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Abstract: Log-linear models are typically fitted to contingency table data to de-

scribe and identify the relationships between categorical variables. However, these

data may include observed zero cell entries, which can have an adverse effect on

the estimability of the parameters, owing to parameter redundancy. We describe

a general approach to determining whether a given log-linear model is parameter-

redundant for a pattern of observed zeros in the table, prior to fitting the model

to the data. We derive the estimable parameters or the functions of the parame-

ters, and explain how to reduce the unidentifiable model to an identifiable model.

Parameter-redundant models have a flat ridge in their likelihood function. We

explain when this ridge imposes additional parameter constraints on the model,

which can lead to unique maximum likelihood estimates for parameters that other-

wise would not have been estimable. In contrast to other frameworks, the proposed

approach informs on those constraints, elucidating the model being fitted.

Key words and phrases: Contingency table, extended maximum likelihood estimate,

identifiability, parameter redundancy, sampling zero.

1. Introduction

Observations from multiple categorical random variables can be cross-classif-

ied according to combinations of the variables’ levels. This type of data is often

displayed in a contingency table, where each cell count is the number of subjects

with a given cross-classification. Log-linear models are typically fitted to such

tables; examples of applications are given in Agresti (2002), Bishop, Fienberg

and Holland (1975), and McCullagh and Nelder (1989).

Zero cell counts can have an adverse effect on the estimability of log-linear

model parameters. Zero entries are of two main types: structural zeros, and

sampling zeros. If the expectation and variance of a cell count are zero, then

the entry is a structural zero. A sampling zero is an observed zero entry in a

cell with a positive expectation. In this study, we examine how zero cell entries
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influence the estimability of log-linear model parameters, addressed with respect

to parameter redundancy.

A model is not identifiable if two different sets of parameter values gener-

ate the same model for the data, which often happens when a model is over-

parametrized. This cause of non-identifiability is termed parameter redundancy

(Catchpole and Morgan (1997)). A parameter-redundant model can be rear-

ranged as a function of a smaller set of parameters, which are themselves func-

tions of the initial parameters. Parameter-redundant models have a flat ridge

in their likelihood surface, which precludes unique maximum likelihood (ML)

estimates for some of the parameters (Catchpole and Morgan (1997)). For a log-

linear parameter-redundant model, undefined or large standard errors for non-

estimable parameters are often reported using numerical optimization methods.

An overview of identifiability and parameter redundancy is given by Catchpole

and Morgan (1997) and Catchpole, Morgan and Freeman (1998). Cole, Morgan

and Titterington (2010) provide several ecological examples on this topic. Identi-

fiability is crucial when exploring complex associations between factors, because

interaction terms quickly become nonestimable in the presence of zero cell counts.

Therefore, we require methods that identify the highest level of interaction com-

plexity that can be explored for a given data set.

We develop a method for detecting parameter redundancy in log-linear mod-

els in the presence of sampling zero observations. We derive the estimable pa-

rameters and combinations of parameters, and show how a parameter-redundant

model can be reduced to a nonredundant one that is also identifiable. We refer

to the proposed method as the “parameter redundancy” approach. In the pres-

ence of structural zeros, the corresponding cells are omitted from the modeling

and analysis because they are associated with cross-classifications that cannot be

observed.

A comprehensive study of log-linear models for contingency tables was per-

formed by Haberman (1973), who proves that ML estimates of the model parame-

ters are unique when they exist, and provides a necessary and sufficient condition

for the existence of cell mean estimates in the presence of zero cell entries. This

was studied further by Brown and Fuchs (1983), who compared iterative meth-

ods, and by Lauritzen (1996), who examined a polyhedral and graphical model

framework. A polyhedral version of Haberman’s condition for the existence of

the maximum likelihood estimator (MLE) is provided by Eriksson et al. (2006).

The estimability of parameters under a nonexistent MLE, within the extended

exponential families, is studied by Fienberg and Rinaldo (2012a), and is devel-

oped for higher-dimensional problems by Wang, Rauhy and Massam (2019). We
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refer to these developments collectively as the “existence of the maximum like-

lihood estimator” (EMLE) framework. The method demonstrates that some of

the parameters cannot be estimated when the MLE does not exist. However, an

extended estimator, in which some of the elements of the estimated cell mean

vector are zero, always exists (Eriksson et al. (2006)). In this case, it is possible

to reduce the model and estimate a subset of the initial parameters.

We compare the proposed parameter redundancy approach with the EMLE

method. The reduced models obtained by the two methods may differ in terms

of their parametrization, but the parameter redundancy approach provides a

reparametrization that retains the original interpretation of the parameters. This

is because this method provides estimable parameters and linear combinations of

parameters instead of just an estimable subset of the model’s initial parameters.

The parameter redundancy approach also reveals additional constraints imposed

by the likelihood function on some parameter-redundant models. Standard sta-

tistical software packages report parameter estimates for such a model without

informing on the additional implied constraints.

