_{n2}\cap F_{n3}\cap F_{n4})|X_{i}] \leq CJ_{\mathcal{S}}L_{n}^{2}d_{\mathcal{S}}^{2}(\frac{s}{\sqrt{n}}+K_{n}^{-r}) + CL_{n}^{3}d_{\mathcal{S}}^{3}J_{\mathcal{S}}^{1/2}n^{-1/2}.$$

By Bernstein inequality, we have

$$\begin{split} &P(\sup_{\mathcal{S}\in\mathcal{M}^{OF}}\sup_{\pmb{\delta}_{\mathcal{S}}\in B_{1}(\mathcal{S})}d_{\mathcal{S}}^{-2}|\sum_{i=1}^{n}D_{i}(L_{n}d_{\mathcal{S}}\pmb{\delta}_{\mathcal{S}})|>\varepsilon,F_{n2}\cap F_{n3}\cap F_{n4})\\ &\leq \sum_{\mathcal{S}\in\mathcal{M}^{OF}}\sum_{m=1}^{M_{n}}P(|\sum_{i=1}^{n}D_{i}(L_{n}d_{\mathcal{S}}\pmb{\delta}_{\mathcal{S}}^{m})|>d_{\mathcal{S}}^{2}\varepsilon/2,F_{n2}\cap F_{n3}\cap F_{n4})\\ &\leq 2\sum_{\mathcal{S}\in\mathcal{M}^{OF}}\sum_{m=1}^{M_{n}}\exp(\frac{-d_{\mathcal{S}}^{4}\varepsilon^{2}/4}{Cn^{-1/2}J_{\mathcal{S}}L_{n}^{2}d_{\mathcal{S}}^{2}(s+K_{n}^{-r}\sqrt{n})+CL_{n}^{3}d_{\mathcal{S}}^{3}J_{\mathcal{S}}^{1/2}n^{-1/2}+Cd_{\mathcal{S}}^{3}L_{n}J_{\mathcal{S}}^{1/2}n^{-1/2}\varepsilon/2})\\ &\leq 2\sum_{\mathcal{S}\in\mathcal{M}^{OF}}\sum_{m=1}^{M_{n}}\exp(\frac{-Cd_{\mathcal{S}}^{2}n^{1/2}}{J_{\mathcal{S}}L_{n}^{2}(s+K_{n}^{-r}\sqrt{n})+CL_{n}^{3}d_{\mathcal{S}}J_{\mathcal{S}}^{1/2}})\\ &\leq 2^{s}\exp(CJ\log n-\frac{Cn^{1/2}}{L_{n}^{2}(s+K_{n}^{-r}\sqrt{n})+L_{n}^{3}}), \end{split}$$

which converges to zero. Hence the proof of the first step is complete.

Lemma S3.3. Assume conditions in Theorem 3.3 hold. We have

$$\lim_{L \to \infty} \lim_{n \to \infty} P(\|\hat{\boldsymbol{\delta}}_{\mathcal{S}}\| \le Ld_{\mathcal{S}}(\log n)^{1/2} \text{ for all } \mathcal{S} \in \mathcal{M}^{OF}) = 1.$$
 (S3.3)

This lemma is different with Lemma S1.2 in that we provide a uniform bound for $\hat{\delta}_S$ for all $S \in \mathcal{M}^{OF}$.

Proof. By the convexity of ρ_{τ} , it suffices to show that, for any $\varepsilon > 0$, there exists a large constant L > 0 such that

$$\liminf_{n} P(\inf_{\mathcal{S} \in \mathcal{M}^{OF}} \inf_{\|\boldsymbol{\delta}_{\mathcal{S}}\| = Ld_{\mathcal{S}}(\log n)^{1/2}} \sum_{i=1}^{n} Q_{i}(\boldsymbol{\delta}_{\mathcal{S}}) - Q_{i}(0) > 0) > 1 - \varepsilon. \quad (S3.4)$$

