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Supplementary Material

This supplementary material provides Lemmas 1-5 with proofs, and includes technical details for

Theorems 1-3 and Corollaries 1-3, as well as additional simulation results for Section 3.1.

S1 Technical details

This section provides the detailed proofs of Theorems 1-3 and Corollaries 1-3. To
show Theorems 1-3, we introduce Lemmas 1-5 with proofs. Specifically, Lemma 1
contains some preliminary results. Lemma 2 will be used to handle initial values in
GARCH-X models. Lemma 3 verifies the stochastic differentiability condition defined
on Page 298 of Pollard (1985), and its proof mainly uses the bracketing method; see
also Lee and Noh (2013) and Zhu and Ling (2011). Lemmas 4 and 5 will be used
to verify the root-n consistency and the asymptotic normality of ém in Theorem 2,
and their proofs are based on Lemma 3 and some approximation arguments.

Throughout this section C'is a generic positive constant which may take different
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values at its different occurrences, p € (0,1) is a generic constant which may take dif-
ferent values at its different occurrences, 0,(1) denotes a sequence of random variables
converging to zero in probability, and the notation 0;(1) corresponds to the bootstrap

probability space. We denote by || - || the norm of a matrix or column vector, defined

as [A] = /tr(AA") = /2 ;lai;|*>. For simplicity, denote ¢,(z) = 7 — I(z < 0)

~int ~int

~

and e, = & — b,. In addition, let o, = 01(Xg), 0t = (N, ), 0c = T(A, ),
7(0) = p[Ys — 3(6)] and £,(8) = p.[Ys — ¢:(8)], where A and A, are the true
value and an appropriate estimator of X, respectively, ¢;(0) = ¢’ X;_1 + bo;(A) and
3:(0) = ¢’ X1 + b3 (\) are the conditional quantile functions of Y; without and

with initial values, respectively.

Lemma 1. Let &, = 2,07 (1 + | Xyl + [V |2 + |uyl) and ¢, =
Z;O:()p"(l + | X —joall + Jw—j|*) be positive random variables depending on a con-
stant p € (0,1), where ¢ is a constant satisfying v € (0,2/(4 + 9)) for some § > 0. If

Assumption 1 holds, then

(i) sup o}(A) <CE, s

.. g < 2 .
(ZZ) Sgp O't(A) 80 Cgp,t and Sgp O't(A) 6009/ Cc:p,t—lf
1 0q(0) 1 *q(0) 2

< < '
(iii) sup i\ 20 CCp and sup oiN) 2000 CChi1s
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(iv) for any k > 0, there ezists a constant ¢ > 0 such that

t()‘l)

] . ”)\1—A2H <C} < O0.

&
—
n
=
o
—
Q19
BB
>
N

Lemma 2. Let &, = 27 p/ (1 + | X ;1] + |u_y]) be a positive random variable

depending on a constant p € (0,1). If Assumption 1 holds, then

1 0G:(0)  dq:(0) ¢
() | o8 00 CPEoGo

Lemma 3. If Assumptions 1, 3 and 4 hold and E(u}) < oo, then for u = o0,(1),

(i) sup [5,(X) — o¢(A)] < Cp'é,; (ii) sup
e e O

Gu(w) = op(Vrnlu| +nlul?),

where Gu(w) = Y37, 07 que(w) {Eu(w) — El&y(uw)| Fioa]} with

1
qul(u) = u’—aQtéZTD) and  &(u) = f [] (5t <b, + at_lqlt(u)s) —I(g < bT)] ds.
0

Lemma 4. Suppose that \/n(A, — o) = O,(1) and E(u?) < 0. Under Assumptions

1, 3 and 4, for @ — 0.9 = 0,(1), it holds that
n[Ln(0) = Ln(0.0)] — n[Ln(8) — L(040)] = 0,(x/1]0 — O] + 16 — 6.]?),

where L,(6) = 0! S, & p,[Yi — (60)] and L,(6) = n™' 3, ;' p,[Yi — % (6)].

Lemma 5. Suppose that \/n(A, — o) = O,(1) and E(u?) < o0. Under Assumptions
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1, 3 and 4, for @ — 0.9 = 0,(1), it holds that

~

n[Ln(0) — Ly(0:0)] = —v/1(0 — 0.0)Ts + /(0 — 0.0 J/n(0 — 6.9)
+0,(v/n]0 — O] + n)|0 — 6],
where Ly(8) = n™ X, 3, p,[Yi — au(6)],

Je(b7) i 1 0q(070) 0q:(6+0)
2n o} 00 00

aQt(ZTO)I/JT(Et,T) and J, =

1 1
T, - —Y —
\/ﬁ;(jt a

t=1

Proof of Lemma 1. Denote a(B) = >! | o;B" and 3(B) = 1 — >} | 3;B", where B

is the back-shift operator. By Assumption 1, it holds that

B YB)w(B) = Z ay(i)B' and B7Y(B) = 2 ag(i)B',

where ag(i) = €'G’e and a,(i) = 31_, ajas(i — j), e = (1,0,...,0)" is p x 1 vector

and p x p matrix G is defined as below

with I,, being the m x m identity matrix and 0 being the zero vector with compatible
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dimensions. By Lemma 3.1 of Berkes, Horvath, and Kokoszka (2003), we have
supa, (i) < Cp' and supag(i) < Cp’ (S1.1)
o e

for a constant 0 < C' < o and a constant p € (0,1). Moreover, for 8 € © and
any constant vector ¢ with all elements being nonnegative, it holds that c'ee’e <
cdGejw, and hence ag(i + k) = €Ge > €'Glew” = ag(i)w®. This implies that

k

supg ag(i)/as(i + k) < w™". Note that a,(i) = ajag(i —1). As a result, for any

integer ¢ and k < max(p, q), it can be verified that

ag(7) —k a (i) IR i—k
_O8 < d — <Yy W 1.2
Slép a,(i + k) - an S%p a,(i + k) YL (51.2)

We first prove (i). Since o7(X) = 1+, asui (@) + 23—, Bijo7 ;(A) + 7'V, then

we have

oi(A) = B7HB) (1 +7'Viy) + B7H(B)a(B)u(¢)

1 © d 0
- 1.7 5" DY mas(i)op, g + Y ay(iuy (@), (S1.3)
=1 i—1

1=0 k=1
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where (@) = u; — (¢ — ¢o)' X—1. It follows that

0 d
‘(A <
sup oy (A) 1_21 B ZZ kSUPaB Ukt i 1+1213161)pa7( i)u;_y(P)

S} =0 k1

< CZp[1+sgput i +Z7Tkvkt i—1] Cfi,t—l
i=0

Hence, (i) is asserted.

We then prove (ii). Since ¢;(6) = ¢'X;_1 + boy(A), it holds that

0q:(6) b 0of(N) b N
00 :(”to‘)’Qat(A) o' X 200(A)  0¢’ ) (51.4)

Moreover, it can be verified that

dof(N)

= 28" (B)a(B)uy(¢) X -1, (SL.5)

where z;(A) = (u7_1(@),...,u; o (#),07 ((N),...,07 ,(N),v], 1,...,v5,_,). From

(S1.3), it holds that 67 () = a,(i)ui_;(¢) and 67 (X) = mras(i)vi,_,_,. This together
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with (S1.1), (S1.2) and o?(X) = 1, implies that

Lot _ [ sz
"o |70 0 H‘ w2 =)
2 (& sl b aslii(9) B as(i)ot, ,(A)
< @I’Z[Z =PV Z =V Z =Y
d o0 aa(i /2
Shul IRRRZIOE) I L
RN | wlase G )
< C’Zpi[lJr||Xt_z~_1HL—i—|ut_i|L], (S1.6)
and
1 do2(N) (1)t (P) X i—ia
w |y e < 2w Y

< QZsup\/ )X i < CZPHXt i1l (S1.7)

In view of (S1.4)-(S1.7), we have

1 0dq(0)
oi(A) 00

1 doZ(N)
ai(A) v

sup
)

b
‘ < 14 —sup H+|Xt_1—i——sup
e 2 e

1 doZ(N)
7 e |

0
< O P+ X mima] + fueil ] < O
=0
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We next consider the second derivatives. It holds that