Section 1.1 introduces the necessary notation. Section 2 describes the para-

meter-redundant model and the proposed adaptation to log-linear models, includ-

ing examples and a study on saturated log-linear models. We also show when

additional constraints enable us to determine unique ML estimates for the addi-

tional parameters, thus specifying the model that is, in fact, fitted to the sparse

table. In Section 3, the EMLE framework is reviewed, and in Section 4, the two

approaches are compared using illustrative examples. Section 5 concludes the

paper.

1.1. Log-linear models for contingency tables

Adopting the notation in Overstall and King (2014), let V = {V1, . . . , Vm}
denote a set of m categorical variables, where the jth variable has lj levels. The

corresponding contingency table has n =
∏m
j=1 lj cells. Let y denote an n × 1

vector corresponding to the observed cell counts. Each element of y is denoted

by yi, for i = (i1 . . . im), such that 0 6 ij 6 lj − 1 and j = 1, . . . ,m. Here, i

identifies the combinations of variable levels that cross-classify the given cell. We

define L as the set of all n cross-classifications, such that L = ⊗mj=1[lj ], where

[lj ] = {0, 1, . . . , lj−1}. Then, N =
∑

i∈L yi denotes the sum of all cell counts. The

yi are assumed to be observations from independent Poisson random variables,

Yi, such that µi = E(Yi). Let E denote a set of subsets of V. By adapting the

notation of Johndrow, Bhattacharya and Dunson (2017), the log-linear model
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assumes the form

mi = logµi =
∑
e∈E

θe(i), (1.1)

where θe(i) ∈ R denotes the main effects or the interactions between the variables

in e corresponding to the levels in i. The summation is over all members of E ,

which could be the set of all subsets of the variables (for a saturated model) or

a set of desirable subsets (for a smaller model). By convention, θ corresponds to

e = ∅, such that when the set E contains e = ∅, there is an intercept θ in the

model. To allow for the existence of unique parameter estimates, corner point

constraints are applied; as such, parameters that incorporate the lowest level of a

variable are set to zero. To clarify the notation, consider this minimal example.

Assume two categorical variables, V = {X,Y }, with l1 = l2 = 2 levels. Then,

the number of cells in the l1× l2 table is four and L = {00, 10, 01, 11}. The set of

subsets of V, E = {∅, {X}, {Y }} constructs the following independence log-linear

model, shown as model (X,Y ),

m00 = logµ00 = θ, m10 = logµ10 = θ + θX1 ,

m01 = logµ01 = θ + θY1 , m11 = logµ11 = θ + θX1 + θY1 .

Alternatively to (1.1), for p parameters, we can write mn×1 = logµn×1 =

An×pθp×1, where A is a full-rank design matrix with elements {0, 1}. There-

fore, this model can be written as below; note that the subscript indices of the

parameters are removed because there are only two possible variable levels: logµ00
logµ10
logµ01
logµ11

 =

1 0 0
1 1 0
1 0 1
1 1 1

[θθX
θY

]
.

For a model fitted to an lm table (with m variables, each classified in l

levels), an alternative notation can be used to denote the cell counts in (1.1) that

sets a one-to-one correspondence between the elements of L and the integers,

i = 1, . . . , lm, as follows:

i = (i1 . . . im) = i1l
0 + i2l

1 + · · ·+ im−1l
m−2 + iml

m−1 + 1. (1.2)

Thus, in the aforementioned example, the elements in L = {00, 10, 01, 11} corre-

spond to {1, 2, 3, 4}, respectively.
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2. The Parameter Redundancy Approach

2.1. The derivative method

Goodman (1974) first used a derivative approach to detect identifiability in

latent structure models and m-way contingency tables. The generic approach for

the exponential family of distributions that we summarize here was presented by

Catchpole and Morgan (1997) and Catchpole, Morgan and Freeman (1998), but

was also developed independently by Chappell and Gunn (1998) and Evans and

Chappell (2000) for compartmental models.

The mean vector µ = E(Y) of observations from a distribution that belongs

to the exponential family of distributions is expressible as a function of parameters

θ = (θ1, . . . , θp). The derivative matrix D(θ), which describes the relationship

between µ (or a monotonic function of it) and θ, has elements

Dsi(θ) =
∂µi
∂θs

, s = 1, . . . , p, i = 1, . . . , n. (2.1)

Theorem 1 of Catchpole and Morgan (1997) states that the model that relates µ

to θ is parameter-redundant if and only if the derivative matrix is symbolically

rank deficient; that is, there exists a nonzero vector α(θ), such that for all θ,

α(θ)TD(θ) = 0. (2.2)

As an alternative, Cole, Morgan and Titterington (2010) construct a derivative

matrix by differentiating an “exhaustive summary” of the model. An exhaustive

summary is a vector of parameter combinations that uniquely defines the model.