From Lemma S3.2, if follows that for any $\delta_{\mathcal{S}} : \|\delta_{\mathcal{S}}\| = Ld_{\mathcal{S}}(\log n)^{1/2}$ with $\mathcal{S} \in \mathcal{M}^{OF}$,

$$\sum_{i=1}^{n} Q_i(\boldsymbol{\delta}_{\mathcal{S}}) - Q_i(0) = -\sum_{i=1}^{n} \tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}})^T \boldsymbol{\delta}_{\mathcal{S}} \psi_{\tau}(\epsilon_i) + \sum_{i=1}^{n} E[Q_i(\boldsymbol{\delta}_{\mathcal{S}}) - Q_i(0)|X_i] + d_{\mathcal{S}}^2 o_p(1)$$

$$= A_n(\boldsymbol{\delta}_{\mathcal{S}}) + B_n(\boldsymbol{\delta}_{\mathcal{S}}) + d_{\mathcal{S}}^2 o_p(1).$$

For $A_n(\boldsymbol{\delta}_{\mathcal{S}})$, we get $|A_n(\boldsymbol{\delta}_{\mathcal{S}})| \leq \max_{1 \leq k \leq s} \|\sum_{i=1}^n \tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,k})^T \psi_{\tau}(\epsilon_i) \||S|^{1/2} \|\boldsymbol{\delta}_{\mathcal{S}}\|.$

Since $\max_{1 \le k \le s} \sum_{i=1}^n \|\tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,k})\|^2 \le MK_n$ for sufficiently large M, we have

$$P(\max_{1 \le k \le s} \|\tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,k})\psi_{\tau}(\epsilon_{i})\|^{2} \ge M^{2}K_{n} \log n|T)$$

$$\le sK_{n} \max_{k,m} P(|\sum_{i=1}^{n} \tilde{\boldsymbol{W}}_{m}(\hat{\boldsymbol{\zeta}}_{i,k})\psi_{\tau}(\epsilon_{i})| > \{M\sum_{i=1}^{n} (\tilde{\boldsymbol{W}}_{m}(\hat{\boldsymbol{\zeta}}_{i,k}))^{2} \log n\}^{1/2}|T)$$

$$\le 2sK_{n} \exp(-M \log n/8),$$

where the last inequality is from Hoeffding's inequality. This implies

$$\max_{1 \le k \le s} \|\tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,k})\psi_{\tau}(\epsilon_i)\| = O_p((K_n \log n)^{1/2}).$$

Consequently, we have

$$P(|A_n(\boldsymbol{\delta}_{\mathcal{S}})| < (J_{\mathcal{S}} \log n)^{1/2} \|\boldsymbol{\delta}_{\mathcal{S}}\| \text{ for all } \mathcal{S} \in \mathcal{M}^{OF}) \to 1.$$

We deal with $B_n(\delta_S)$ similar with step 2 of Lemma S1.2. Applying Knight's

identity twice,

$$B_n(\boldsymbol{\delta}_{\mathcal{S}}) = \sum_{i=1}^n E\left[\int_{R_{i,\mathcal{S}}+u_i}^{\tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}})^T \boldsymbol{\delta}_{\mathcal{S}}+R_{i,\mathcal{S}}+u_i} (I(\epsilon_i < s) - I(\epsilon_i < 0)) ds | X_i \right]$$

$$= C\|\boldsymbol{\delta}_{\mathcal{S}}\|^2 + C\|\boldsymbol{\delta}_{\mathcal{S}}\|(s + K_n^{-r}\sqrt{n}).$$

The last equality holds because $R_{i,S} = R_{i,S^*}$ for any overfitted model S. Consequently, for sufficient large L, $C \|\boldsymbol{\delta}_{S}\|^2$ dominates all other terms and impies (S3.4).

