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S1 Notations

For clarity, we first recall the notations used throughout the supplementary ma-
terial. For any vector u = (uy, ..., us), let |ull, = O, |w|?)Y9 for ¢ >
L, ||u|loc = maxj<,|w|, and ||u||y denotes the cardinality of supp(u), where
supp(u) = {l : w, # 0}. If S = supp(u), let ug be the vector containing
only nonzero elements of u, while ugc contains only zero elements. For any
matrix C' = [¢;;], denote ||C|| = max;;|c;;|, and if C' is symmetric, A\yin(C)
and Apax(C') are the minimum and maximum eigenvalues. For real sequences
a, and b,, a, ~ b, if and only if ¢; < lim, o |a,/b,| < ¢y for some pos-
itive constants ¢, ¢;. Recall that || X||s, = sup,, ¢ /2{E(|X]9)} is the
sub-Gaussian norm, and || X||s, = sup,>; ¢ ' {E(|X|?)}'/¢ the sub-exponential

norm, similar to those adopted in Ning and Liu (2017).
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Recall that P, = {1,...,p,} is the index set representing all functional
predictors, while H,, C P, is any nonempty subset of P,, with cardinality
|Hn| = hyn < py, and denote HS = P, \ H,. For each j < p,, let A\; =

diag{wl/2 . w1/2}, A = Ap, be the block diagonal matrix with {A; : j < p,,}

71 > )y isn
as diagonal submatrices, and A4, be the block diagonal matrix with {A; : j €

H,} as diagonal submatrices. Similarly, define A; = diag{dzjl-l/Q, . ,djjls/f},

A = Ap, and Ay,. Furthermore, we denote 7 = An = (ﬁ;,...,ﬁ;n)’ with

( 1/2 1/2),

Nj1wWi s« -5 Njs,wjs, ). Similarly, denote v = n — n* and

o= Ay =
v =1 —n" = Av, where n* and 77* are true values of 7 and 7}, respectively. For
any H,, C P,, U, is constructed by stacking the vectors {7; = A;(n; — ;) :
j € H,} in a column.

Without loss of generality, let © = (G1,...,G,) = [Ox,, O], Oy, =
(Er, ... By, Oy = (F1,..., F,)", where Oy, is constructed by stacking

%

{©;:j € H,} in arow. Similarly, denote O=(G,...,Gn) =[O, éH%] =

OA™! = [0, Ay O Aoit], O, = (Brv. . By Oy = (B, B

where ©,,, is constructed by stacking {©; = ©;A;" : j € Hy,} in arow. Fur-
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ther, we denote a series of quantities derived from the information matrix /.

I =E(GiG), Dumw, =E(EE), Iyu, =E(EF), Iyw, = E(FBE),

7 o Wall —1 —1 i —1 -1 i —1 -1
I = E(GZG) =A""TA 5 [Han = AHn[HanAHn7 [HHH% = A’Hn['HnH%AH%7
Ler. = Nt Iyge sy A, Dojere = A Do e AZY, Ty ojage = A3t Ly jayge At

HE Hn He PHEH L, HEHE He PHEHS P e Hn|HE Hop L Ha | HE A, 0

pn = max |wi|lo = ax Py, o = [l lo-

l_ nSn SNnSn
Using the 7) obtained from (2.5) in the main paper under the conditions of Theo-

rem 1, we further denote

~ ~ ~

Si - (Sih LI Si,hnsn) - A;&(UA)/E - Ez)(}/Z - F;/,f]?[%)u 1= ]-7 N2

S,L' = (Sih ey Si,hnsn) = A;Li(w/ﬂ — Ei>€i7 Z = 1, oo,

T* = nfl/Q Z S’i, T* = nfl/z Z Si, T: = nil/Q Z eigi, T: = nfl/Q ZeiS“
=1 =1 =1 i=1

cp(@) =if{t e R: P(||T]|oo <t) >1—0a}, aec(0,1),

¢"(a) =inf{t e R: P.(||T||oc <t) >1—0a}, a€(0,1),

where e = (eq,...,e,) consists of i.i.d. standard normal random variables
independent of the data, P.(-) refers to the probability measure with respect to
e, cp(a) denotes the 100(1 — «)th percentile of ||T*||., and ¢*(c) denotes the
100(1 — «)th percentile of ||T7||«. It is also worth to notice that {S; : ¢ < n}

are i.i.d. centered random vectors such that £(S;S;") = azfynm% .
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We present below a series of auxiliary lemmas, quantifying various error

bounds for a number of quantities that are useful for showing the main theorems.

S2 Auxiliary Lemmas and Proofs

Lemma 1. (a) Under conditions (P1)—(P4),

1

pa(t1) = pa(t2)] < ALJt — to

forallty,ty; € R.

(b) Under conditions (P1)—(P4),

Ph\(t)| < AL, for all t # 0.
(c) Under conditions (P1)~(P5), \L|t| < px(t) + 27 ut?, forall t € R.