Pal0) . Pa®) 1 20N Pal6) 1 (N
ob? C oy 200N oy | oo 200(A) og
2q(0) b 02N do2(A) b 202(A)
yoy AT v o 20N ooy
Pq(0) b 002(A) 0o (N) b Poi(N)
vod AN oy 0@ 200N ovod
%q:(0) _ b o2 (X) (90?()\)+ b ?ci(N)
0h0d 103N 0p  od | 20,(A) 0gid

Moreover, it can be verified that

PR o 0mN) PR enN) ERN) ,
= B = B =2 B)a(B)X,; 1 X

6’76’7/ /B ( ) 87/ ’ a’)’agb, ﬂ ( ) aqb/ ) a¢a¢/ /8 ( )Oé( ) t—1 t—1»
where
0z,(N) 202 (A) 0P ()

5,), - <0(p+q+d)xq7 #7 B t@'z’ s Optqrd)xd and
0zi(A oo (A 0o (A

zgg(l’) ) = <_2utl<¢)Xt27 Ty _QUtfq((b)thqu Ota(lﬁ( )7 Ty ta;( )70d><d)

Similar to the proof in (S1.6) and (S1.7), it can be verified that

1 %02(N)
op(A) oy

sup
S

k(N H

1 do
< -1
VT

0 p
< sup ag(1) 2 sup
i=0 © k=1 ©
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1 %02(N)
a7 (A) 0yoe’

X i |
(A)
o i k(M)

5

sup
o)

~

RS w—i—k(P)
sup ag (1) 2 sgp

Oy

1
ai(N)

N

1/2
Cap(i) N
O] s nx

ag(i)a~ (] 12
%] supla (i) (1] X -1

A

and

1 %02(N)

[ee}
. 2 % ) 2
Uf()\) GloYalod X —ima | < CZ P X i

=1

sup
e

0
<2 Z sup a. (i
i1 ©

Using above inequalities and (S1.6)-(S1.7), we can show that

1 %q(0) ls 1 doZ(N) N 1S 1 doZ(N)
- —su
o | o (N) 2000’ 2% |20 oy 2% |02(N) 0o
+§Su 1 002(N) 2+§Su 1 002N
[ LV B R APV
b 1 do2(N) H 1 (?Uf()\)’
+-su su
TR PPV B PPV
—I—Esu 1 PoZ(N) —i-Esu 1 PoZ(N)
276 [Z() oy | T 276 [P (N) ovod
b 1 0%02(N) 9
2 < .
ke d vl T
Then (ii) is verified. Note that 52(A) < ¢2(\) under the setting for initial values of
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us (@) and oZ(N), then (iii) can be similarly asserted as for (ii). (iv) can be shown by
using the same method in proving Lemma A.1(i) of Zheng et al. (2018). Hence, we

accomplish the proof of this lemma. O

Proof of Lemma 2. In this paper, we use the setting for initial value of w;(¢) as

follows
u(p) = u(¢p) for t>0; u(ep)=0 for t<0. (S1.8)

We first prove (i). Note that 5¢(A) — ay(X) = [62(A) — aZ2(N)]/[5:(A) + o¢(N)].

Moreover, by (S1.3), it follows that

Then by (S1.1), (S1.8) and 07(A) = a,(i)ui_,(¢) implied by (S1.3), together with

the fact that w(¢) = u; — (¢ — )’ X—1, we have
N2 o0
sgp |71 (A) — 0y (A)] < Zsup @, (0)ui_i(¢) < ngp a,(1)|u—i(@)] < Cp'é,.

Hence, (i) holds.
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We next verify (ii). By (S1.4) and the fact that oZ(A) > 1, it can be verified that

| re | < e+ o s T e
e (51.9)
By (S1.3), it holds that
2y )
D e e RPN o
< LSS B R R
+[3:(N) — (N Z AR

This together with (S1.2), (S1.5), (S1.8) and the fact that 7(A) > 1, then similar
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to the proof of (S1.6), we can show that

sup

A aag(A)H

o 0t(A)[|Gi(A) v or(A) v
CIESh k@) N Ui (@)
< sup]gt()\)—at()\)\kZI ; sgpag(z) ?(];\) +;i;ksupaﬁ(l) UtQ(];\)
P& T T ()
+sup [5:(A) — ()| D) DT Y, supag(ia,(j) 2\
k=1j=1 =0 t
p 0 u2. d
£330 s A o) - a0y -
ol e 7 (A) o1 Tk
< Cp', [1+ > pi|ut—z(¢)|L] (51.10)

1 32\ 1 aag(,\)H
ai(A) 0 oi(A) ¢

S50 58

| )~ NI ()ui(@)
—— 0 I X1 + 2su = sup =T X,
2wy Xl 2 = ; wp =y Xl

t—2
L+ >0 \Xt“H] . (S1.11)

=0

N
[\
P18
0
=
o)
Q
N
=
f
=

N

Cp'e,

In view of (S1.9)-(S1.11), together with (i) and b < b for @ € ©, it follows that

0a(8)  24,(6)
00 00

1
sup ‘ < P&,

o 0i(A)
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Therefore, (ii) is asserted. The proof of this lemma is complete. H

Proof of Lemma 3. It can be verified that

Gl < valul 3 |52 Y me {€n(w) - Blen(w)|Fl}

where my; = 0, '0g;(0+9)/00j) with 6;) being the jth element of 6. For 1 < j <
m+p—+q+d+1, define g, = max;{m, ;, 0} or g, = max;{—my;,0}. Let fi(u) = ¢:&1.(w)

and

D(u) = %ﬁ S {fuw) — E [fuw) Fial}

To establish Lemma 3, it suffices to show that, for any ¢ > 0,

| Dn(w)]

sup ————— = 0,(1). (51.12)
s L+ volul| 7

We follow the method in Lemma 4 of Pollard (1985) to verify (S1.12). Let
§ = {fi(u) : ||u| <} be a collection of functions indexed by u. First, we verify that
§ satisfies the bracketing condition defined in Pollard (1985), page 304. Let B, (§)
be an open neighborhood of ¢ with radius » > 0, and define a constant Cj to be
selected later. For any € > 0 and 0 < r < 4, there exists a sequence of small cubes

{Ber/cy (w:) 159 to cover B,(0), where K(e) is an integer less than Ce~(m+p+atd+1)

Y
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and the constant C' is not depending on € and r; see Huber (1967), page 227. Denote
Vi(r) = Berjoy(wi) (1 B,(0), and let Uy(r) = Vi(r) and Ui(r) = Vi(r) — U;Z, V;(r)
for i > 2. Note that {Ui(r)}fi(f) is a partition of B,(0). For each w; € U;(r) with

1 < i < K(e), define the following bracketing functions

u; 0g:(60) g€

= l(?Qt(eTO)
o, 00 Co

O¢ 00
i aQt(eﬂrO)
O¢ 00

fi(w) =g Sé [[ <€t < b, +

) —I(g < bf)] ds,

U 1 ul 0q,(010) er
ft <Ull) 9 SO [ <€t <t * Ot 00 5 CO

) —I(g; < bT)] ds.

The indicator function I(-) is non-decreasing and g, > 0, for any w € U;(r), then

i (wi) < fulu) < f (). (S1.13)

Furthermore, by the Taylor expansion, it holds that

2

E [ftU(ui) — sz(Ul)’]:tfl] < @ 2 sup fs(x) UltaQt(gZTO)

S1.14
C'O zeR ( )

Denote A; = 2sup,g f-(z)]|0; 10q:(0+0)/00|?. By Assumption 4, we have sup,.g f-(7) <
o0. This together with Lemma 1, implies that E(A;) exists. Let Cyp = E(A¢). Then

by the iterated-expectation, it follows that

E[fY (w) — fH(w)] = E{E[f7(6:) — fF(6:)|Fia]} <er.
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This together with (S1.13), implies that the family § satisfies the bracketing condi-
tion.