Lemma S3.4. Assume conditions in Theorem 3.3 hold. Then given a constant $\eta > 0$ we have

$$\sup_{|\mathcal{S}| \le s} \sup_{\boldsymbol{\delta}_{\mathcal{S}} \in B_{\eta}(\mathcal{S})} |\sum_{i=1}^{n} g_{i}(\sqrt{n}\boldsymbol{\delta}_{\mathcal{S}})| = O_{p}((nJ\log n)^{1/2})$$

where
$$g_i(\boldsymbol{\delta}_{\mathcal{S}}) = \rho_{\tau}(\epsilon_i - \tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}})^T \boldsymbol{\delta}_{\mathcal{S}} - R_{i,\mathcal{S}} - u_i) - \rho_{\tau}(\epsilon_i - R_{i,\mathcal{S}} - u_i) - E(\rho_{\tau}(\epsilon_i - \tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}})^T \boldsymbol{\delta}_{\mathcal{S}} - R_{i,\mathcal{S}} - u_i) - \rho_{\tau}(\epsilon_i - R_{i,\mathcal{S}} - u_i) | X_i).$$

Proof. This lemma can be proved by the arguments of Lemma A.3 in Lee et al. (2014), where chain technique is used. For $m \geq 0$, let $\Theta_n(2^{-m}\eta, \mathcal{S})$ denote a grid of points in $B_{\eta}(\mathcal{S})$ such that for every $\boldsymbol{\delta}_{\mathcal{S}} \in B_{\eta}(\mathcal{S})$ there exists $\boldsymbol{\delta}_{\mathcal{S}}^m \in \Theta_n(2^{-m}\eta, \mathcal{S})$ such that $\|\boldsymbol{\delta}_{\mathcal{S}} - \boldsymbol{\delta}_{\mathcal{S}}^m\| \leq 2^{-m}\eta$. For a given constant C > 0, define

 $M_n = \min\{m : 2^{-m}\eta \le (C/8M)n^{-1/2}(\log n)^{1/2}\}.$ Then

$$\sup_{\boldsymbol{\delta_{\mathcal{S}}} \in B_{\eta}(\mathcal{S})} |\sum_{i=1}^{n} g_{i}(\sqrt{n}\boldsymbol{\delta_{\mathcal{S}}}) - g_{i}(\sqrt{n}\boldsymbol{\delta_{\mathcal{S}}}^{M_{n}})| \leq 4\sqrt{n}\sum_{i=1}^{n} |\tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}})^{T}(\boldsymbol{\delta_{\mathcal{S}}} - \boldsymbol{\delta_{\mathcal{S}}}^{M_{n}})| \leq \frac{C}{2}(nJ_{\mathcal{S}}\log n)^{1/2}.$$

Consequently, we have

$$\begin{split} I_{n}(\mathcal{X}) &= P(\sup_{|\mathcal{S}| \leq s} \sup_{\delta_{\mathcal{S}} \in B_{\eta}(\mathcal{S})} | \sum_{i=1}^{n} g_{i}(\sqrt{n} \delta_{\mathcal{S}}) | \geq C(nJ \log n)^{1/2} | T) \\ &\leq P(\sup_{|\mathcal{S}| \leq s} \sup_{\delta_{\mathcal{S}} \in B_{\eta}(\mathcal{S})} | \sum_{i=1}^{n} g_{i}(\sqrt{n} \delta_{\mathcal{S}}^{M_{n}}) | \geq \frac{C}{2} (nJ \log n)^{1/2} | T) \\ &\leq \sum_{|\mathcal{S}| \leq s} P(\sup_{\delta_{\mathcal{S}} \in B_{\eta}(\mathcal{S})} \sum_{m=1}^{M_{n}} | \sum_{i=1}^{n} g_{i}(\sqrt{n} \delta_{\mathcal{S}}^{m}) - g_{i}(\sqrt{n} \delta_{\mathcal{S}}^{m-1}) | \geq \frac{C}{2} (nJ \log n)^{1/2} | T) \\ &\leq \sum_{|\mathcal{S}| \leq s} \sum_{m=1}^{M_{n}} N_{m}(\mathcal{S}) N_{m-1}(\mathcal{S}) \times \max_{*} P(|\sum_{i=1}^{n} g_{i}(\sqrt{n} \delta_{\mathcal{S}}^{m}) - g_{i}(\sqrt{n} \delta_{\mathcal{S}}^{m-1}) | \geq \frac{C}{2} a_{m}(nJ \log n)^{1/2} | T). \end{split}$$