Proof. The proof of this lemma can be referred to Lemma 4 in Loh and Wain-

wright (2015). ]

Lemma 2. Under conditions (P1)—(P4), if Py, (n*) — Py, (n) > 0, where n* is

the true version of n and Py, (n) = 35", Py, 52 (n=Y2||©,n;]l2), then

0< Py, () = Pa.(n) < Xasi2LL D 072010005 = )l — Y n72(10;(n; — m))l2}
jEAL, JEAS

where A,, C P, is the index set corresponding to the largest q, elements of

{n=210;m;ll2 - j < pu}y and AS =Py \ A,

Proof. First, we define f,,(t) = t/p, .12(t) fort >0, and f,(t) = ()\n:s,ll/QL)_1

for ¢ = 0. Under conditions (P1)—(P4), we have that f,,(¢) is nondecreasing in ¢
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for t > 0. Then, it follows that

> oy 7210505 — n)ll2) = D 2105005 — 02 fa(n 21105

JEAS JEAS
~1/2 n-1/2
> {ful maxs 10;(n; —m)ll2)} EZA 1©;(n; — n;)]l2- (S2.1)
] c

Moreover, we also have

S oy (7210500 = n)ll) = Y 0 10;(n; — )2 { Faln 2105

JEAn JEAR
< fal max n ~12)10,(n — ;)2 } Z n~12)10;(n —17)|[2- (52.2)
JGAn

By combining (S2.1), (S2.2) with Py, (n*) — Py, (n) > 0, we have

0< Py () — P

dn
= o 20, ) — S sl O
j=1 J=1

an dn Pn
<Y om0 =)l + > oy (T 1Oml1) = Yy aa(n
=1 =1 =1

dn
ST NRCRL N I S
7=1

Jj=qn—+1

< oy a7 050 = m)lR) = > oy 207105005 = m))ll2)

JEA, JEAS

< {fnlmapen™ 210, (n; = m)l12)}{ D2 0210 m; = m)ll = 3 n N5

jEAR JEAS

< NsY2LLST 0 V050 — )l — Y nT Y105 — )}

JEAR JEAS

which completes the proof. [

Pn
A ZPA 12 (n”2]10m7||2) — ZpAnsg/z(”*l/2|!@j77j||2)
j=1

—)l)}

—m)l)}

“12010;m;l12)

j—n;)Hz}
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Lemma 3. Under conditions (Al), (A2), (AS5), (Bl), we have with probability
tending to one, for some constants ci and co, where I here denotes the p,s, X

PnSn identity matrix,
det(R) # 0, [JANT = I|[o < en®?72 AN = I[o < eV,

Proof. First, under condition (A2) and by Bernstein inequality, we have that for

any t > 0,

n

P{ln7! Z(w%leék —1)| >t} <2exp{ — comin(c;*t*, ¢; 't)n},

i=1
for some universal constants cg,c; > 0, uniformly in j = 1,...,p,, k =
1,..., s,. It then follows from union bound inequality that

n

P{maxmax|n~" Z(w;,glefjk —1)| >t} < 2p,spexp { — comin(cy*t?, ¢ ' t)n},

J<pn k<sn 5
=1

by choosing t = cy{log(p,s,)/n}'/?, for some sufficiently large c; > 0, we

have that

n

maxmax [n~' Y (w07 — 1)| < ca{log(pusn) /n}'/?,

J<pn k<sn -
i=1

with probability tending to one. Accordingly, we have that

n
A _ _ 1/2
[AAT! = ] = maxmax (™" 3 wyl05,) " — 1
- - =1

n

< max max |n~* Z(wj_klé’?jk — 1)| < c2{log(pnsn)/n}'?,

jSPn k‘SSn N
i=1
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with probability tending to one. Under (A5) and (B1), we have that [|AA~! —
Il|so < c3nP/271/2_ with probability tending to one, for some constant c3 > 0.

Together with (A1) and (B1), it can be deduced that

/\min([\> > Amin(A) — |/\min(f\) — Amin(A)] > Anin(A) — ||A — Allss
> Amin(A) = Amax(A)|[[AA™Y = I|] oo > cys Y2 — e5nP/271/2
20687;(1/2,

with probability tending to one, for some constants cy4, c5, cg > 0. It follows that

det(A) # 0, with probability tending to one. Moreover, we have

|[AAT ]Hoo—rnaxmax\w _129wk e — 1]

<pn k<sp,

< { maxmaxw nt Z(‘)”k 1/2}||1A\A_1 - ]||oo

J<pn k<sn
< (MM = Iloe + DIJAAT = 1],
which further implies that
AN = Tl < [JAAT = I]oo/ (1 = [[AATY = T]]c)
< C3n,8/2—1/2/<1 . C3n6/2—1/2)
< 9eqnf/2112,
with probability tending to one, which completes the proof. [

Lemma 4. Under conditions (Al), (A2), (AS), (Bl),we have the following with
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probability tending to one, for some positive constants cy, c; and cs, where €

denotes the n X 1 random error vector.

1) [In'0'0 — E(GiG)|le < con®212, |In710'0 — E(G;G))|| <

/2172,
2) ||n 0|0 < canP212 | InT 0 €| < e3n/2712
3) maxjcp, s, |00 (W' F — Eg)F||oe < can®/?71/2,
4) maxicp,s, [0~ o0 (W' Fy — Eg){E(ER)} 2 F/ |l < esn?7112,
5) max<p, s, [0t Y0 (W' F; — Eg)e| < cn/2712,
6) maxi<p, s, [0V Y0 (W' F; — Eg){E(E2)}"12€| < emf/2-12,

Proof. By using Bernstein inequality and union bound inequality repeatedly, the

Lemma holds trivially. 0

Lemma 5. Under conditions (Al), (A2), (A5)-(A6), (BI) and Hy : |52 =
0 for all j € H,, we have the following with probability tending to one, for some

positive constants cy and cy,

oo < co(nP*7V2 4+ q,5,°),

1) |In"16) o (Y — Opemug)

2) [[n7' 0" (Y = Opgmg ) loo < c1(n/2712 4 qps,°).
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Proof. First, under H : ||5;]|2 = 0 for all j € H,,, we have that