Put ry = 27%5. Let B(k) = B,, (0) and A(k) be the annulus B(k)\B(k+1). From
the bracketing condition, for fixed € > 0, there is a partition Uy (ry), Ua(7%), - - ., Uk () (%)

of B(k). First, consider the upper tail case. For u € U;(r), by (S1.14), it holds that

1 n

1 L
Dy(u) < 7 t; {0 (w;) = E[f7 (wi)| Fer]} + 7 ;E [ (wi) — f (ws)| Fio ]
< DY(u;) + \/ﬁerk%go z”: Ay, (51.15)
where

Define the event

For u € A(k), 1 + v/n|u| > v/nrgs1 = /nrg/2. Then by (S1.15) and the
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Chebyshev’s inequality, we have

P ( sup Dn—(u) > 66,En>

weak) L +/1ful

< P ( max sup D, (u) > Sﬁerk,En)

I<i<K(€) uel; () nAk)

< K(e) max P(Dg(ui) > \/567%)

1<i<K(e)
B{[DY (u,)]?
< K(e) max M (51.16)
1<i<K(e) ne’r;

Moreover, by the iterated-expectation, the Taylor expansion, Assumption 4 and

|u;| < 7y for u; € Ui(ry), we have

E {[ftU<ui)]2} =FE {E {[ftU(uz‘)]z‘ftq}}

! L 0q(010) erk|| 1 0gi(0+0)
< 2B{¢|| |F Ui 04\Or0) o €] L 06Oro) |\ o
{gt L l g(bT—I—Ut 0 ot Colo o0 = (b;) | ds
1 aQt(eTO) ’
< Cigﬂng(m)TkE[ P :

This, together with Lemma 1, E(| X ||**%) < o for some § > 0 by Assumption 3,

sup,cg f-(z) < o0 by Assumption 4 and the fact that fU(u;) — E[fV(u;)|Fi-1] is a
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martingale difference sequence, implies that

E{[Dy (u)]*} = %ZE{{J‘}U(W—E[ftU(Uz)\ft1]}2}

< OB @l
< %;E[ %% ’ = A(rg). (S1.17)

Combing (S1.16) and (S1.17), we have

D, K(e)A
P sup —(u) > 6e, F, | < —(6)2 (27"k)
weak) 1 +/nful ner
Similar to the proof of the upper tail case, we can obtain the same bound for the
lower tail case. Therefore,

| Dn(u)|

p( sup 2K (e)A(ry) '
wea(k) 1+ v/nllu

2.2
nesry

> Be, En> < (S1.18)

Note that A(r) — 0 as k — o0, we can choose k. such that 2K (€)A(ry)/(€26?%) <
¢ for k > k.. Let k, be the integer such that n=/26 < r,, < 2n~Y2§, and split
Bs(0) into two events B := B(k, + 1) and B¢ := B(0) — B(k, + 1). Note that

B¢ = UIZZO A(k). Moreover, by Lemma 1, it follows that A(rg) is bounded. This
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together with (S1.18), implies that

P<sup | Pn(w)] 6€> < iP( sup M>6€,En> + P(EY)

uese 1+ y/nu| 2 \ueapw 1+ v/nlul

2k 2k c
< 15 O £ 5o spia
kk:

o) (%) +de + P(E°). (S1.19)

N

Furthermore, for u € B, we have 1 + /n|u| = 1 and ry, 41 < n™Y25 < n= Y2

Similar to the proof of (S1.16) and (S1.17), we can show that

D, KA
Psup 22 305 <P ( max DV(w)>e B, ) < LOATL)
ues 1 +/nju 1<i<K(c) 2

We can obtain the same bound for the lower tail. Therefore, we have

Dl Y (o D@l C
P(uJéHmun 3) P<u£1 f||u|>3’E">+P(E")

< e )AQ(T’“"“) + P(ES). (S1.20)

€

Note that A(rg, +1) — 0 as n — 0. Moreover, by the ergodic theorem, P(E,) — 1
as n — o and thus P(ES) — 0 as n — oo. (S1.20) together with (S1.19) asserts
(S1.12). The proof of this lemma is complete. O

Proof of Lemma 4. Denote u = 6 — 6. Recall that L,(8) = n~* Dy 6;70,(9) and

~int ~int

Lo(0) = n™t 30, 374(6), where 3, = &i(X,, ), 3, = ou(X,, ), £(0) = p,[Yi — 3(6)]
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and £,(0) = p.[Y; — ¢:(0)]. Then it can be verified that

= R3n(0) + Run(0), (S1.21)

where

Ron(0) = )6~ 5 H[0(0) ~ 16,0)] and

Rin(0) = Y5 {[01(6) — (:(670)] — [£:(6) — 1(6:0)]}-
First, we show that
Rn(6) = op(vnlul)). ($1.22)

By the Taylor expansion and the Lipschitz continuity of p,(x), we have

0q:(6")
00

~

7.6) — 1(80)] < Cl3(8) — 3(6-0)| < C1lu \

(S1.23)

I

where 6% is between 6. and 6. Recall that (,; = Z;’;Opj(l + (| X | + ey ]t).

By Assumptions 1 and 3, it holds that £(};°) < 0. Combing (S1.63) and (S1.23),
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by Lemma 1, 2(A) < 0?(X) and 62(A) = 1, we can show that

0q:(0)
O't A) 80

ar(A) _

~

g

‘R3TL Oé.p l
sup P Sllp
o Vn HUH 2

N(A)] Cﬁzpfpﬁup

Thus, (S1.22) holds. Next, we verify that

Rin(8) = op(v/nlu] + nful?). (S1.24)

Denote v(u) = ¢:(0) — ¢:(0+0) and 7(u) = G:(0) — G:(0+0). Define

&(u) = Jol [ (0 < b + 0, 've(u)s) — (e, < b;)]ds and

gg('u;) = J [[ (€t < bq—a'tat_l + O't_lﬁt(’U/)S) — I(Et < ngtO't_l)] ds.

0

By the Knight equation (S1.66), it can be verified that

Fun(0) = D007 {w) v~ bnor) + Ew)] — i) [~ (o) + )]}

= l%l(u) + 1o (w) + H3(w) + Iy (uw), (S1.25)
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where g, ; = ¢, — b,

u(w) - i W)~ wlu)]ines — by,
fy(u) - i (e~ bdioy ) — rleer),
o) = 332 i)~ wluto) omd ) = Y7 o) 0]

Moreover, by the Taylor expansion, we have

and  7i(u) — o 2007 (S1.26)

/aQt(g*)
e 06

00

vi(u) =

where 6 is between 0,9 and 6. Then it follows that

wf(gt - bfgtO';l).

i_ 03(0%)  04.(6%)
45| o8 26

By Lemma 1(iv), Lemma 2(ii) and Assumption 1, together with the fact that |, (z)| <

1, it follows that

oo @) 1y 1 103(8)  0q(6)] - ou(A)
o Vnlu| S WE @potwl 6 6 ‘ o o (2)
< L3, s TN _ o)
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Hence, we have

I () = o,(v/nlul)). (S1.27)

We next consider II(w). Since 1, (z) = 7 — I(z < 0), by the Taylor expansion, we

have

E [wT(Et - bT&tUt_l) - w7<€t77)‘ft—1:| = fe(bfl)bTo—;l(Ut - 5t)7

where b, is between b, and b.5,0, 1 As a result, by the iterated-expectation, the
Cauchy-Schwarz inequality and the Taylor expansion in (S1.26), together with 52 >
1, Lemmas 1-2, E(C4+6) < o by Assumption 3, E({g) < o0 by Assumption 1 and

E(u?) < o0, and sup,g f-(7) < o0 by Assumption 4, it follows that

PQt

H ’E ¢r ngtO-;l) - wf(gt,‘rﬂftl]’}

O't(A) 1 ﬁqt
O't (30

] _ L
E[ mu] < mufls
n o 1/4 »
S [E@]" | Esup TR [B(] = ot

N

(wpll

)]

jam

o

o

=

‘H
L7 of

N

oy — 0| sup
zeR Vn = {’ e e Oy @
0y

Therefore,

Ha(u) = op(v/nful). (S1.28)



S1. TECHNICAL DETAILS

Note that |&(u)| < 2. For II3(w), similar to the proof of II; (), we can show that
() = op(v/n[ul). (S1.29)
Finally, we consider I, (u). By the Taylor expansion, we have

E[&(w) = &(w)| Fii]

(2 (2o [ [ 82

= Jl fe(br2)o; ' (u)sds — fl f-(br3)o; () sds
0 0
1

_ —k@ﬁ%I%OO—wNUH+Uf%hUJ[ﬁ@w)-ﬁ@ﬁb%

0

—w#w@ﬁfﬂ@@—ﬂ@ﬂM&

0

where bry = b.5,0; " + 07 ' Di(u)sy and by = by 4 0; 'y (u)s3 with 0 < 59,83 < 5 < 1.
As aresult, by the iterated-expectation and the Taylor expansion in (S1.26), it follows

that
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where

S L) 20.(6)||20(6) _ 24,(6)

Kaw) = = ;Ela@ o ‘ 00 || oo oo H

~ = 0q:(0)| || 0g:.(0 !