For the first inequality, note that $\boldsymbol{\delta}_{\mathcal{S}}^{M_n}$ depends on $\boldsymbol{\delta}_{\mathcal{S}}$. For the second inequality, we take $\boldsymbol{\delta}_{\mathcal{S}}^m=0$ when m=0. For the last inequality, $N_m(\mathcal{S})$ is the cardinality of the set $\Theta_n(2^{-m}\eta,\mathcal{S})$ which is bounded by $(1+4\cdot 2^m)^{J_{\mathcal{S}}}$; a_m is positive numbers such that $\sum_{m=1}^{M_n}a_m\leq 1$; and \max_* is taken over all $\boldsymbol{\delta}_{\mathcal{S}}^m$ and $\boldsymbol{\delta}_{\mathcal{S}}^{m-1}$ such that $\|\boldsymbol{\delta}_{\mathcal{S}}^m-\boldsymbol{\delta}_{\mathcal{S}}^{m-1}\|\leq 3(2^{-m}\eta)$. Note that $|g_i(\sqrt{n}\boldsymbol{\delta}_{\mathcal{S}}^m)-g_i(\sqrt{n}\boldsymbol{\delta}_{\mathcal{S}}^{m-1})|\leq 4\sqrt{n}|\tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}})^T(\boldsymbol{\delta}_{\mathcal{S}}^m-\boldsymbol{\delta}_{\mathcal{S}}^{m-1})|$ and $\sum_{i=1}^n|\tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}})^T(\boldsymbol{\delta}_{\mathcal{S}}^m-\boldsymbol{\delta}_{\mathcal{S}}^{m-1})|^2\leq 9\bar{f}2^{-2m}\eta^2$ for some constant $\bar{f}>0$ since $\sum_{i=1}^n f_i(0)\tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}})\tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}})^T=\hat{\boldsymbol{W}}_{\mathcal{B},\mathcal{S}}^{-1}\hat{\boldsymbol{W}}_{\mathcal{S}}\mathcal{B}\hat{\boldsymbol{W}}_{\mathcal{S}}^T\hat{\boldsymbol{W}}_{\mathcal{B},\mathcal{S}}^{-1}$

I. Similar to (A.14) in Lee et al. (2014), we can take

$$a_m = \max\{2^{-m}m^{1/2}/8, \frac{96\bar{f}^{1/2}2^{-m}\eta(\log(1+4\cdot 2^m))^{1/2}}{C(\log n)^{1/2}}\}.$$

Applying Hoeffding's inequality, we get that

$$I_n(\mathcal{X}) \le 2 \sum_{|\mathcal{S}| \le s} \sum_{m=1}^{M_n} \exp(2J \log(1 + 4 \cdot 2^m) - \frac{C^2 a_m^2 J \log n}{48^2 \bar{f} 2^{-2m} \eta^2}),$$

which converges to zero for sufficiently large C > 0.

Proof of Theorem 3.3. Let $\mathcal{M}^{UF} = \{S : S^* \nsubseteq S\}$ denote the underfitted model. It suffices to show that

$$P(\min_{S \in \mathcal{M}^{OF}, S \neq S^*} BIC(S) > BIC(S^*)) \to 1,$$
 (S3.5)

$$P(\min_{S \in \mathcal{M}^{UF}} BIC(S) > BIC(S^*)) \to 1.$$
 (S3.6)

First we prove (S3.5). Using similar arguments as in the proof of Lemma S3.3, and the fact that $|B_n(\boldsymbol{\delta}_{\mathcal{S}})| \leq C \|\boldsymbol{\delta}_{\mathcal{S}}\|^2$, we can choose a sequence $\{L_n\}$, not depending on \mathcal{S} , such that $\frac{L_n}{C_n} \to 0$ and $\frac{L_n s^2}{JC_n} \to 0$, and

$$\left|\sum_{i=1}^{n} Q_i(\hat{\boldsymbol{\delta}}_{\mathcal{S}}) - Q_i(0)\right| \le L_n d_{\mathcal{S}}^2 \log n, \tag{S3.7}$$

for any $\mathcal{S} \in \mathcal{M}^{OF}$ with probability tending to one. Then we have