The rank of the derivative matrix, r, is the number of estimable parameters

and combinations of parameters. The model deficiency is defined as d = p − r,
which is the number of linearly independent α(θ) vectors, labeled as αj(θ), for

j = 1, . . . , d. Any elements of these vectors that are zero for all j correspond to

directly estimable parameters (Catchpole, Morgan and Freeman (1998)). To find

the estimable combinations of parameters, we must solve the auxiliary equations

of the following system of linear first-order partial differential equations:

p∑
s=1

αsj
∂f

∂θs
= 0, j = 1, . . . , d (2.3)

(Catchpole, Morgan and Freeman (1998)). The solution can be obtained using

software such as Maple, which allows symbolic computations.
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2.2. Parameter redundancy for log-linear models

Parameter redundancy can be the result of the model structure or a lack

of data (Catchpole and Morgan (2001); Cole, Morgan and Titterington (2010)),

with the latter type referred to as “extrinsic” parameter redundancy (Gimenez et

al. (2004)). Model (1.1) is constructed so that it is not over-parametrized owing to

its structure. To detect extrinsic parameter redundancy for a log-linear model, we

adjust the derivative matrix elements (2.1) using yi logµi as a monotonic function

of µi, such that

Dsi =
∂yi logµi
∂θs

, s = 1, . . . , p, i = 1, . . . , n. (2.4)

In effect, each sampling zero turns a column of the derivative matrix to zero, and

may decrease the rank of the derivative matrix.

If the rank of the derivative matrix is smaller than p, the model is param-

eter redundant. Finding all estimable parameters and estimable combinations

of parameters identifies which cell means are estimable. The vector of estimable

quantities (θ′) and the vector of estimable cell means (µ′) specify a reduced model

via a smaller design matrix (A′). The reduced model is full rank with rank r,

and its degrees of freedom is the number of estimable cells means minus r.

To clarify the notation, consider the independence log-linear model (X,Y ) for

a 2× 2 table. The derivative matrix (2.4) for observations yT = (y1, y2, y3, y4) =

(y00, y10, y01, y11) and parameters θT = (θ, θX , θY ) is,

D =

[
∂yi logµi
∂θs

]
=

 µ00 µ10 µ01 µ11
θ y1 y2 y3 y4

θX 0 y2 0 y4

θY 0 0 y3 y4

 , s = 1, 2, 3, i = 1, 2, 3, 4.

Now, for example, assume that y1 = y2 = 0. Then, r = 2, d = 1, and

αT = (1, 0,−1). Equation (2.3) is ∂f/∂θ − ∂f/∂θY = 0, and solving it gives

the estimable parameters θ′T = (θX , θ + θY ). Thus only µ′T = (µ01, µ11) are

estimable. Therefore, the reduced design matrix A′ is 2 × 2 with two rows

[(0, 1), (1, 1)].

Alternative approaches for investigating identifiability are not suitable in the

context of Poisson log-linear models for contingency tables. Specifically, using

the log-likelihood function elements as exhaustive summaries is a common option

when creating the derivative matrix (Cole, Morgan and Titterington (2010)).

Similarly, Catchpole and Morgan (2001) use the score vector of a multinomial

log-linear model to assess the effect of missing data on the model redundancy.
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Table 1. Observations in a 33 contingency table.

0 y4 y7
0 y5 y8
y3 y6 y9

y10 y13 y16
y11 y14 0∗

y12 0 0

0 y22 0∗

0 y23 y26
y21 y24 y27

In addition, using the information matrix instead of a derivative matrix is an

alternative method for detecting non-identifiability (Rothenberg (1971)). How-

ever, these approaches do not necessarily show the rank deficiency caused by the

zero cell counts for a Poisson log-linear model. The next two examples further

illustrate the use of the parameter redundancy method.

Example 1. The data pattern in Table 1, taken from Fienberg and Rinaldo

(2012a), describes cell counts for variables X (rows), Y (columns), and Z (layers),

with three levels (0, 1, 2) for each. Eight cell counts are observed as sampling

zeros. All other cell counts are positive Poisson observations, numbered according

to (1.2). We fit the hierarchical model (XY,XZ, Y Z), which can be shown as

logµ27×1 = A27×19θ19×1, with parameters,

θT = (θ, θX1 , θ
X
2 , θ

Y
1 , θ

Y
2 , θ

Z
1 , θ

Z
2 , θ

XY
11 , θXY21 , θXY12 , θXY22 ,

θY Z11 , θY Z21 , θY Z12 , θY Z22 , θXZ11 , θXZ21 , θXZ12 , θXZ22 ).

The matrix form of this model is given in the Supplementary Material.

The rank of the derivative matrix in accordance with (2.4) is 18; that is, there

are only 18 estimable parameters or combinations of them. Therefore, d = 19−
18 = 1, and the α that satisfies (2.2) is αT = (1, 0,−1,−1,−1,−1, 0, 0, 1, 0, 1, 1, 1,

0, 0, 0, 1, 0, 0). Solving (2.3) gives the estimable quantities as

θ′T = (θX1 , θ + θX2 , θ + θY1 , θ + θY2 , θ + θZ1 , θ
Z
2 , θ

XY
11 ,−θ + θXY21 , θXY12 ,−θ + θXY22 ,

− θ + θY Z11 ,−θ + θY Z21 , θY Z12 , θY Z22 , θXZ11 ,−θ + θXZ21 , θXZ12 , θXZ22 ).