Rofw) = 3|5 ' 1B s [ 1700 - o)l

S|

Ks(u) = )

=1

sup j £ (brs) — (b >|sds]

aQt

040y @

~+

First, consider I?I(O). By the Holder inequality and Lemmas 1-2, together with
(C4+5) < o0 by Assumption 3, E(£}) < o0 by Assumption 1 and E(u}) < oo, and

the fact that &2 < o2, we have

1 0q:(0)
ai(A) 00

[?1(11,) < fs(bT)liE {sup 0-132(3‘) sup

a5 42
e 00t o ) Ut()\)

00

VAN
S1Q
=
bﬁb
&
—
)
o=
T
S
2/‘\
gz
T
T
D)
—_——

= o(1).

N

)
4(4+9) 2(4193)
O¢ A) o }

Hence,

Ki(u) = o0,(1). (S1.31)
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Next, we consider [N(g(u) By the Taylor expansion, it follows that

[ 15200 = L0 sts < o swp V067 )+ Dl

t zeR

Then by the Taylor expansion in (S1.26) and the Holder inequality, together with
Lemmas 1-2, sup,.g |fe(:17)| < o by Assumption 4, |b,| < b and the fact that o2 > 1,

we have

ia%<9)
Ot (30

~ Cx 10g(0)[]] o 7 (w)]
sup Ko(u) < — ) E<sup l — —\Jt — oy + sup S9
i< n t; e or 00 [wl<y Ot

n @ 26+ 1
gzpt{E[supif)] } (B [BE)])

N

)

36+5) \ 555
+% > {E [St@l)p Uta(t)\)] } [E(10)]55

tends to 0 as 7 — 0 and n is large enough. Similar to (S1.50) and (S1.51), we can

show that
Kr(u) = 0,(1). (51.32)

We finally consider K 3(u). By the Taylor expansion, we have

zeR

1 .
L |[fe(brs) — fo(br)|sds < sup | fo(x) oy vi(u))-
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Then by the Holder inequality and Lemma 1, it follows that

2

~ C < 1 | 0q(0) Vt(u)‘
sup K3(u) < — ) E{sup—||———=| su
sy o) n; {ep v |00 | uisy| o0
n 3 3
< @ZE sup L 09,(0) H su Ot(i)
t=1 © O-t(A) 80 S} O'?O't()\n)
)
3(3+6) \ 543
3 A 5
< Cn [E(Cﬁ’,i‘s)]‘si” {sup [Ut( )] }
e Ot

tends to 0 as n — 0 and n is large enough. Similar to (S1.50) and (S1.51), we can

show that

Ks(u) = o0,(1). (S1.33)

In view of (51.30)-(S1.33), we have

() = op(nul?). (S1.34)

Combing (S1.25), (S1.27)-(S1.29) and (S1.34), we assert (S1.24). By (S1.21), (S1.22)

and (S1.24), it follows that

~

n[Ln(0) = Ln(0:0)] = n[Ln(8) — La(6:0)] = 0p(vn|u] +nlul?).  (S1.35)

Hence, the proof of this lemma is complete. n
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Proof of Lemma 5. Denote w = 6 — 6,. Recall that L,(8) = n~" D0

5, 14,(0) and

L.(0) = n71Y0 07 '4,(0), where £,(0) = p.[Y: — ¢:(0)]. To show this lemma, we

decompose the proof into two steps. In the first step, we will show that
n[Ln(60) = Ln(6+0)] = 1[Ln(0) — Ln(0r0)] = 0p(v/nu] + nful?).
Denote €;, = &; — b; and v (u) = ¢:(6) — q:(0+0). Define

&i(u) = J [I (&?t <b + at’lyt(u)s) —I(g; < bT)] ds.

0

By the Knight equation (S1.66), it can be verified that

n[Ln(8) — L(0:0)] — n[Ln(0) — Ly (6:9)]

= 2@~ oY) [pr (cror — (W) = pr (0200)]

t=1

= Ki(u) + Kop(u),

where

(S1.36)

(S1.37)

(S1.38)

Kinw) = = 33 (5 = 2 ) b eur) and Kanlw) = 33 (5 -+ ) mws(w)

t=1 t=1
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By the Taylor expansion, it holds that

11 it , 1 0d}(A\Y) ,0q:(0)
- - — — u) =u ——= 1.
oy O (R = 2o) 203(A*)  OX and v (u) 00’ (S1.39)

where A* is between S\:Lm and Ao, and 8 is between 0 and 6.4. By (51.39), it follows

that

Aznt
Kin(u) = vn(A, —Ao) - Zzu (6%) - (S1.40)

where

1 oZ(A¥) 6qt(0*)

Zu(67) = 20;?()\*) oA

1/}7'(515 7')

By the iterated-expectation and Lemma 1, together with the fact that E[, ()] =

0, we can show that F [Z,(6%)] = 0. Furthermore, by the Cauchy-Schwarz inequal-

911/2
] < 0.

ity, Lemma 1 and the fact that |¢.(z)| < 1, we have

2] 1/2

Then by the Theorem 3.1 in Ling and McAleer (2003), it follows that

1 doZ(A)
oZ(X) O

dq:(0)
ai(A) 00

1
E (sup th(e*)\> < 3
e

Esup‘
e

FE sup
e

EZU 6%)| = op(1).

sup
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This together with (S1.40) and the fact that \/ﬁ(j\;nt — Xo) = O,(1), implies that
Kain(u) = op(vnlul). (S1.41)
For Ky, (u), by (S1.39), it can be verified that
Kon(u) = —(Xn — Xo) Zas(u), (S1.42)

where

By the Taylor expansion and Assumption 4, it follows that

Bl ()l Fmi) = | 1 [F (bT " ”*“)5) - Fg<bf>] ds = f: /. (bT " ”t<'“’>5*) %) s,

0 O Ot o

where s* is between 0 and s. Then by the iterated-expectation and the Cauchy-

Schwarz inequality, together with (S1.39), Lemma 1 and sup,.g f-(z) < o0 by As-
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sumption 4, we have

Elsup M]
o nfuf
1 1 d0f(N) v (6) ]
< —sup fo(z)— E |su ¢ su : *
1 me]gf( )nt; ep o2(A) O @p 010 (A*) |u|?
| aa%\)' o [ 1 ()’
< CFE :
"o 2y ox |Te o e |o(n) o6
) s 4712
1 002(N) 4 () 1 0q:(0)
- 5 t E t E '

This together with (S1.42), the ergodic theorem and the fact that ﬁ(i;”t — o)

O,(1), implies that

Ko (u) = op(n]ul?). (S1.43)

By (S1.38), (S1.41) and (S1.43), it follows that (51.36) holds.

In the second step, we will establish that

n[L,(0) — L,(0,0)] = —vnu'T,, + v/nu' Jov/nu + o,(v/n|u| + nful?). (S1.44)

By the Knight equation (51.66), we have

n[Ln(8) — Ln(050)] = Rin(w) + Ron(w), (S1.45)
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where

Ry, (u Z i w)Y,(er,) and Ro,(u Z i

=1 Ot =1 Ot

By the Taylor expansion, we have v;(u) = qi:(u) + g2t (u), where

/ aQt (070>
00

i{ (’/32%<0*> "
2 0000

qu(u) =u and gy (u) =

with 0* between @ and 0,,. Then it can be verified that

Rin,(u) = —/nu'T, — /nu' Ks,(0%)v/nu, (S1.46)

where

T, Z LO00)  e,,) and K, (6) = o Z LZaO) (e,

4oy 2n & oy 0000’

By the iterated-expectation and the fact that E[v,(e; )] = 0, it follows that

1 62,(6") -
E [Z 0000’ W%)] =0

Moreover, by Lemma 1 and the fact that |¢(e:,)| < 1, we have

1 02 2 1/2
- [Sup q,(6) ] _ [E ap U<A>]
t

oy 0006’

1 §2qt(0)
Ut(A) (3‘0(79/

Q/JT( tT)