$$\begin{split} & \min_{\mathcal{S} \in \mathcal{M}^{OF}, \mathcal{S} \neq \mathcal{S}^*} \mathrm{BIC}(\mathcal{S}) - \mathrm{BIC}(\mathcal{S}^*) \\ & = \min_{\mathcal{S} \in \mathcal{M}^{OF}, \mathcal{S} \neq \mathcal{S}^*} \log(1 + \frac{n^{-1} \sum_{i=1}^n Q_i(\hat{\boldsymbol{\delta}}_{\mathcal{S}}) - Q_i(\hat{\boldsymbol{\delta}}_{\mathcal{S}^*})}{n^{-1} \sum_{i=1}^n \rho_{\tau}(\epsilon_i - \tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^*}) \hat{\boldsymbol{\delta}}_{\mathcal{S}^*} - R_i - u_i)}) \\ & \quad + (J_{\mathcal{S}} - J_{\mathcal{S}^*}) \frac{\log n}{2n} C_n \\ & \geq \min_{\mathcal{S} \in \mathcal{M}^{OF}, \mathcal{S} \neq \mathcal{S}^*} - 2 |\frac{n^{-1} \sum_{i=1}^n Q_i(\hat{\boldsymbol{\delta}}_{\mathcal{S}}) - Q_i(\hat{\boldsymbol{\delta}}_{\mathcal{S}^*})}{n^{-1} \sum_{i=1}^n \rho_{\tau}(\epsilon_i - \tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}^*}) \hat{\boldsymbol{\delta}}_{\mathcal{S}^*} - R_i - u_i)}| + (J_{\mathcal{S}} - J_{\mathcal{S}^*}) \frac{\log n}{2n} C_n \\ & \geq \min_{\mathcal{S} \in \mathcal{M}^{OF}, \mathcal{S} \neq \mathcal{S}^*} \left\{ - CL_n(J_{\mathcal{S}} + s^2) \frac{\log n}{2n} + (J_{\mathcal{S}} - J_{\mathcal{S}^*}) \frac{\log n}{2n} C_n \right\}, \end{split}$$

where the first inequality follows from $\log(1+x) \ge -2|x|$ for any x:|x|<1/2. This completes the proof of (S3.5).

Now we prove (S3.6). By assumption, we can take $\eta > 0$ (not depending on n) such that $\min_{k \in \mathcal{S}^*} \|\boldsymbol{\theta}_k^0\| > \sqrt{K_n}\eta$ (every B-spline covariate is $O_p(1/\sqrt{K_n})$). Let $\tilde{\mathcal{S}} = \mathcal{S} \cup \mathcal{S}^*$. Then $\tilde{\mathcal{S}} \in \mathcal{M}^{OF}$. Let's extend $\hat{\boldsymbol{\theta}}_{\mathcal{S}}$ from $\mathbb{R}^{J_{\mathcal{S}}}$ to $\mathbb{R}^{J_{\tilde{\mathcal{S}}}}$ by setting zero on elements in $\tilde{\mathcal{S}}/\mathcal{S}$. Denote the extended vector by $\hat{\boldsymbol{\theta}}_{\tilde{\mathcal{S}}}(\mathcal{S})$. Note that it's different with $\hat{\boldsymbol{\theta}}_{\tilde{\mathcal{S}}}$ which is the estimator under model $\tilde{\mathcal{S}}$. Clearly, $\|\hat{\boldsymbol{\theta}}_{\tilde{\mathcal{S}}}(\mathcal{S}) - \boldsymbol{\theta}_{\tilde{\mathcal{S}}}^0\| > \sqrt{K_n}\eta$. Accordingly, define $\hat{\boldsymbol{\delta}}_{\tilde{\mathcal{S}}}(\mathcal{S}) = \hat{\mathbf{W}}_{B,\tilde{\mathcal{S}}}(\hat{\boldsymbol{\theta}}_{\tilde{\mathcal{S}}}(\mathcal{S}) - \boldsymbol{\theta}_{\tilde{\mathcal{S}}}^0)$ and $\|\hat{\boldsymbol{\delta}}_{\tilde{\mathcal{S}}}(\mathcal{S})\| > \sqrt{n}\eta$ (from Lemma S3.1(3)). On the other hand, we have $\|\hat{\boldsymbol{\delta}}_{\tilde{\mathcal{S}}}\| \leq \sqrt{n}\eta$ from Lemma