1771 O%e (Y = Opas ez oo = ™" Y FolYs = Fiipeg oo

i=1

—HnleQ+n ZZ Z {F%k E(Fif;) fje A0t ZZ Z (e )mjk oo

1=1 jEHS k=sn+1 i=1 jEHS k=sp+1

<|jn~ ZF62+n ZZ Z {Ebijk — B(EGi8) Ysul o+

1=1 jeEHS k=sn+1

n! Z > Z (FBij) ik - (S2.3)

i=1 jEHE k=sn+1

In addition, foreach l = 1,..., (p, — hy)sn, we have
Z Fue)y =n"to? ~ 7t (S2.4)
Moreover, foreach [ = 1,. .., (p, — hy,)sn, we have

E[n‘l Zn: Z i {Fiz@zjk - E(Eleijk)}ﬂjkr

i=1 jeHS k=sn+1

_2ZE[Z| Z {le%k E‘l%k)}ﬁjﬂr

JEHS k=sn+1

_QZE[Z| Z {Fubij — El‘gz‘jk)}ﬁmr

7=1 k=s,+1
<n~ anE[Z| S {Fub - E(Fubi) bniel?]
j=1 k=s,+1
<SS (S ) S B, k)
i=1 j=1 k=sp+1 ki=sn+1
n dn oo D
=20 33 (D k)Y B ek
i=1 j=1 k=sp+1 ki=sp+1

<en~l'¢?s % = o(n7h), (52.5)
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where the last inequality is by (A1), (A2), (A6) and (B1). Therefore, by combin-
ing (S2.4) with (S2.5), we have that forany [ = 1,..., (p, — h,)S,, there exists

a universal constant ¢y > 0 such that

JLrgOP[|n_1 Z Z Z {F’il@jk - E(Fil@ijk:)}njﬂ < coln”! ZEZQH =1

i=1 jEMS k=sn+1 i=1

which implies that for any ¢ > 0,

nlLrQOP ZleEz +n- Z Z Z {-leezgk Fileijk)}njk| > ﬂ

i=1 jEHE k=sn+1

Snll_{{)lo P(ln! ZEZEJ >t) + nli_{gopﬂn_l Z Z Z {El‘gijk — E(Filez'jk)}njk| > 1]

i=1 i=1 jEHE k=sn+1

< lim P(In™y" Faei| > 1) + lim P(jn" ) Faeil > c5't)

i=1 i=1

<2 lim P(jn~ ZFM > ept), (S2.6)

n—oo —1
where ¢; = min(1, ¢, ') > 0. Moreover, under (A2) and by Bernstein inequality,

we have that forany [ = 1,..., (p, — hy)Sn, and any ¢t > 0,
: -1 P> < i _ 2,2 1
nh_}rgo P(\n ;Fllel\ > clt) < nh_>r2102exp{ comin(cz “t7, cg t)n},
(S2.7)

where ¢, and c3 are some universal positive constants. By combining (S2.6) with

(S2.7), we have that forany [ = 1,..., (p, — hy)sn, and any ¢ > 0,
. .
0. >
nlg{.lop |n Z Elez +n Zl GZH . Z+1 {Elewk (Eleljk)}njk| el t}
=17 5 Sn

<2 lim P(| ZE16Z| > o) < hm 4exp{ — comin(c3*t*, c5 't)n},

n—o0
=1
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invoking union bound inequality, we have that for any ¢ > 0,

lim P||n" ZFGZ—I-TL ZZ Z {Ebijk — E(Efiji) 1jil oo > 1]

i=1 jEHS k=sp+1

< lim 4p,s, exp { — camin(c3*t*, c5 ' t)n},

n—oo

by choosing t = c4{log(p,s,)/n}'/?, for some sufficiently large c; > 0, we

have that
ZFGZ +n Z Z Z {Fezjk -erwk)}n]kHoo
1=1 jEHS k=sn+1
<cg{log(pnsn)/n}? < exnflF1/2 (52.8)

with probability tending to one, for some c; > (. Furthermore, we have

n Z Z Z (Fe)njelloo = mﬁf)s Z Z Z (Fubigi)minl

i=1 jeHS k=sn+1 1=1 jEHS k=sp+1

gl maX . ZZ’ Z leewk)mk|

h
(Pr—hn) 1= 1]67{( k=s,+1

gl max n- ZZ! Z E(Fij)nji

(Pr—hn =1 j=1 k=sp+1
ol n 2,,-26 1/2 - 2 726 1/2
<  max ZZ[ Z {E(Fu@'jk)} k~ } ( Z Nk K1 )
[S(Pn—hn)sn i=1 j=1 k=sn+1 ki=sn+1
"2 1/2
<n 33 S ke ) 3 k) < st (529)
i=1 j=1  k=sp+1 ki=sn+1

for some constant ¢4 > 0, where the last inequality is by (A1) and (A6). By com-
bining (S2.1), (S2.8) with (S2.9), we conclude that Hn‘l(:)’ . (Y =0 e )]0 <

C7(nf3/ 2-1/2 4 qnS,, ‘S), with probability tending to one, for some constant c; > 0,
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which completes the proof of part 1). For part 2), we have that

'O (Y — Ope i)

oo = |In ™" Aggg, Ope (Y = Ol oo
S)‘maX(AH%mnilé;{g (Y = Ongnug ) |loo

<cg(n?*1? + q,5.°),

with probability tending to one, for some constant cg > 0, which completes the

proof. ]

Lemma 6. Under conditions (Al )—(A3), (AS), (Bl) and (P1)—(P5), we have the
following with probability tending to one, for some positive constants cy and c,
where v = Av =1 — 177" = A(n — n*),

D =370 10, (n —n3)3 < ma{1l+o(1)}|7|[5, where the constant my is

defined in (A3).