911/2
Esup < 0.
e
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Then by the Theorem 3.1 in Ling and McAleer (2003), it follows that
Sup [ Ksn (07)] = 0p(1).
This together with (S1.46), implies that
Rin(u) = —/nu'T,, + op(n|ul?). (S1.47)
By simple calculation, we have & (u) = &;(u) + o (u), where

Eulu) — L (e < b+ o lgu(w)s) — 12, < by)|ds and

1
Eo(u) = L [I(e; < by + 0,7 ' (w)s) — I(gy < by + 07 que(w)s)]ds.

Then for Ry,(u), it can be verified that

Ron(u) = Kyp(u) + Ksp(uw) + Kep(u) + K7 (u), (51.48)
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where

Kin(w) = Y, 200 e (a7,

~ oy 00
Koulw) = w3, -0 6 ) pig(wlFD,

t=1 "t

o L 0gi(0+0) w1 0% (07)
Ken(u) = u ;Ut g Sar(u) and Koy(u) = 5 Zo_t 2000 (W

t=1

First, consider Ky,(u). By the Taylor expansion, it follows that

Elw(u)| Fisy] = f [Fa(bs + 07 que (1)) — F2(b,))ds
= S R0)07 () + o7 () j [ (br + 07 que(w)s®) — fo(br)]sds,

where s* is between 0 and s. Therefore, we have
Kin(u) = v/nu'J,v/nu + v/nu'Tly, (u)v/nu, (S1.49)

where

. fE(bT> = 1 aqt(OTO) aQt(eTO)
T = 2n Zaf 00 00’ and

1
S a t 07’ a t 07‘ ! _
M) = 3 BT [ o (w)s®) — £00) s,

By the iterated-expectation, the Taylor expansion, Lemma 1 and sup, | f (x)] <
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by Assumption 4, for any n > 0, it holds that

1 aqt( 7'0) aqt(eTO) ¢ ’U,/ aQt<0T0>
e T B b QA b

)

tends to 0 as 7 — 0. Therefore, for any €, 6 > 0, there exists 9 = no(€) > 0 such

|

[w]<n =1

10
nsup | f(x \E<H %(6r0)

E(sup \Hm(“H) < %ZE{'LM

N

zeR

that
P sup |M(uw)|>6) << (S1.50)
<m0 2
for all n > 1. Since u = 0,(1), it follows that
€
P ([lu] > no) < 5 (S1.51)

as n is large enough. From (S1.50) and (S1.51), we have

P ([ (u)] >0) < P([n(w)| >0, [u] < no) + P (Ju] > )

< P(mmmmmM>5>+g<e

Iw]<no

as n is large enough. Therefore, Iy, (w) = 0,(1). This together with (S1.49), implies
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that
Kyn(u) = v/nu' J,v/nu + o,(n)|ul?). (S1.52)
For Kj5,(u), by Lemma 3, it holds that
Ksn(u) = op(v/nful + nful?). (51.53)
Next, we consider Kg,(u). By the Taylor expansion, it follows that

El¢a(uw)[Fia] = L [FL(br + 0y v (u)s) — Fe(br + 0y ' que(u)s)]ds

1
= at_qut(u)J fe(b*)sds,
0

where b* is between b, + o, 'qi/(u)s and b, + o; 'v(u). Then by the iterated-

expectation and the Cauchy-Schiwarz inequality, together with Lemma 1 and sup, g f-(z) <
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o0 by Assumption 4, for any n > 0, it holds that

Kep
5 ( sup Km0
|w|<n nju

nx 1 6qt +0) 1 1 Pq,(6)
< n g { Ot 2 xgﬂg fE( ) O¢ 6080/
16qt(070) at()\) 1 %q(0)
< CnEl|—=
i {Ut 60 |°s o 1 (\) 0006’
1/4 1/4 271/2
1 0q,(8,0)|" at(A) %q:(6)
< — .
AR Par agl A) coce | [

tends to 0 as n — 0. Similar to (S1.50) and (S1.51), we can show that

Kon(u) = op(nful?). (S1.55)

Finally, for K7,(u), it follows that

Kop(u) = v/nu/Tly, (uw)yv/nu + /nu'Tls, (u)y/nu, (S1.56)

where

1 1 02¢,(6%) 1 1 %g(07)
Hon(u) = QnZat 0000’ Suulu) and Hgn(u) = ZnZ oy 0000’ Earl).
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As for the proof in (51.54), we can show that

E | sup [z, (u)]
[w]<n

1 (?th(e)
oi(N) 0000

1/2
/ 4

1/4 44
lE sup ij‘)] [E ]
<) Oy

tends to 0 as 7 — 0. Then similar to (S1.50) and (S1.51), we can prove that

2

i aQt(BT())
O¢ 00

< Cn [E sup
®

Iy, (w) = 0,(1). Similarly, for II3,(u), by the Holder inequality, for some 6 > 0, we
have

] {Esup lat ] }
e gt

tends to 0 as 7 — 0. This together with the proof similar to that of (S1.50) and

1 (92qt(0)
7i(N) 0000

FE sup
e

E( sup M) ) < o
[uf<n

(S1.51), implies that II3,(u) = 0,(1). Therefore, by (S1.56), it follows that
Koy (u) = op(nul?). (S1.57)
Combing (S1.48), (S1.52), (S1.53), (S1.55) and (S1.57), we have
Ron(w) = v/ra' Juv/nu + op (v ul| + nful?). (S1.58)

By (S1.45), (S1.47) and (S1.58), it follows that (S1.44) holds. In view of (S1.36) and

(S1.44), the proof of this lemma is complete. O
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Proof of Theorem 1. Denote £,(8) = p.[Y; — ¢:(0)] and £,(0) = p,[Y; — G:(6)], where

q(0) = ¢' X ;1 +boy(A) and §,(0) = ¢' X ;1 +b5¢(A). Define the following functions

h?

n 1 n
_1 2 5;71,(0) and L, (0) = - PAAC)
t=1 t=1

3

%Zati

~int ~int ~
where 0y = g4(\,, " ), Oy = crt()\; ) and oy = 04(Ag). To show the consistency of 6,

we first verify the following claims:
(i) sup |La(8) ~ Lu(8)| = 05(1);
(if) Elsup o, (0)] < on;
(iii) E[o; '¢,(0)] has a unique minimum at 6,;

(iv) For any 8" € ©, E[ sup o, '6,(8) — £,(8")|] — 0 as n — 0, where B,(8") =
Ocs, 0"
{60 :)6"—0| <n} is an open neighborhood of 8" with radius 7 > 0.

To prove Claim (i), we need to verify that

sup | L, (0) — Ln(0)| = 0,(1) (S1.59)
Oco

and
sup | L, (0) — L,(0)] = 0,(1). (S1.60)

Oco
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We first show that (S1.60) holds. By Taylor expansion and the fact that oZ(A) > 1,

1 60t
ot (A)

~ _ 4 ,0int o 1
g, =0 =]o (A, ) — o7 H(Ao)| < 5 sup

H PNAEPW)

Moreover, by the fact that |p, ()| < |z|, together with E(Y;?) < o0 and FE supg ¢2(0) <

o implied by Assumption 1 and E(u?) < o0, we have
Esuplp.[Vi — a(0)]}* < 2B(V2) + 2 sup2(6) < 0. (SL.61)
(C] e

This, together with Lemma 1, the ergodic theorem and X;m — Ao = 0,(1), leads to

3I'—‘

Sup |Ln(0) — ; —o; | Sup p-[Ye — a(0)] = 0,(1).