The elements of θ′ determine that 21 out of 27 cell means are estimable, including

cells 17 and 25, indicated in Table 1 with asterisks. Therefore, for this model and

this specified pattern of zeros, the cell means 1, 2, 15, 18, 19, 20 are not estimable;

thus, we remove the corresponding cells from the model. This is equivalent to

assuming that these observations are structural zeros. Considering θ′ and the

21 estimable cell means, the reduced model with three degrees of freedom is

logµ′21×1 = A′21×18θ
′
18×1, given in the Supplementary Material.

Example 2. Hung et al. (2008) performed a genome-wide association study of

lung cancer by studying 500 single nucleotide polymorphisms (SNP). Each SNP
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is categorized at levels 0, 1, and 2 to identify the number of minor alleles. Pap-

athomas et al. (2012) selected 50 of these SNPs by applying a profile regression.

We further select five SNPs (as representatives of uncorrelated groups of SNPs):

rs7748167_C (A), rs4975616_G (B), rs6803988_T (C), rs11128775_G (D), and

rs9306859_A (E).

A crucial variable in this study describes the presence or absence of cancer

in each of the individuals. Adding this variable (F ) creates a 35×21 contingency

table with 486 cells. We consider fitting a log-linear model with main effects and

first-order interactions. This table has 298 zero cell counts, and the derivative

matrix has rank 59, with d = 62 − 59 = 3. After solving the partial differential

equations for the three α vectors, the 59 estimable parameters are obtained; see

in the Supplementary Material.

Only three parameters (θAD22 , θAE22 , and θDE22 ) are not estimable. The estimable

parameters make 360 out of 486 cell means estimable, and the reduced model is

logµ′360×1 = A′360×59θ
′
59×1, with degrees of freedom 360 − 59 = 301. In this

model, the presence of cancer has a significant positive interaction with level 1 of

variables A and D, and a significant negative interaction with level 1 of C and E

and with level 2 of B,C, and E.

2.3. Parameter redundancy for a saturated log-linear model

We provide general results on parameter redundancy for a saturated log-

linear model fitted to an lm contingency table, and determine which parameters

become nonestimable after observing a zero cell count. Example S1 in the Supple-

mentary Material illustrates the proposed approach, and shows that a saturated

log-linear model is always full rank when all the cell counts are positive.

Definition 1. For a saturated log-linear model, we define the parameter corre-

sponding to the cell with count yi, for i = 1, . . . , n (according to (1.2)), as that

with the maximum number of variables in its superscript, within the set of all

parameters in logµi = A(i)θ, where A(i) is the ith row of A.

For example, for a 33 contingency table with variables {X,Y, Z}, the parameter

corresponding to observation y201 (or y12, according to the ordering given by

(1.2)) is θXZ21 .

Definition 2. For a given log-linear model parameter, the parameters associated

with a higher-order interaction are all those specified by including additional

variables in the given parameter’s superscript.

For example, for the same 33 table, the parameters associated with a higher order

interaction, given θXZ21 , are θXY Z211 and θXY Z221 .
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The following theorem determines which model parameters become nones-

timable as a result of a given zero observation.

Theorem 1. Assume a saturated Poisson log-linear model fitted to an lm table

with a single zero cell count. If ∃i, i ∈ L, such that yi = 0, then the parameter that

corresponds to that cell, and all other parameters associated with a higher-order

interaction, given that parameter, are nonestimable.

The proof by induction and examples are given in the Supplementary Material.

Note that additional zero cells in the table cannot make previously nonestimable

parameters estimable, because the amount of information is further reduced.

Then, the set of nonestimable parameters is at least as large as the union of

the nonestimable parameters per zero cell. The estimable parameters and linear

combinations of them can be derived by solving (2.3).

2.4. The esoteric constraints

The likelihood function of a parameter-redundant model has a flat ridge that

is occasionally orthogonal to the axes of some parameters; as such, these associ-

ated parameters still have unique ML estimates (Catchpole, Morgan and Freeman

(1998)). This is when, in allα(θ), the elements corresponding to these parameters

are zero. In addition, for some log-linear parameter-redundant models, maximiz-

ing the likelihood function imposes one or more extra constraints on the model

parameters, owing to the placement of the likelihood ridge in the parameter space.

The extra constraints can make more parameters uniquely estimable compared

with those specified by solving the partial differential equations in (2.3). We refer

to these extra constraints as “esoteric constraints”. Standard statistical software

packages do not provide information on these constraints when maximizing the

likelihood function; thus, informing on them reveals the log-linear model that is,

in fact, being fitted. After detecting a parameter-redundant model, we can check

the existence of such constraints, as explained below.