2) |7l < cos® o200 — )l APl < e{ Pa () +

Py, (n) + |I7]13}-
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Proof. First, we have that

Pn Pn
n Y 1105y — )3 —Tfle@ 5 =D (1 — 1) (n€;6;) (i1 — 77;)
7j=1 7j=1

Pn

Amas( ||v||2+2 iy — i) {n~16,0; — E(n~'6,6;) } (i} — if;)
max(D][7]]3 + [[n7'0'6 — E(n ééHooZHm i3
<{)‘max —l—San_l@@ E( _1@/ ||00}||V||2
<(my + C28nn'8/2_1/2)||’7||§’

for some constant ¢, > 0, where the last inequality is by (A3) and Lemma 4.
Since s,n/271/% = o(1), it follows that =" ", [|©;(n; — n)I5 < ma{l +
o(1)}]|7||3, with probability tending to one, which completes the proof of part

1). Moreover, we have

Pn Sn
||ﬁ||1=22|mk—n]k|<s1/2Zr|n]—nj||2
7=1 k=1
12 1/2 2 o % —15/ & v cx\ 1 1/2
! 1/22{Amm 1y — 5l < 25302 S (G — ) B850, — i)
7=1
—1/2 1/2 - -1 14/ & 14/ ¢& o k(]2 1/2
<mq 523 {0 10,00 — I + B 6/6) — 7 &6 Il — 113
j=1
Pn
<mg sy 3 " {21050 = )l + 1B (1 '0) — ' &8N 12 iy — 7 I }
jfl
{ —1/2 I/QZn—l/QHG _77])” }_1_03831/2”5/4—1/4”5”1’

for some constant c3 > 0, where the last inequality is by Lemma 4. Invoking
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(B1), we have that ||7||; < eysi/” 320 n=2]10;(1; — 11%)||2, with probability
tending to one, for some constant ¢4, > 0, which completes the proof of the
first inequality of 2). For the second inequality of 2), by combining the first
inequality of 2) with Lemma 1(c), we have

Pn
M7t < earnsi® Y 021050 — )l

j=1

Pn
=LY st/ 2L ([0 (m; — )

=1

Pn
<es LY {py a2 (7210 = m)lle) + 27 10 (n — )13}
=1
Pn
<es L Py, (7) + Pry(n) + 27 um ™ Y 110,(n; — )13} (52.10)
j=1

Finally, by combining (S2.10) with part 1), we have that \,,||[7|[1 < ¢5{ Py, (n%)+
Py,(n) + [|7]|3}, with probability tending to one, for some constant c5 > 0,

which completes the proof of part 2). [

Lemma 7. Under conditions (Al)—(A3), (AS5), (B1)—(B3), we have the following
with probability tending to one, for some positive constant cy, c, and cy, where

prt = |[willo and pp, = maxi<p, s, |[willo = maxi<p, s, pui,
1) maxjcp,,s, ||n_l Z?zl Fz‘Fz'/(wl —wp)||eo < conP/?=1/2,
2 0 — < 1/2 a,8/2-1/2 - <
) max<p,,s, H’wl wsz < Ccpnspn ,  MmaXi<p,s, le lel <

czpnsflnﬁ/z_lﬂ.
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Proof. First, by Lemma 4, we have

n

max Hn—l Z(wl/Fi _ Eil)Fz'/Hoo < conﬁ/Q_l/z,

I<hnsn P

with probability tending to one, for some constant ¢, > 0. Moreover, under
(A5), (B1) and (B3), we have 7, ~ n%/>~1/2, By choosing 7,, = con”/>71/2, we

have
n

max [|n™" Y " (w/F; — Eg)F||se < 7 = con®*71/2, (S2.11)

I<hnsn P

Under (7) of the main paper, we have

n

max [|n~" Y (0] F; — Eq)F/||o0 < 7 = con/>71/2. (S2.12)

I<hpsn i—1

By combining (S2.11) with (S2.12), we have

n
max [|n~" Y " FF/ (i — w)||
=1

I<hnsn
—1 / / —1 ~! /
< max || Zl(wz = Ea) || + max |In ;(wlFi — Ea) Fi'||oo
<27, = 2¢qn?/*71/2, (S2.13)

which completes the proof of part 1). In addition, by the definition of the Dan-

tizig selector method, we have

hnSn

P(llidls < llwlli}) =1, as 0= oo, (52.14)
=1

Denote S; = {j : wy; # 0} as the support set for each vector w;, then (S2.14)
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implies that

by — < b — ) se
max ||y —wifly < max [[(d; — wi)s [l + max [|(@r)slls

< max (0 — wy) s, [|1 + max {Il(w)s,|r = [|(@n)s, ||}

<2 max [[(d —w)s |l < 2121}33; prt 2| (0 — wi)s, |2

I<hnsn

<2p, /% max ||i; — wy|2, (S2.15)
I<hnsn
with probability tending to one. Furthermore, we have

max (W — w;) (n™*! Z F,F)(; — wy)
i=1

lShHSn

n
< max [[dy — w1 [|n~! Z EF (i — wr)l]
lghnsn i=1

<2¢qnP/?71/2 max [y —wils, (S2.16)

with probability tending to one, where the last inequality is by (S2.13). In addi-

tion, we also have

I<hpsn

max (i — w;) (n™* Z F,F)(w, — w,)
i—1

> max { A (D)l — wil[§ = [y = |}l E(GiG) = n '€/ e |

T I<hnsn

> o (1) (| macx [l — wil ) = || B(GGY) = 006 |  max |Jiy — wil}

I<hnsn

N———

SNnsSn

zcls;“< max ||w; — leg) — cgnﬁ/%l/z( max ||w;, — lef)
lghnsn lghnsn

>(c18,* — cgpnnﬁ/2’1/2)< max ||w; — wl||§>, (52.17)