Hence (S1.60) holds. We next verify (S1.59). It can be verified that

£.(0) - Lu(0) = ~ D167 oY d(0)] — - D57 prli - 0(0)]
= Ry(0) + Ran(0), (S1.62)
where
R1n<g> = - Z pT[YZ - Qt(e)] and

Ron(0) = _Zat_l{Pr —C]t( )] _PT[Yt—Qt(e)]}-
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Since 02(A\) = 1 and 5%(A\) = 1, by Lemma 2(i), it follows that

~ ~_ 1o 1 int ~int

6, =5 =165 G (N, ) — oA, ]| < Cp'é,. (51.63)
Recall that &,; = 372 p/(1+ | Xy il + [Vieja V2 + |ue—5]) and €, = 3377 p7 (1 +
| X _;—1| + |u—j|), where p € (0,1) is a constant. By Assumption 1, it is clear that
E(¢2,) < o and E(£?) < co. Then similar to the proof in (S1.61), by Lemma 1(i),

we can show that E{supg|Y; — ¢:(0)]*} < co. This together with (S1.63), implies

that

1 ¢ Al e
sup [Ry, (0)] < — > sup |5, — 3, sup pr[Y: — .(0)]
© n& e e

VAN

% ;pt sup pr[Yi — (8)] = 0p(1). (51.64)

Note that §;(0) — ¢,(8) = b[5(X) — 0,(A)] and b < b for @ € ©. By Lemma 2(i), the

Lipschitz continuity of p,(z) and the fact that 62 > 1, it follows that

C n
sup |Ron(0)] < = &, sup g (0) — q.(0
p|Ra0) < 335 sup F(0) ~00)
O n N C n
< SN -] € Y g = (1), (S165)
t=1 t=1

From (S1.62), (S1.64) and (S1.65), we show that (S1.59) holds. Combing (S1.59)

and (51.60), Claim (i) is verified. Moreover, Claim (ii) is implied by (S1.61) and the
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fact that o? > 1.

We next prove Claim (iii). For x # 0, it holds that

1

ooz —y) — pola) = ﬂW%@+ﬂf[ﬂ$<y@—f@<0ﬂ@

0

= (@) + (- IO > x> y) — (0 <@ < y)]S166)

where ¢, (x) = 7 — I(x < 0); see Knight (1998). Denote v4(0) = ¢,(0) — ¢:(0+9) and
etr = € — by. Note that ¢, (e;,0¢) = ¥, (1) and E[1,(er,)] = 0. Then by (S1.66),

we have

Elo, 0(0)] — Elo, 1(6+0)]

= E{o;! [prenr — 0, '04(0)) = pr(ens)]}

= F {at_l[gm — 0 ' (O)[I(0 > g1 > 0, 14(0)) — (0 < &7 < at_lut(O))]} >0,

and, by Assumption 2, the equality holds if and only if 1,(0) = ¢,(0) — ¢:(0.¢) = 0

with probability one. Note that

q P d
(@) = by, |1+ Z ioui_; + Z 53‘0‘7752—]' + Z Wkovl%,t—l
i=1 j=1 k=1

q p d
—by| 1+ Z azup_ (@) + Z 5]'01:2—]'()‘) + 2 Wk“lz,tq + (@ — @) X1,
i=1 j=1 k=1

where w1 = 041641, U_1(P) = w1 — (¢ — @) X2, 02 and o2(\) are Fy_i-
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measurable, and {X;_1} are independent of {¢,;}. As a result, the random variable
gi—1 in 14(0) is independent of all the others, and then it holds that ¢ = ¢, and
b2aiy = b?ap. Sequentially we can show that b2ayy = b2y for i > 2, b, = b and
T = T for k = 1,--- ,d. Finally, we verify that 80 = 8; for j = 1,--- ,p. Thus,
the proof of Claim (iii) is accomplished.

Finally, we assert Claim (iv). By the Taylor expansion, it holds that

5%(0)
00

Y

4:(0) — q.(6M)] < 10— 01| H

where 0 is between 0 and 0'. This together with the Lipschitz continuity of pr (),

the Cauchy-Schwarz inequality and Lemma 1, implies that

1 0q,(0)
a(A) 00

2] 1/2

0.2(}\) 1/2
Elsuvg,,, g1, o0 16(6) - 6111 < O [ Bsupe 22 | | Esupe

2
Oy

tends to 0 as 7 — 0. Hence, Claim (iv) holds.
Based on Claims (i)-(iv), by a method similar to that in Huber (1973), we next
verify the consistency. Let V' be any open neighborhood of 8,5 € ©. By Claim (iv),

for any 87 e Ve = O/V and e > 0, there exists an 79 > 0 such that

E[ inf o;'%(0)] = E[o;4,(6")] — e (S1.67)
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From Claim (ii), by the ergodic theorem, it follows that

= inf 0, ',(0) = E[ inf o;'(0)] ¢ (51.68)
i3 0eB,, (0" O<B,, 0"

as n is large enough. Since V¢ is compact, we can choose {B,,(0;) : 8; € Vi =
1,...,k} to be a finite covering of V. Then by (S1.67) and (S1.68), as n is large

enough, we have

inf L,(0) = min inf L,(60)

Ocve Isisk 0€Bno @,
1 n
> min — inf  o7%,(0
1<i<k n ; HEBnO(ei) t t( )
> min E[ inf o, '4(0)] —e. (51.69)

lsisk HGBTYO (91-)

Moreover, for each ; € V¢, by Claim (iii), there exists an €y > 0 such that

E[ inf 0;%(0)] = E[o,4,(0+9)] + 3¢o. (51.70)

OcB,,(0,)

Therefore, by (S1.69) and (S1.70), taking € = €, it holds that

Hinf L,.(0) = E[o;'0(0,0)] + 2¢0. (S1.71)
eVve
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Furthermore, by the ergodic theorem, it follows that

eV

1 n
inf L,(0) < L,(0,) = - Za[lét(ﬂm) < Elo;M4(0.0)] + €. (51.72)
t=1
Combing (S1.71) and (S1.72), we have

inf L,(0) = E[o; '0(0,0)] + 2c0 > E[o; £,(0,0)] + €0 = inf L,(0), (S1.73)

Ocve OEV

which together with Claim (i), implies that

0..eV in probability for YV, as n is large enough.
By the arbitrariness of V', it implies that ém — 60,9 in probability. The proof of this

theorem is complete. O

Proof of Theorem 2. Denote u,, = ém — 0,9. From Theorem 1, we have u,, = 0,(1).
Since @m minimizes ZA},L(O), then 4, is the minimizer of ﬁ[n(u) = n[zn(eTo +u) —
L,.(6.)]. Define J = f.(b,)%(7)/2. By Lemma 1 and the ergodic theorem, we have

Jn = J + 0p(1). Moreover, by Lemmas 4 and 5, it follows that

Holti) = —/niil Ty + /il Jynt, + 0p(v/fin]| + nld,|?)  (S1.74)

WV

=Vl [[|Tall + 0p(1)] + 0t |*[Auin + 05(1)],
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where A, is the smallest eigenvalue of J. Note that, as n — oo, T, converges
in distribution to a normal random variable with mean zero and variance matrix
(1 —7)%(7).

Since H,(T,) <0, by (S1.74), it holds that
V[t < [Amin + Op(l)]_l[HTnH +0p(1)] = Op(1). (SL.75)
This together with Theorem 1, verifies the root-n consistency of 5m in probability.
Let \/nu, = J'T,/2 = f=1(b,)X7 (7)T,, then we have

in distribution as n — o0. Therefore, it suffices to show that y/nu, —/nu, = o,(1).

By (S1.74) and (S1.75), we have

Ho(@y) = —/na, Ty + il Jy/nii, + 0,(1)

= —2v/na, J\/nu, + v/ni, J\/ni, + o,(1) and (S1.76)

A~

H,(u,) = —+/nu,T, +nu,J\nu, + o,(1) = —v/nu,, Jy/nu, + 0,(1$1.77)
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From (S1.76) and (S1.77), it follows that

A~

Hy(u,) — ﬁn(“ﬂ) = (Vnt, —vnu,) J(Vnt, — vnu,) + 0,(1)

> Amin|[VTn — vVnw,||* + 0p(1). (S1.78)

A~

Since H, () —Hy (w,) = n[Ln(070+Tp)—Ln(0-0+u,)] < 0a.s., then (S1.78) implies

that ||/nw, —+/nu,| = o0,(1). The proof of this theorem is hence accomplished. [

Proof of Corollary 1. First, we show the consistency of ém. The proof follows the
same lines as that of Theorem 1, while functions L(8), L, (6) and En(e) are defined
25 Lu(0) = 0 X ooV — u(8)], L(0) = 1 I, pr[Yi — (6] and L,(0) =
n~t 3 prlYe — G(0)], respectively. Next, we show the root-n consistency and
asymptotic normality of 8, as in Theorem 2, where functions L(8), L,(6) and
En(e) are defined as previous, the function (,(u) in Lemma 3 is defined as ¢, (u) =
Yy qie(w) {1 (u) — E[&11(w)| Fi—1]}, Lemma 4 remains unchanged while Lemma 5
is consequently revised as below.