The log-likelihood function of model (1.1) is l(θ) =
∑

i(yi logµi(θ)− µi(θ)).

The corresponding score vector is U(θ) = (∂l/∂θ1, . . . , ∂l/∂θp)
T, where the par-

tial derivatives for s = 1, . . . , p, are,

∂l

∂θs
=
∑
i

(
yi

µi(θ)
− 1

)
∂µi(θ)

∂θs
=
∑
i

(yi − µi(θ))
∂µi(θ)

∂θs

1

µi(θ)
.

Therefore, U(θ) = AT(y − µ(θ)). When a model is parameter redundant, there

exists at least one α(θ), such that αT(θ)D(θ) = 0. If the observations are

from a multinomial distribution, it follows that αT(θ)U(θ) = 0, which means
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the likelihood surface has a completely flat ridge (Theorem 2 of Catchpole and

Morgan (1997)). Note that αT(θ)U(θ) = 0 implies that the directional derivative

is zero; therefore, the likelihood function is constant in the direction of α(θ). This

makes a ridge in the likelihood surface, which is along the curve generated by the

direction field α(θ) through any point at which the likelihood is maximized.

For a Poisson log-linear model determined to be parameter-redundant by the

derivative matrix in (2.4), we set αT(θ)U(θ) = 0. The constraints that hold this

equality for finite values of the model parameters are the esoteric constraints.

These extra constraints, along with the estimable quantities in θ′, may make

more parameters estimable, and permit one to obtain unique ML estimates for

parameters that otherwise would not have been estimable. In addition, reducing

the parameter space according to the esoteric constraints and, therefore, remov-

ing the flat ridge, can make it possible to uniquely maximize the likelihood. If

αT(θ)U(θ) cannot be zero with finite θ, then the esoteric constraints do not ex-

ist, and some of the θ tend to negative infinity. These constraints do not exist

for models described in Theorem 1 and in Examples 1 and 2. A model with an

esoteric constraint is given in Example 4.

3. The EMLE for Log-Linear Models

The methods summarized in this section are referred to as the EMLE ap-

proach, and will be used in Examples 3 and 4 in Section 4. Refer to Fienberg

and Rinaldo (2006, 2012a,b) for further background and details.

Decomposable log-linear models (Agresti (2002)) have an explicit formula

for µ̂i. For these models, the positivity of the minimal sufficient statistics is a

necessary and sufficient condition for the existence of the MLE of µ (Agresti

(2002)). For non-decomposable models, µ̂i does not have a closed form, and is

calculated using iterative methods. In this case, the positivity of the sufficient

table marginals is still necessary for the existence of the estimator, but is no

longer a sufficient condition.

A condition for the existence of the MLE of m in a hierarchical log-linear

model, regardless of the presence of positive or zero table marginals, is provided

by Haberman (1973). AssumeM is a p-dimensional linear manifold contained in

R|L|, and

M⊥ =
{

x ∈ R|L| : (x,m) = xTm = 0, ∀m ∈M
}
. (3.1)

Then, Theorem 3.2 of Haberman (1973) states that a necessary and sufficient

condition such that the MLE m̂ of m exists is that there is a δ ∈M⊥, such that

yi + δi > 0, for every i ∈ L. Here, µ in m = logµ is assumed to be positive.
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The theorem specifies, for any pattern of zeros in the table, whether the MLE of

the cell means exists. In the extended ML estimate case, a cell mean estimate

could be µ̂i = 0, but its log transformation is not defined; then, estimates of some

corresponding θ parameters tend to infinity (Haberman (1974)).

A polyhedral version of Haberman’s necessary and sufficient condition states

that under any sampling design, the MLE of m exists if and only if the vector

of observed marginals, t = ATy, lies in the relative interior of the marginal of

the polyhedral cone (Eriksson et al. (2006)). The polyhedral cone, generated by

spanning columns of A with rank p, is defined as,

CA =
{

t : t = ATy,y ∈ R|L|>0

}
. (3.2)

The MLE does not exist if and only if the vector of marginals lies on a facet or

a facial set of the marginal cone (Fienberg and Rinaldo (2006)). In other words,

the estimator does not exist if and only if the vector of marginals belongs to

the relative interior of some proper face, F , of the marginal cone. A face of the

marginal cone is defined as a set, F = {t ∈ CA : (t, ζ) = 0}, for some ζ ∈ Rp,
such that (t, ζ) > 0, for all t ∈ CA, with (t, ζ) representing the inner product.