S3.3. By the convexity of $\rho_{\tau}(\cdot)$, there exists $\bar{\delta}_{\tilde{S}}$ with $\|\bar{\delta}_{\tilde{S}}\| = \sqrt{n\eta}$ such that

$$\sum_{i=1}^{n} \rho_{\tau}(y_{i} - \mathbf{W}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}})^{T} \hat{\boldsymbol{\theta}}_{\mathcal{S}})$$

$$= \sum_{i=1}^{n} \rho_{\tau}(\epsilon_{i} - \tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,\tilde{\mathcal{S}}}) \hat{\boldsymbol{\delta}}_{\tilde{\mathcal{S}}}(\mathcal{S}) - R_{i} - u_{i})$$

$$\geq \sum_{i=1}^{n} \rho_{\tau}(\epsilon_{i} - \tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,\tilde{\mathcal{S}}}) \bar{\boldsymbol{\delta}}_{\tilde{\mathcal{S}}} - R_{i} - u_{i}).$$

Consequently,

$$\frac{1}{n} \sum_{i=1}^{n} \rho_{\tau}(y_{i} - \mathbf{W}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}})^{T} \hat{\boldsymbol{\theta}}_{\mathcal{S}}) - \frac{1}{n} \sum_{i=1}^{n} \rho_{\tau}(\epsilon_{i} - \tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,\tilde{\mathcal{S}}}) \tilde{\boldsymbol{\delta}}_{\tilde{\mathcal{S}}} - R_{i} - u_{i})$$

$$\geq \frac{1}{n} \Big[\inf_{\boldsymbol{\delta}_{\tilde{\mathcal{S}}} \in B_{\sqrt{n}\eta}(\tilde{\mathcal{S}})} \sum_{i=1}^{n} E[Q_{i}(\boldsymbol{\delta}_{\tilde{\mathcal{S}}}) - Q_{i}(0) | X_{i}]$$

$$- \sup_{\boldsymbol{\delta}_{\tilde{\mathcal{S}}} \in B_{\sqrt{n}\eta}(\tilde{\mathcal{S}})} \Big| \sum_{i=1}^{n} [Q_{i}(\boldsymbol{\delta}_{\tilde{\mathcal{S}}}) - Q_{i}(0)] - (\sum_{i=1}^{n} E[Q_{i}(\boldsymbol{\delta}_{\tilde{\mathcal{S}}}) - Q_{i}(0) | X_{i}]) \Big|$$

$$- (\sum_{i=1}^{n} [Q_{i}(\hat{\boldsymbol{\delta}}_{\tilde{\mathcal{S}}}) - Q_{i}(0)]) \Big]. \tag{S3.8}$$

Similar to arguments in Lemma S3.3, $n^{-1}\inf_{\boldsymbol{\delta}_{\tilde{\mathcal{S}}}\in B_{\sqrt{n}\eta}(\tilde{\mathcal{S}})}\sum_{i=1}^n E[Q_i(\boldsymbol{\delta}_{\tilde{\mathcal{S}}})-Q_i(0)|X_i]$ is positive and bounded away uniformly over $\tilde{\mathcal{S}}\in\mathcal{OF}$. From Lemma S3.4, the second term converges to 0. From (S3.7), the third term converges to 0. So we can take a constant c>0 not depending on \mathcal{S} such that

$$\frac{1}{n} \sum_{i=1}^{n} \rho_{\tau}(y_i - \mathbf{W}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}})^T \hat{\boldsymbol{\theta}}_{\mathcal{S}}) - \frac{1}{n} \sum_{i=1}^{n} \rho_{\tau}(\epsilon_i - \tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,\tilde{\mathcal{S}}}) \tilde{\boldsymbol{\delta}}_{\tilde{\mathcal{S}}} - R_i - u_i) \ge 2c > 0,$$