Lemma 5. Suppose E(|u|?*°) < oo for some § > 0. By Assumptions 1, 3 and 4, we

have

n[L(8) — Lu(8:0)] = —v(0 — 0,0) T+ /(0 — 870)' Jun/n(0 — 0,0)

+0p(Vn[[0 — B0 + 1[0 — O:o[7)
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for @ — 6.9 = 0,(1), where L,(8) = n' 37 p.[V; — G.(0)],

fe(bT) i l aQt<07'O) aQt(eTO)
2n o, 00 00

o 1 N aQt‘(eTO) .
re

t=1

Note that without weights o; ', additional moment condition on u; will be needed
in some intermediate steps of the proof. Therefore, instead of El|u;|?> < oo, higher
moment condition, E|u;|**? < oo for some d > 0, is required for the proof of Corollary

1. [l

Proof of Corollary 2. Denote z,(y) = (u7_y, ..., ui 5,07 (), 07 (V) V15,05, 1)

and 2,(y) = (@F_y,- - U_q, 671 (), -+, G p(¥), V81, - -, V31)'s where uy = u(y),
= u(¢y), 07 (7) = 1+ XL, cwuy; + Z?:l Bioi_;(v) + 22:1 Ui g1 and o7 () =
1L+ >0 ou?, + pIa 07 i (y) + Zzzlﬂkv,%i_l. Let o2(v) = 1 + ~'z,(v) and
32(y) = 1 +~'2,(7y). Note that u, = u(¢py) = Y — $pX,_1 and iy = u,(,) =
Y, — qvﬁ;Xt_l. Let «v, = (b,v')" and denote by 7,4 = (b-,7;)" its true value. Denote

by ©' c RP+atd+1 the parameter space of v, , which satisfies

p
b < |b| <b,25j<po, w < min(ag, ..., 0 By Bpy Ty v Ta)
j=1

< max(ag, ..., 0 By Bpy Ty ..., Tg) < W,

where 0 < b < b, 0 <w <w, 0 < pg <1and pw < pg. Moreover, we assume

© is compact and 7., is an interior of ©’. Recall that 8., = (§.,,.,), where
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/

F.n = (b, A")". For the least square estimator ¢, by the model assumption in

(2.1) and (2.2), we have
1 Ty
\/ﬁ(é’)n - d)[)) = (Z;Xt—l-X:&l) \/—ﬁ;Xt_latat. (Sl?g)

Then /n(¢,,— ¢,) = O,(1) and \/n(p,, — ¢y) — N(0,%y,) in distribution as n — oo,
where Yoy = w* Dy ' Dy Dyt with w* = var(e;) and D; = E(0i X, 1 X} ).

In the following proof, we focus on 7._,,. First, we verify its consistency. Define

3IH

n ~ 1 n
;g v.) and Ly :EE

where £1(y,) = pr[Yi = &, X1 = bo,(y)] and 4i(v,) = pr[Y; = ¢, X1 — bo,(7)].

To show the consistency, we first verify the following claims:
(i) sup |Za(v;) = La(y:)l = 0p(1);

(i) E[Sgp l(-)] < o0

(iii) E[i(7y,)] has a unique minimum at ~y_;

(iv) For any v" € ©', E[ sup [l(v,) = L(¥N)]] = 0 as n — 0, where B, (") =
’YTEBn(’YT)
{v, €0 |~ —~_| <n}is an open neighborhood of 4" with radius > 0.

We first prove Claim (i). Note that &,(v) —a,(v) = [62(7) — a2(v)]/[5,(7) + a,(7)].
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Similar to the proof of Lemma 2(i), by the Taylor expansion, it can be verified that

o0
57(v) = ai(v) = 2 Dur—i( ) X i1,

where ¢ is between ¢, and é’)n By Assumption 1, together with the facts that

G2 (%) = a,(i)ui_; and i (vy) = a,(i)ui_;, we can show that

t—i( @)1 X i1
a,(v) +a,(v)

()~ ()] < 28, — 0] 33 = <216, - e,

Then by the Lipschitz continuity of p,(x) and Assumption 1, we have

sup | La(v,) — Lu(v,)| < = 2,5 (@, — &) X1 + bo(@) — ov(@)]|
e ni—= e

. 1 _
2| — ol D [1X 1] + Cp'E, ).

t=1

N

This together with y/n(, — ¢,) = O,(1), implies that Claim (i) holds. Similar to
proofs of Claims (ii)-(iv) in the proof of Theorem 1, we can verify Claims (ii)-(iv).
Finally, by Claims (i)-(iv) and the similar arguments as in the proof of Theorem 1,
we can show that 5., —v,0 = 0,(1).

We next prove the asymptotic normality of %_,,. We use the same technical tools

as in the proof of Theorem 2. We only sketch the key steps as below. Denote u =

V7 =ro- Define ¢;(v,9) = ¢ X1 +b-0,(vo) and Gu(,) = ¢, X1-1+b5, (7). Denote
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vi(uw) = q(~.) =G (v.o). This together with ; = Y}—qvb/nXt_l and uy = Y, —py X1,
implies that vy(w) = —(u — uz) + [ba, () — bra,(7,)]. Note that o, = g,(7v,) and
up = o0&y, then uy — bro,(7,) = oi(er — b;) and hence 9, (uy — bro,(7,)) = V- (e — b;).

This together with the Knight equation (S1.66), we can show that

n[Ln(’Yr) — Ln(7,0)] = Rin(u) + Ron(u), (S1.80)

Ry, (u) = Z l/t(u)f [I(g; < by + 07 'y (w)s) — I(e; < by)]ds.

Since i — u; = —(p, — @)’ X_1, it can be verified that v, (u) = qu(u) + gu(uw),

where

qi(w) = (@, — @) X1+ b:[7,(a0) — ay(70)] + (b —br)or + br[o,(v) — 0, (7o),
G@i(uw) = b{a,(v) —a,(v) = [a:(70) — a:(Y)]} + (b —br)[a(7) — 2 (70)]

+(0 = br){e,(v) — () = [8:(v0) — @ (Yo I} + (b= -)[34(70) — 24(0)]-

Recall that M, = X;_1+0.50; 'b,002(Xg)/0¢" and W, = (0,0.50; b.00%(Xg) /')

Following the lines in the proof of Theorem 2, if Assumptions 1, 3 and 4 hold and
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E|u|**° < oo for some ¢ > 0, we can show that

Ry, (u) = an Wb, (e — Ty, + op(nflul?), with  (S1.81)

\/7 d) d)O Z twﬂ' T .

For Ry, (u), we have

TE Z O't_thWQ\/ﬁu

t=1
+/na/ f.(b:) Za;lth;f (&, — &0)

+ T + 0p(v/n|u] + nful?), with (S1.82)

Ty =V, — 3oV 8D LS oo MM, — 60
t=1

Hence, by (S1.80)-(S1.82), we have

n[Ln (v-) = Ln(v+0)]

= —\/ﬁu' \F Z Wﬂ/}‘r €t 7') E 7' Zo—t_thM:f\f(¢ ¢O)

20 >n N o7 W Wi/ — To, + Ty, + 0p(v/nul| + nllul?).

t=1

By the consistency, we have 4., — v, = 0,(1). Moreover, 4., is the minimizer of
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L,(7,). Then it follows that

—1 n
LS W (e — b)) — 9 TV, — dy) + 0, (1),

\/ﬁ(;yfn - 77’0) = fg<b7'> \/_ﬁ .

where Q) = E(o,'W W) and 'y = E(o; "W ,M}). Similar to the proof of Theorem
2, we can verify that v/n(%,, — ¥,) = Op(1) and v/n(¥,, — ¥,0) — N(0,211(7)) in
distribution as n — o0, where ¥q1(7) is defined in Section 2.2. This together with
(S1.79), we complete the proof by the central limit theorem and the Cramér-Wold

device. O

~

Proof of Corollary 3. First, consider the conditional quantile ¢, 41(8,) for the jointly
weighted estimator 8,,, = (3., , a&;)’ , where 4. = (byn,¥.)". By Theorem 2, we have

V(0 — 610) = Op(1). Then by the Taylor expansion and Lemma 1, given F,, it

follows that

. 0gni1(0:0) 1~ 2G011(0)
qn-i—l(GTn) - qn+1(07’0) = qgl—e(/o)(e'rn - 07’0) + _(ern - 070) ((;0%19(’)(‘%" - 970)

2
- W;Hl(%'rn —Yr0) + M;wl(@zn — @) + Op<n_1/2>.