I<hpsn
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with probability tending to one, where the second last inequality is by (Al),
(A3) and Lemma 4, while the last inequality is by (S2.15). Combining (S2.15),

(§82.16), (§2.17) with (B2) entails that

max [y — wy|]2 < cap/?s2nPl21/2, (S2.18)
ShnsSn

with probability tending to one, for some constant ¢, > 0. Finally, combining

(S2.15) with (S2.18) entails that max;<j,, || — wi||1 < csppsin®/271/2 with

nSn |

probability tending to one, for some constant c5 > 0, which completes the proof

of part 2). O

Lemma 8. Under conditions (Al)—(A3), (A5)—(A6), (BI1)—(B3) and (P1)—(P5),

we have the following with probability tending to one, for some positive constant

N

co and ¢y, where S; = (S',-l, ooy Sihnsy) = A;&(uﬁ’Fi — E)(Yi — Fliye) and

Si = (Szl7 R Siyhnsn) = A’;[}’L (w,E - E’L>€Z)

max ]n’l/z Z(S’l — Sa)| gco(nﬁ’lmpnsi’fﬂ + )\nnﬁﬂqns?fl + 1”&’8/2+1/2c1n$;(S log s,
SNnsSn i—1

+ 1P pngnsi?* O log s,),

n

max {n’l Z@ ~ S, )2}1/2 gcl{)\nn’BQnSZ/QH —l—Tl'B/Qan;‘; log s, +pnsf’la/2n5*1/2(logn)l/2

I<hnsn Py

+ )\nannSia+1n36/2_l/2 + nﬁ_l/QannSia/2_6 IOg Sn}-

Proof. First, foreachl =1,...,h,s,, we have

A

S — Si = Ayt + Doy + Asiy + Ayi + Dsip + N,
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where we denote

_ 2 —1/2
B = [{EED Y B2} 1) [{EED) ™ w Fy — Ea)e),
i1=1
- 1 21 [ —-1/2 N
ANgy = [{E(E})/(n”! Z 2P BB} P (w/ F — Ea)F (s, — 77%;;)}7
i1=1 T

Asy = [{E(E3)/(n™* Z i) 1/2: -{E(Efl)}_lﬂ(wl/ﬂ — Ey)( Z Z ezjknjk)}a

i1=1 ) ]GH% k=sn+1
_ 1 21T 1/2
Ay = EZQZ ! Z z1l / {E(Efl)} / (0 — wl)/E€ii|7
11=1 T
_ 21T 2 A
s = [{B(ED)/( WS B} [ wn) FiF (s, — i )
i1=1 c
_ 1 21T 1/2
Bon = [{BER) (03 B2 [{B(ED) )% R Y )]
i1=1 T JEHS k=sn+1

Accordingly, one can show that

n

max |n~ 1/22(5’11— Sa)| < max ]n UQZA“” —|— max |n UzZAgdl

I<hps
nen i=1 i=1 i=1
I<hnsn

n
+ max |n~ 1/22A3ﬂ| + max ]n‘l/zzA4ﬂ|

I<hnsn

+ max [n 12 " Agyl + max 2 " Agl. (S2.19)
1 SNnsSn T
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For max;<y, s, |02 3" | Aya|, we have

I<hpsn

n
max |n~%/? Z Ayl
i=1

n /2 Z {E(ED/ (! Z B2} — 1] [{B(ED} (@ F, - Ey)e]

<IAA-T _ —-1/2 Nl 2\1-1/2_
<|IAAT = Il max 072 Y (wi'F = Ea){E(E})} e

SNnSn i1
=n'2[AAT! — T|oe max |07t Y (wi'F — E)){E(E})} )

i=1

= max
I<hnsn

<conP1/2, (S2.20)

with probability tending to one, for some constant ¢y > 0, where the last in-
equality is by Lemma 3 and Lemma 4.

For max<p, s, [n 2> 1| Agil, we have

n
max |n~%/? Z Aoy
i=1

I<hnsn

n

WS (D) B~ B, — )|

<(1+ I|AA~Y — I|]s0) max
SNnSn i—1

n

<2 (14 AR = Illoo) Imaes, — g [11 max [[n™' Y (wi'F — E){E(ER)} 2 F |l

=1

<n 2 (14 AR = Iloo) 17 = nlly max [[n" Y " (wi'F — Ba){E(E})} 2 F |l

=1

<1 Aan2q, s (S2.21)

with probability tending to one, for some constant ¢; > 0, where the last in-

equality is by Lemma 3, Lemma 4 and Theorem 1.
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For max;<y, s, |02 3" | Agy|, we have

n
max ]n_l/z Z Asy|

I<hnsn

n

n 2N {BED}Y Wl F- B (Y |

=1 JEHS k=sn+1

§(1+||AA_ —I|) max

§n1/2(1 +||AATY — IHOO> [ max max |{ E( EZ)}_I/Q(U)/F@ - Ezl)u

<hnsn 1<n
(Y X ). (52.22)
i=1 jeEMS k=sp+1

Regarding max;<y, s, max;<, ’{E(Eﬁ)}flp(wl’ﬂ — Ey)|,

(A5) and (B1), we have

max max HE Efl)}_lﬂ(wl’Fl- - Ezl)|

I<hpsn, t<n

Scl{log(npnsn)}l/2 < eon?/?, (S2.23)

with probability tending to one, for some constants c1, cy > 0.