The facial set F is a set of cell indices of the rows of A, the conic hull of which is

precisely F . For any design matrix A for M, F ⊆ L is a facial set of F if there

exists some ζ ∈ Rp, such that

(A(i), ζ) = 0, if i ∈ F , (3.3)

(A(i), ζ) > 0, if i ∈ Fc,

where Fc = L−F is the co-facial set of F (Fienberg and Rinaldo (2012a)). If such

ζ and F exist, the MLE does not exist, and only the cell means corresponding

to members of F are estimable. The nonestimable cells in Fc are treated as

structural zeros, and are omitted from the model. An estimable subset of model

parameters could be determined by finding AF , the matrix containing rows from

A with coordinates in F . Then AF , which is an |F| × p design matrix with

rank pF , is reduced to full rank A∗F , with dimensions |F|× pF . By implementing

this reduced design matrix, the log-likelihood function is strictly concave with a

unique maximizer. Then, the extended MLE is

θ̂e = argmax
θ∈RpF

lF (θ) = argmax
θ∈RpF

tTFθ − 1T exp(A∗Fθ),

where tF = (A∗F )TyF , and the extended MLE of the cell mean vector is m̂e =

exp(A∗F θ̂
e) (Fienberg and Rinaldo (2012b)).
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Another way to define the facial set is by considering the sub-matrices A+

and A0, obtained from A. These are formed by the rows of A, indexed by L+ =

{i : yi 6= 0} and L0 = {i : yi = 0}, respectively. The vector of marginals belongs

to the relative interior of some proper face of the marginal cone if and only if

Fc ⊆ L0. This is equivalent to the existence of a vector ζ satisfying the following

three conditions (Fienberg and Rinaldo (2012b)):

a. A+ζ = 0, (3.4)

b. A0ζ 
 0,

c. The set {i : (Aζ)(i) 6= 0} has maximal cardinality among all sets of

{i : (Ax)(i) 6= 0}, with Ax 
 0, for x that satisfies the first two conditions.

In (3.3) and (3.4), the inequality signs can be changed to less than zero without

loss of generality. Using 
 0, we describe a nonnegative vector with at least one

element greater than zero. In conclusion, if rank(A+) = rank(A), then the MLE

exists, because no vector ζ exists and Fc = ∅. If rank(A+) < rank(A), the MLE

may still exist; in this case, we should search for a facial set.

The degrees of freedom for the reduced model is |F| − rank(A∗F ), which is

the number of estimable cell means minus the number of estimable model pa-

rameters (Fienberg and Rinaldo (2012a)). Fienberg and Rinaldo (2012b) provide

computational algorithms for detecting the existence of the MLE and deriving the

co-facial set by converting these methods into linear and nonlinear optimization

problems. However, those algorithms are inefficient for a model with a large num-

ber of variables (Wang, Rauhy and Massam (2019)). The R packages eMLEloglin

and SparseMSE use the EMLE approach to fit log-linear models (Chan, Silverman

and Vincent (2020); Friedlander (2016)).

4. Comparison of the EMLE and Parameter Redundancy Approaches

The two approaches described in Sections 2 and 3 can be used to check the

identifiability of a log-linear model fitted to a sparse table. We compare them,

and summarize the comparison in the following three possible cases:

i. Within the EMLE framework, the MLE exists when the co-facial set, as

defined in (3.3), is null. This is equivalent to the parameter redundancy

outcome in which the model is not parameter-redundant.

ii. When there are facial and co-facial sets, as defined in (3.3), the MLE of

µ does not exist, and some zero cells are treated as structural zeros. In

the parameter redundancy approach, this is equivalent to having αTD = 0
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and no esoteric constraints determined by αTU(θ) = 0. In practice, for

such a model, the determinant of the information matrix and at least one of

its eigenvalues are very close to zero, considering numerical approximations

and rounding errors.

iii. If there is no co-facial set, as described in (3.3), then the MLE exists. This

is equivalent to the parameter redundancy outcome in which the model is

parameter-redundant, with at least one esoteric constraint that allows one

to uniquely estimate the model parameters.

The next theorem explains a link between the EMLE method and the parameter

redundancy approach through the score vector U(θ).

Theorem 2. For a parameter-redundant model, the MLE of µ does not exist if

and only if one or more αj vectors, for j = 1, . . . , d, do not satisfy αT
j (θ)U(θ) = 0

for finite elements of θ.

The proof is given in the Appendix.

We use two examples to illustrate the similarities and differences between the

two approaches. Example 3 shows a parameter-redundant model without any

possible additional esoteric constraints (comparison case ii). The two reduced

models found by the respective approaches have different reparametrizations of

θ, although the ML estimates of the estimable cell means are identical. The

parameters in the reduced model obtained using parameter redundancy have the

same interpretation as those in the initial model, in terms of variable interac-

tions. Example 4 presents a model that is parameter-redundant and its MLE

does exist (comparison case iii). This model has an esoteric constraint, extracted

using the parameter redundancy approach, that makes all parameters estimable.

This approach allows us to consider two possible ways to address the model’s re-

dundancy. First, we can reduce the model to a smaller, saturated, nonredundant

model. Second we can adopt the esoteric constraint and estimate all parame-

ters, which is equivalent to using numerical methods, such as the “iteratively

reweighted least squares” method to maximize the likelihood.