Similarly, by Corollary 1 and the Taylor expansion, we can verify the representation of
qn+1(5m) for the jointly weighted estimator ., = F.., (?5;)’ , where vy, = (ETn, Y.
Finally, consider g,41(8.,) for the two-step estimator 6., = (¥.,, ., ), where

Aon = (brn, %) Recall that o?(y) = 1 +v'2,(v) and 52(v) = 1 + v'2,(7) in the
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proof of Corollary 2. Note that o, = g,(v,) = 0i(Ag). By Corollary 2, we have

V(A = Yr0) = O,(1) and \/n(,, — @) = O,(1). Then by the Taylor expansion,

Lemma 1 and the proof of Corollary 2, given F,,, it holds that

Qn+1<é7—n) - Qn+1(070) = (d)n - QSO)/XN + [anénJrl(’yn) - bTQn+1('70)]
= (brn = br)a,01(Vo) + br[@ i1 (V) = @1 (V0)]
+0, (G011 (Y0) = T (Vo)) + (D — 0) X + 0p(n~1?)

2
= (BTn —br)oni + (, — 70)/ br_ %01 Qo)

2O—n-i-l 87/
y / by 00} (M) —1/2
+(b, — 90) (X"_FmTﬁ +op(n”7%)

= W;"LJrl(’?Tn - 77’0) + M;L+l<é,)n - ¢0) + Op(n71/2)7

where M, = X, 1 + 0.50; 'b,002(Xo)/0¢' and W, = (0y,0.50; 'b.002(X)/0v')".

Hence, the proof of this corollary is accomplished. O

Proof of Theorem 3. Since the proofs for (ii) and (iii) are similar to the proof of (i),
in below we only provide detailed proof for establishing the bootstrap consistency
for the joint weighed estimator 8., in (i). Recall that £,(8) = p.[V; — ¢:(6)] and
(:(0) = p:[Y: — 3(6)], where q,(8) = ¢' X, 1 + boy(X) and 3,(0) = ¢' X,y + b5, ().

Define the following functions

~ 18 o~ ~ 1 . Il
Ly(0) = — > wid; 1,(0), L(0) = EZwtat 14,(0) and L*(6) = EZwtat 14,(0),
t=1 t=1 t=1
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~int ~int

where 0, = 54(X,, ), 0 = oy(A,, ) and o, = 04(Ao).
Similar to the consistency proof of Theorem 1 and Lemma A.3 of Zhu, Zeng, and

Li (2020), by Assumptions 1, 3-5, we can show that

ANk

0., — 6.0 —0%(1). (S1.83)

™

Let Ci(u) = X, wioy 'qui(w) {€(u) — E[&re(u)|Fir]}, where gy (w) and & (u)
are defined as in Lemma 3. In line with the proof of Lemma 3, by Assumptions 1,

3-5, for u = 0,(1), we can show that

G (u Z we—1)oy  qu(w) {Ge(w) — Bléu(u)|Fioi]} = op(Valu| +nful?),

which implies that

Gr(w) = op(Vnlu| +nful?). (S1.84)

In line with the proof of Lemma 4, by Assumption 5, for @ — 6,5 = 0,(1) we have

n[L%(8) — L:(0,0)] — n[L%(0) — LE(8:0)] = 05(v/n]|0 — B:0] + 1)@ — 0,4]%). (S1.85)
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Similar to the proof of Lemma 5, together with (S1.84), we can verify that

n[L5(8) — Li(0:0)] = —vn(0 —0,0) T+ /n(0 — 0,0)' Jun/n(8 — 0,9)

+05(v/1]0 — -] + 1[0 — 6]?), (S1.86)

where 6 — 0,9 = 0,(1) and T? = n~V2Y" | w0y '0q(0+0)/00, (g¢,). By methods
similar to (S1.74)-(S1.77), together with (S1.83), (S1.85) and (S1.86), it can be shown
that

ANk

V(8 — 0:0) = [ (b)) 27N (1) T + o (1).

This together with \/7(6:, — 8.0) = £ (b:)S1(7)T + 0,(1), implies that

Vi@, = Br) = 170157 (7) 7= Yl = 1) L ) + 50

S

This together with Assumption 5, we complete the proof by applying Lindeberg’s

central limit theorem and the Cramér-Wold device.

S2 Additional simulation results

Tables 1-3 report additional simulation results for the first experiment in Section 3.1

with sample size n = 1000, which aims to evaluate the finite-sample performance of
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~

Table 1: Biases, ESDs, ASDs, and ECRs of the 95% confidence intervals for 8., at 7 = 0.05 and
0.10, for normally distributed X;_; and v;_;. The innovations follow a normal or a Student’s t¢5
distribution.

Normal ts
T n Bias ESD ASD ECR Bias ESD ASD ECR
0.05 1000 b, -0.227 0.418 0.376 0.942 -0.192 0.361 0.344 0.947
a -0.012 0.0563 0.052 0.909 -0.010 0.062 0.059 0.892
B8 -0.041 0.074 0.079 0.952 -0.041 0.080 0.089 0.963
x 0.086 0.221 0.201 0.931 0.109 0.270 0.234 0.953
¢  0.007 0.251 0.250 0.950 -0.004 0.277 0.287 0.959
0.10 1000 b, -0.185 0.334 0.347 0.954 -0.135 0.294 0.290 0.965
a -0.014 0.056 0.053 0.898 -0.010 0.058 0.055 0.884
B -0.040 0.074 0.089 0.958 -0.038 0.084 0.093 0.968
m 0.081 0.234 0.207 0.930 0.089 0.248 0.221 0.933
¢ 0.001 0.212 0.215 0.951 0.005 0.205 0.212 0.950

the three proposed estimators ém, ém, and ém, and their bootstrap approximations.

Simulation findings are provided in Section 3.1 of the main manuscript.
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Table 2: Biases, ESDs, ASDs, and ECRs of the 95% confidence intervals for 5m at 7 = 0.05 and
0.10, for normally distributed X; 1 and v;_;. The innovations follow a normal or a Student’s t¢5
distribution.

Normal ts
T n Bias ESD ASD ECR Bias ESD ASD ECR
0.05 1000 b, -0.134 0.336 0.307 0.952 -0.144 0.341 0.314 0.949
a -0.009 0.053 0.052 0.927 -0.010 0.064 0.060 0.886
g -0.024 0.064 0.069 0.953 -0.029 0.077 0.085 0.952
x 0.089 0.249 0.234 0.940 0.110 0.296 0.264 0.964
¢ 0.007 0.259 0.260 0.947 -0.003 0.284 0.301 0.958
0.10 1000 b, -0.132 0.314 0.294 0.971 -0.102 0.284 0.267 0.961
a -0.011 0.055 0.054 0.908 -0.008 0.061 0.058 0.878
B -0.028 0.076 0.079 0.956 -0.028 0.084 0.090 0.963
m 0.082 0.256 0.245 0.949 0.089 0.266 0.251 0.946
¢ 0.004 0.219 0.222 0.947 0.005 0.211 0.219 0.961

Table 3: Biases, ESDs, ASDs, and ECRs of the 95% confidence intervals for 8., at 7 = 0.05 and
0.10, for normally distributed X;_; and v;—;. The innovations follow a normal or a Student’s t¢5
distribution.

Normal ts
T n Bias ESD ASD ECR Bias ESD ASD ECR
0.05 1000 b, -0.131 0.332 0.297 0.964 -0.129 0.324 0.304 0.955
a -0.010 0.052 0.052 0.932 -0.009 0.064 0.060 0.887
B -0.023 0.066 0.068 0.952 -0.027 0.076 0.083 0.958
T 0.086 0.233 0.238 0.956 0.107 0.292 0.264 0.957
¢ 0.002 0.151 0.147 0.953 -0.004 0.149 0.145 0.944
0.10 1000 b, -0.129 0.318 0.288 0.957 -0.099 0.275 0.261 0.974
a -0.011 0.055 0.063 0.911 -0.008 0.062 0.057 0.879
g -0.027 0.076 0.078 0.955 -0.026 0.080 0.088 0.959
T 0.087 0.256 0.248 0.951 0.090 0.272 0.254 0.947
¢ 0.002 0.151 0.147 0.953 -0.004 0.149 0.145 0.944
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