Regarding n ' S0 [ 57 e S22, Oijiinyi] we have

E(n—li‘ S i eijknjkD gE(n‘lian| i eijknjkD

i=1 jEHS k=sn+1 i=1 j=1 k=sp+1
n gdn / o0 /
-1 2 25 1 2 26\1/2
gE{n >3 § )RS g k)
i=1 j=1 k=s,+1 ki=sn+1
Z” Zq" Z / Z /
-1 25 1/2 2 25 1 2
<n ( njlﬁk E{ ewkk
i=1 j=1 ki=sp+l k=sp+1
n dn o / o /
-1 26\ 1/2 —28\1/2
<Y N (D k)Y ek )
i=1 j=1 ki=sp+1 k=sn+1

<O(qns;,?), (S2.24)
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where the last inequality is by (Al) and (A6). Hence, by combining (S2.22),

(S2.23) with (S2.24), we have

max |n /2 Z Agy| < O, (nP?H12q,579). (S2.25)

I<hnsn i—1

For max;<y, s, [n "2 3" | Ay, we have

n
max |n~ 1/2 Z Ayl

I<hpsn

<(1+[[AA = I]]) max( WZ[{EE}, (- wz)’Fiei}

§n1/2<1 + HA[\—l — ]HOO) [ max {E (E3) } 1/2]

hnsn

: ( max |[w; — wy||; )(Hn_l@/e”w)

I<hpsn

<nt2(14 A8 = 111) [} ]
. ( max ||w; — le1) <Hn716/5|‘00>

I<hpsn

§cgn5_1/2,0 55“/2 (§2.26)

with probability tending to one, for some constant c3 > 0, where the last in-

equality is by Lemma 3, Lemma 4, Lemma 7 and (A1).
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For max;<y, s, [n"Y2 3" | Asa|, we have

n
max |n /2 Z AY

I<hpsn

<(1+]1AA7" ~ 7]l) max |n WZ[{EE,% 2y — ) B (s, — )|

<nt (14 AR = 1) [} ] (1= ) o 10 S0 o — o}

=1

<cahan® 2,50t (S2.27)

with probability tending to one, for some constant ¢4 > 0, where the last in-
equality is by Lemma 3, Lemma 7, Theorem 1 and (A1).

For max;<y, s, [n"Y2 Y1 | Agal|, we have

n
max |n~4/? Z Agit

I<hpsSn

n

(1 AR = Tk max [0 3 (B} 0 — ) B 3 i) ||

=1 JEHS k=sn+1

§n1/2<1 + |[AAT? —]||Oo> [ max {E(E})} UQ}( max ||, — w|; )

I<hpsnp I<hnsn

{||n-1ZF S Y il

JEHS k=spn+1

<o (1 1A = Il [min(8)} ] (i [l = 1)

>< DY i ez‘jknjkD

i=1 jJEHE k=sn+1

3

. ( max
I<(pn—hn)sn i<n

<O0,(n° prgns3®/?79), (S2.28)

where the last inequality is by Lemma 3, Lemma 7, (A1), (A2) and (S2.24).
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In summary, by combining (S2.19), (S2.20), (S2.21), (S2.25), (S2.26), (S2.27)

with (S2.28), we have

n

max |n” 1/22(511 — Sy)| < max ]n 1/QZA1,I| —i— max |n 1/2 ZA2“|

I<hps
nen i=1 i=1 i=1

+ max |n~ 1/QZA311| —i— max ]n 1/QZA4M|

I<hps
= i=1 =1

+ max |7’L 1/2ZA5ZJ| +lg}llai( |n_1/2ZA6il|
i=1 - =

I<hnsn
S Con,B—l/Q+01Annﬁ/2qnsg/2+l +Op(nﬂ/2+1/2qn8;§)
+63n571/2pn8ia/2 +C4)\nn5/2QnSZ+1 +0 ( PrnS> 3a/2 5)

< e5(n? 12,5302 4+ NP2, st 4+ 0PI g, 0 log s,

+ nﬂannsiaﬂ_é 1Og Sn)a

with probability tending to one, for some constant c5 > 0, which completes the
proof of part 1).

Next, we start to prove part 2). First, we have

n

max {Tlil (Szl - SZ'Z)Q}

I<hnsn
i=1
<100( lrrillax n- Am + max n” E A3 —I— max n” E A2
<hnsn hnsn hnsn

+ max n- ZAM + max n- ZAW + max n- ZAW (52.29)

hnsn hnsn
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For max;<p,,s, n~ ' > i A;, we have

max n- Ahl
1<hnsn

§<||A/A\_1 _ [||OO> max n- Z [{E Efl 1/2 w'Fy — Eil)ﬁi]2

< (1A = 111)” max max [{B(ED)} " w/F— B)e]

I<hpsn t<n

<cgn**~logn, (S2.30)

with probability tending to one, for some constant ¢4 > 0, where the last in-
equality is by Lemma 3 and (A2).

For max;<p,,s, n~ ' > .5 A3, we have

lg}lzi?s(nn A27,l
L 2 . _1/9 . 2
<(1+11AA 1—1||oo) max 0t S [{B(ED) Y (0 By — Ba) B (s, — i) |
ShnsSn i—1

§(1+||Af\—1_]||w>2<||ﬁ—n||1>2[maxn ZH{EE?Z 172 /E._EZ-Z)F/HiO]

A 2 2
S(l—l—HAA’l—IHoo) (Hﬁ—ﬁHl) [max max ~ max |{E E3)} V2w Fy - Ezl)lel|]

I<hpsn i<n 11 <(pn—hn)

<erA2nP g2 502 (S2.31)