Example 3. We fit model (4.1), which can be shown as (XY,XZ, Y Z), to the

contingency table in Table 2(a).

logµijk = θ + θXi + θYj + θZk + θXYij + θXZik + θY Zjk , i, j, k = {0, 1}2. (4.1)

According to (1.2), the vector of cell counts is yT = (y1, y2, y3, y4, y5, y6, y7, y8) =

(y000, y100, y010, y110, y001, y101, y011, y111). The nonzero cell counts in the table are



1138 SHARIFI FAR, PAPATHOMAS AND KING

Table 2. Observations in two 23 contingency tables.

(a)
Z = 0 Z = 1

Y = 0 Y = 1 Y = 0 Y = 1

X = 0 0 y3 y5 y7
X = 1 y2 y4 y6 0

(b)
Z = 0 Z = 1

Y = 0 Y = 1 Y = 0 Y = 1

X = 0 0 y3 y5 y7
X = 1 y2 0 y6 y8

assumed to be positive. The parameter vector is shown as θT = (θ, θX , θY , θXY ,

θZ , θXZ , θY Z) because subscripts are superfluous. The model in the form logµ8×1

= A8×7θ7×1 is given in the Supplementary Material.

We apply the parameter redundancy approach first. The derivative matrix

formed using formula (2.4) is given in the Supplementary Material; it has rank

six, indicating that d = 1. From (2.2), αT = (1,−1,−1, 1,−1, 1, 1), and solving

(2.3) yields the estimable parameters,

θ′T = (θ + θX , θ + θY ,−θ + θXY , θ + θZ ,−θ + θXZ ,−θ + θY Z).

Therefore, all cell means other than µ000 (for which logµ000 = θ) and µ111 (for

which logµ111 = θ+θX +θY +θXY +θZ +θXZ +θY Z) are estimable. No esoteric

constraint exists because,

αTU(θ) = y000 + y111 − eθ − eθ+θ
X+θY +θXY +θZ+θXZ+θY Z 6= 0,

for finite θ. We treat y000 and y111 as structural zeros, and remove them from the

model. Then, we reduce the model to a saturated one with a design matrix of rank

six in accordance with the estimable parameters θ′. The reduced nonredundant

model is 
logµ100
logµ010
logµ110
logµ001
logµ101
logµ011

 =


1 0 0 0 0 0
0 1 0 0 0 0
1 1 1 0 0 0
0 0 0 1 0 0
1 0 0 1 1 0
0 1 0 1 0 1




θ + θX

θ + θY

−θ + θXY

θ + θZ

−θ + θXZ

−θ + θY Z

 .

Now, we consider the EMLE method. Model (4.1) has no zero sufficient

marginals. However, positive estimates for all the cell means do not exist, ac-

cording to Haberman’s sufficient and necessary condition and the polyhedral

condition. To reduce this to an identifiable model, from the polyhedral method

and (3.3), we obtain, F = {100, 010, 110, 001, 101, 011}, Fc = {000, 111}, and

ζ = (1,−1,−1, 1,−1, 1, 1). The design matrix for the reduced model is A∗F ,

which is an |F| × pF = 6 × 6 matrix, and is found using Proposition 5.1 in
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Fienberg and Rinaldo (2012b). The final model is
logµ100
logµ010
logµ110
logµ001
logµ101
logµ011

 =


1 1 0 0 0 0
1 0 1 0 0 0
1 1 1 1 0 0
1 0 0 0 1 0
1 1 0 0 1 1
1 0 1 0 1 0



θ
θX

θY

θXY

θZ

θXZ

 .

The estimable cell means are the same as those derived using the parameter

redundancy approach (as must be the case). However, θY Z is dropped from the

model, reducing it to (XY,XZ).

In a numerical example, the ML estimates for the six estimable cell means are

identical under the two methods, and the log-linear model parameter estimates

are consistent. Although both methods reduce the model to six parameters,

the parameter interpretations differ. The parameters derived using the param-

eter redundancy approach are linear combinations of those in the initial model.

However, for instance, the estimate of θ in the second reduced model is not the

intercept estimate for the initial model.

Example 4. Consider fitting model (4.1) to the pattern of zeros in Table 2(b).

For the parameter redundancy approach, the derivative matrix is given in the

Supplementary Material, and has rank six, thus, d = 1. Then, αT = (1,−1,−1, 0,

−1, 1, 1) indicates the estimable parameters as

θ′T = (θ + θX , θ + θY , θXY , θ + θZ ,−θ + θXZ ,−θ + θY Z).

Therefore, logµ000 and logµ110 are not estimable. The initial model is reduced

to one with a design matrix of rank six:


logµ100
logµ010
logµ001
logµ101
logµ011
logµ111

 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
1 0 0 1 1 0
0 1 0 1 0 1
1 1 1 1 1 1




θ + θX

θ + θY

θXY

θ + θZ

−θ + θXZ

−θ + θY Z

 .
However, an esoteric constraint exists, and is derived by considering

αTU(θ) = y000 − y110 − eθ + eθ+θ
X+θY +θXY

= 0.