for all $\mathcal{S} \in \mathcal{S}^{UF}$ with probability tending to one. Then we have

$$\begin{split} & \min_{\mathcal{S} \in \mathcal{M}^{UF}} \mathrm{BIC}(\mathcal{S}) - \mathrm{BIC}(\tilde{\mathcal{S}}) \\ = & \min_{\mathcal{S} \in \mathcal{M}^{UF}} \log(1 + \frac{\frac{1}{n} \sum_{i=1}^{n} \rho_{\tau}(y_{i} - \mathbf{W}(\hat{\boldsymbol{\zeta}}_{i,\mathcal{S}})^{T} \hat{\boldsymbol{\theta}}_{\mathcal{S}}) - \frac{1}{n} \sum_{i=1}^{n} \rho_{\tau}(\epsilon_{i} - \tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,\tilde{\mathcal{S}}}) \tilde{\boldsymbol{\delta}}_{\tilde{\mathcal{S}}} - R_{i} - u_{i})}{\frac{1}{n} \sum_{i=1}^{n} \rho_{\tau}(\epsilon_{i} - \tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,\tilde{\mathcal{S}}}) \tilde{\boldsymbol{\delta}}_{\tilde{\mathcal{S}}} - R_{i} - u_{i})} \\ & + (J_{\mathcal{S}} - J_{\tilde{\mathcal{S}}}) \frac{\log n}{2n} C_{n} \\ \geq & \min_{\mathcal{S} \in \mathcal{M}^{UF}} \min\{\log 2, \frac{c}{\frac{1}{n} \sum_{i=1}^{n} \rho_{\tau}(\epsilon_{i} - \tilde{\boldsymbol{W}}(\hat{\boldsymbol{\zeta}}_{i,\tilde{\mathcal{S}}}) \tilde{\boldsymbol{\delta}}_{\tilde{\mathcal{S}}} - R_{i} - u_{i})}\} - |\mathcal{S}^{*}| K_{n} \frac{\log n}{2n} C_{n} > 0, \end{split}$$

with probability tending to 1. The first inequality follows from $\log(1+x) \ge \min\{x/2, \log 2\}$ for any x > 0. Then we have

$$\begin{split} & \min_{\mathcal{S} \in \mathcal{M}^{UF}} [BIC(\mathcal{S}) - BIC(\mathcal{S}^*)] \\ & = \min_{\mathcal{S} \in \mathcal{M}^{UF}} [BIC(\mathcal{S}) - BIC(\tilde{\mathcal{S}}) + BIC(\tilde{\mathcal{S}}) - BIC(\mathcal{S}^*)] \\ & \geq \min_{\mathcal{S} \in \mathcal{M}^{UF}} [BIC(\mathcal{S}) - BIC(\tilde{\mathcal{S}})] > 0, \end{split}$$

where the first inequality comes from (S3.5). This completes the proof.

Bibliography

- He, X. and Shi, P. (1994) Convergence rate of b-spline estimators of nonparametric conditional quantile functions. *Journal of Nonparametric Statistics*, **3**, 299–308.
- Lee, E. R., Noh, H. and Park, B. U. (2014) Model selection via Bayesian information criterion for quantile regression models. *Journal of the American Statistical Association*, **109**, 216–229.
- Sherwood, B. and Wang, L. (2016) Partially linear additive quantile regression in ultra-high dimension.

 The Annals of Statistics, 44, 288–317.
- Shi, P. and Li, G. (1995) Global convergence rates of b-spline m-estimators in nonparametric regression.

 Statistica Sinica, 303–318.
- Stone, C. J. (1985) Additive regression and other nonparametric models. *The Annals of Statistics*, **13**, 689–705.
- Wang, L., Wu, Y. and Li, R. (2012) Quantile regression for analyzing heterogeneity in ultra-high dimension. *Journal of the American Statistical Association*, **107**, 214–222.
- Wong, R. K. W., Li, Y. and Zhu, Z. (2018) Partially linear functional additive models for multivariate functional data. *Journal of the American Statistical Association*, just–accepted.