Y

with probability tending to one, for some constant ¢; > 0, where the last in-

equality is by Lemma 3, Theorem 1 and (A2).
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For max;<p,,s, n~ ' > | A3, we have

n
max n ' E A,
i=1

I<hnsn

n

g(1 MM - 1||m)2l£ax Y [{E(Ei%)}*l/?(w/Fi ~E)(Y i eijknjk)r

S
nen i=1 FEHS k=sn-+1

" 2 _
<(1+ 1AM = 1] )| max max [{B(ED)} ™ (w/ F — Ea)|°|

<hnsn i<n

. {n_l Xn:( 3 i eijknjkf}. (S2.32)

i=1 jEMS k=sn+1

Regarding max;<j, ,, max;<,, |{E(E§)}_l/2(wl’Fi — Ey) ? we have
NV V2, s |2
gmax max [{B(ED} " (w'Fy = Eq)
SCS IOg(nhnSn) S Cg log<npn3n>
<egn®, (S2.33)

with probability tending to one, for some constants cg,c9g > 0, where the last

inequality is by (A2), (AS) and (B1).
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Regarding n ™" > 700 (37 cpe Dopey 11 Oijenjn)”, we have

E{n Y (> > )’y S E{n Y (D1 D bunal)’}

i=1 JEHS k=sn+1 i=1 jEHS k=sntl
n dn [ee] n  qn oo
<E{nY O 1 Y i) <E@ ' > D 1Y Ol
i=1 j=1 k=sp+1 =1 j=1 k=s,+1
n dn (o] o
<BE{n~'q.y Y (Y 05k ) D). mhk))
=1 j=1 k—snt1 ki—sn+1
n dn o o
="'y Y (D wank ) (D mik k)
=1 =1 k=sp+1 k1=sn+1
=0(¢%s, ). (S2.34)

Hence, by combining (52.32), (S2.33), (S2.34) with Lemma 3, one can show

that

max n~! Z AZ, < 0, (nP¢2s; ). (52.35)
i=1

I<hnsn

For max;<p,,s, n~ ' > | A, we have

lg}l&}s{n n! Zl Aiil
< 2 112 R 2/ n 9
<(1+ 1A = Tl ) [} ] (e e = willy) (07t D0 || Freil[2,)
SNinSn i—1
~ 2 412 2 2
§<1+||AA‘1—I||OO> [{)\min(A)} 1} (g}lax ||ﬁ)l—wl||1> (max max |Filez~|>

I<hpsn i<n 1<(pn—hn)sn

gclgpisianw’l logn, (S52.36)

with probability tending to one, for some constant ¢y > 0, where the last in-

equality is by Lemma 3, Lemma 7, (A1) and (A2).
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For max;<p,,s, n~ ' > | AZ;, we have

max n- A2
1<hn s 51l

<(1+ ||AA-1 —J||oo)2[{Amin<A>}‘1}2(lggxn b= will) (1 =il ) (max |2

<en X pngasy i (52.37)

with probability tending to one, for some constant c¢;; > 0, where the last in-
equality is by Lemma 3, Lemma 7, Theorem 1, (A1) and (A2).

For max;<p,,s, n~ ' > | AZ,, we have

max n_ g A2
lShnSR Gt

§<1 n HA/AVl —Il\oo)2[{/\min(/\>}_lr( max ||wl wz\|1)2

I<hp

G IR 3 a2

JEHS k=sp+1

= (1 1A = 10 [} ] (el = il ) (max 712
{n’lz(z Z eijknjk)Q}

i=1 JEMS k=sn+1

<O, (piqrsd > n 1), (S2.38)

where the last inequality is by Lemma 3, Lemma 7, (52.34), (A1) and (A2).

In summary, by combining (S2.30), (S2.31), (S2.35), (S2.36), (52.37), (S2.38)
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with (S2.29), we observe that

ax {n)_(Su =50}

=1

<cip{ AP qlstt? +nfqls, P (log s,)* + pisi*n® ' logn

ARSI P R P og )Y, (5239)

with probability tending to one, for some constant c;, > 0, which further implies

that

n

max {n~' Z(S’d — 5 )2}1/2

[<hpsn —
gclg{)\nnﬁqnstﬂJrl + nP2q,57010g 5, + pns P12 (log n)Y/?

+ AP s In38/2712 4 =12 539270 Jog Sn}, (S2.40)

with probability tending to one, for some constant c;3 > 0, which completes the

proof of part 2). N

S3 Proofs of Main Theorems

Proof of Theorem 1. Recall that we denote v as v = n —n*, and v = 1 —
7" = Av. By first order necessary condition of the optimization theory, any
local minimizer 7 of Q,,(n) from (5) of the main paper must satisfy 7 € {n :

(VL,(n) + VP, (n),—v) >0, |lv|i < R,}, where (a,b) = da'b for any

vectors a, b. Hence, in order to prove Theorem 1, it is sufficient to show that for
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any n € {n: (VL,(n) + VP, (n),—v) >0, |[v|li < R,}, parts 1) and 2) of

Theorem 1 hold. First, we assume
n€{n:(VLy(n) + VP, (n),—v) 20, |[[v[i < Ra}. (S3.41)
Then, it can be deduced that

(VLn(n) — VLn(n?),v) = V(n'0'0)y = VE(n'@'0)y — V{E(n'0'0) — n'&'0}i
> Anin(DIIZ|5 = [|E(n710'0) = n 7' 0O |wolIZ[} = moll7|[5 — con® 12|77,

(S3.42)

with probability tending to one, for some constant ¢, > 0, where the last in-
equality is by (A3) and Lemma 4. In addition, with a little abuse of notation,

denote

Pn Pn
Py, u(n) = Pa, (427 ™ N10;m513 =Y {p, a2 (0™ 2)105m512)+27 = [|©m;113 -
P =1