This translates to θX+θY +θXY = 0 or log µ000 = logµ110. Adding this constraint

to model (4.1) makes all parameters estimable.

In accordance with the EMLE approach for model (4.1), we identify a δ
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that satisfies (3.1), such that yi + δi > 0,∀i ∈ L. Let 0 < δ < 1. Then, δ =

(+δ,−δ,−δ,+δ,−δ,+δ,+δ,−δ) holds the necessary and sufficient condition for

the existence of the estimator of µ. This is confirmed by the polyhedral condition,

because the observed marginals lie in the relative interior of the marginal of the

polyhedral cone, owing to vector y = (y1 + δ, y2 − δ, y3 − δ, y4 + δ, y5 − δ, y6 +

δ, y7 + δ, y8 − δ) satisfying (3.2). In other words, no ζ or F can satisfy (3.3) or

(3.4). Thus, we can maximize the likelihood function using numerical methods,

and obtain estimates for all parameters of model (4.1). This is possible because

of the esoteric constraint, which is not reported by this method, but is explicit

in the parameter redundancy approach.

5. Conclusion

We have proposed a parameter redundancy approach for evaluating the effect

of zero cell counts on the estimability of log-linear model parameters. For a

parameter-redundant model, we obtain the estimable parameters and reduce the

model to be identifiable.

We compare the parameter redundancy approach with a method that focuses

on the existence of the MLE for the expected cell counts of a hierarchical model.

Models with a nonexistent MLE are parameter redundant; some log-linear mod-

els are parameter-redundant despite an existent MLE. The latter occurs when

maximizing the likelihood function that has a flat ridge imposes hidden extra

constraints on the model to make a unique MLE possible.

The EMLE method is reported by Wang, Rauhy and Massam (2019) to be

inefficient in finding the co-facial sets when the number of variables in the model

is larger than 16. The authors propose using an approximation for the cone’s

face to make the method work for more variables. In the parameter redundancy

approach, the symbolic algebra package Maple can be used to simultaneously

solve a number of corresponding partial differential equations. However, as Maple

runs out of memory, problems arise in the calculations when the model deficiency

increases and becomes as large as 40. This limitation depends on the fitted model

and the pattern of zeros in the table. For example, it may be more apparent in

applications such as large cohort studies in which observations are concentrated

in a small subspace of the entire sample space.

Future research could further explore parameter-redundant models with an

existent MLE. This includes investigating the properties of the esoteric con-

straints and the goodness of fit of the model they imply.
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Supplementary Material

The online Supplementary Material provides additional details for some of

the examples, as well as Example S1 and the proof of Theorem 1 by induction.
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Appendix

Proof of Theorem 2. Assume the MLE does not exist for a parameter-redund-

ant model. We prove by contradiction that at least one αj vector does not

satisfy αT
j (θ)U(θ) = 0 for finite elements of θ. Suppose that all αj vectors,

for j = 1, . . . , d, satisfy αT
j (θ)U(θ) = 0 for finite elements of θ. We know

U(θ) = AT(y− µ(θ)). Then,

αT
j (θ)U(θ) = 0

αT
j A

T(y− µ(θ)) = 0,

αT
j A

T
+(y − µ(θ))+ +αT

j A
T
0 (y − µ(θ))0 = 0,

where (y − µ(θ))+ denotes a vector with the elements of (y − µ(θ)) that cor-

respond to the rows in A+, and (y − µ(θ))0 denotes a vector with the elements

of (y − µ(θ)) that correspond to the rows in A0. Now, αT
j A

T
+(y − µ(θ))+ = 0,

because αT
j A

T
+ = 0, owing to αT

j D = 0. This implies αT
j A

T
0 (y − µ(θ))0 = 0,

or equivalently that αT
j A

T
0 (−µ(θ))0 = 0. As the MLE does not exist, from

(3.4), a ζ vector exists such that A0ζ 
 0. However, ζ is also an α vector,

because A+ζ = 0. Now suppose, without any loss of generality, that αj′ = ζ, for

1 6 j
′
6 d. Then,

A0αj′ 
 0 ⇒ αT
j′A

T
0 (−µ(θ))0 < 0,

because all elements of (−µ(θ))0 are nonzero and negative. Thus, this contradicts

αT
j A

T
0 (−µ(θ))0 = 0.

To prove the converse, assume an αj vector exists, for 1 6 j 6 d, such that

αT
j (θ)U(θ) < 0 and cannot be zero for finite θ. This implies that

αT
j A

T
+(y − µ(θ))+ +αT

j A
T
0 (y − µ(θ))0 < 0,
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αT
j A

T
0 (−µ(θ))0 < 0,

since αT
j D = 0 means αT

j A
T
+ = 0. Thus, αT

j A
T
0 
 0. From all αj such that

αT
j A

T
0 
 0, we choose the αj′ that corresponds to the set {i : (Ax)(i) 6= 0} with

maximal cardinality. Then, αj′ satisfies the three conditions in (3.4), and the

MLE does not exist. This completes the proof of Theorem 2.
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