Under (P5), it is not hard to verify that Py u(n) is convex in 7, i.e.,

PAn,u<n*) - PAn,u(n) > <VP)\H’#(77), _V>7

which further implies that

(VP (n),—v) < Py,(n") = Pa,(n) + 27 pn™ ZH@ —)|[3. (S3.43)
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By combining (S3.41), (S3.42) with (S3.43), we have

mol[7[[5 — con™ > 2||p||} < (VLu(n) = VLa(0"),v)
= (VLn(n) + VP, (n),v) + (VP (0), —v) + (=V Ln(7%), V)

Pn

< Pr.(") = Py, () + 27 pun” ZH@ =)z + [ln (Y = On)luc] 7111
(S3.44)

By combining (S3.41), (S3.44) with Lemma 5, we have an upper bound for

mo||P||3, with probability tending to one for some ¢; > 0,

P, (1) = Pa, () +27 pn” ZH@ — )R+ e (nP2V2R, + g1

(S3.45)

By combining (S3.45) with Lemma 6 and (A9), we have [mo — 27 myu{l +
o713 < {14 o(1)}{ Pr.(n*) — Px,(n)}. Together with Lemma 2 and

(A3), we have

0 <[mo — 2 'map{1 + o(1)}]|17]|3

§C2>\n571/2{ Z n71/2||@j( 7]] H2 - Z n71/2|’@ 7]] H }

JEAR JEAS

(S3.46)
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with probability tending to one, for some constant co > 0. On one hand, (S3.46)

implies that

17113 < eadasl/? 37 07 210,0n; — )2 < eshast a2 Y 071650

JEA, JEAR

Pn
_ 1
< eshastl 20203 01050y — )BT < cadasl Pl |5,

with probability tending to one, for some constants c3,cqs > 0, where the last
inequality is by Lemma 6. Then, it follows that we have ||7||s < ¢4\, s 2qnl?,
which further entails that

1o IR —1, . a
Iwlla = 1A ]2 < Amax (A 2]2 = {Amin(A)} 7 117]]2 < csAnsi/ > 202,

with probability tending to one, for some constant c; > 0, which completes the

proof of part 1). On the other hand, (S3.46) also implies that Y. , n~'/2||©, (1,

mi)le > 32 cae n2110;(n; — ;)| Together with Lemma 6, we have

DPn

190l < ess/> 0 2(10,(m; = n))ll2 < 2c55,% > 2050 — )l
j=1 ]G.An
Pn
_ " 1/2 o
< 2¢5 22 (> 10, (m; — )R} < cost @2 Pls < erhnsndn,
j=1

with probability tending to one, for some constants c;, cg, c; > 0, which further

entails that
Y . . )
[l = A7 < Amax A7 = {min(A) 11711 < eshasy/ > g,

with probability tending to one, for some constant cg > 0, which completes the

proof of part 2). O

H }1/2
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Proof of Theorem 2. First, we have

T* —||T* < T*—T* = -1/2 SN R I
T loo = 1T [o| < 1] oo lg}%nm ;(Szz Si)| < cog(n),

(S3.47)
with probability tending to one, for some constant ¢, > 0, where g(n) =
715_1/2pn82a/2 4+ AanP2q, 50t 4 nfl2H12q s~ og 5, + 7"L5pnqns?la/2_5 log s,

and the last inequality is by Lemma 8. Second, we have

n
T oo = 11T so] < NNT = T |loo = max [n™2 " ei(Si — Sa)l-
I<hnsn

i=1

(S3.48)
Since {eq,...,e,} is a set of independent and identically distributed standard
normal random variables independent of the data, by the Hoeffding inequality,

we have that forany [ = 1,...,h,s, and t > 0,

n

PAIn S ei(Su — Su)l = 1} < 2exp [ — 22 (S - sﬂ)z}} ,
=1

i=1
where P, (-) means the probability with respect to e. Then, the union bound
inequality yields,

n n

~

Pe{lmax In=1/2 Z ei(Sit — Sy)| >t} < 2hpspexp | — t2/{2 max n™1) (Sy — Su)?}

<hnsn —1 [<hnsn i—1
1= 1=

Together with Lemma 8, it is easy to see that
n

P.{ max |n_1/226i(s’il = Sa)l <af(n)} —1,

I<hps
=Itn>n 1/:1

B
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with probability tending to one, for some constant ¢; > 0, where

F(n) =Aan® 2,532 4 nPq,s,° log s, + pasiy P71 (log n) V2
+ )\nPnQnSiaHnw*l/z + ngﬁ/%1/2,0,1(]715?;1/2*‘S log s,,.
Together with (S3.48), we obtain
P{[12 o0 = 1T |loo| < exf(m)} — 1. ($3.49)

Moreover, we have

g(n){log(pnsn) Y1/ ~ g(n)nP/? =n®P2712) $34/2 L\ nPq,satt 4 nPT12g 5% log s,

+ 1382 pgns? 0 log s, = o(1), (S3.50)
under (AS5), (B1)—(B3). In addition, we also have

f(n){log(]onsn)}l/2 ~ f(n)nﬂ/2 = Anannsffﬂl + n?’B/Qqns;‘S log s,, + pnsf’la/an’l/z(log n)1/2

+ )\nannSia—HnSBm_l/Q + nQB_l/Qannsia/Q_é 1Og Sp = 0(1),
(83.51)
under (AS5), (B1)—~(B3). Furthermore, (A4) implies that
E(S}) > e, (S3.52)

for some universal constant c; > 0, and (A2) implies that

[[Sillg, < c3, (S3.53)
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for some universal constant ¢ > (0. Hence, by combining (S3.47), (S3.49),

(S3.50), (S3.51), (S3.52), (S3.53) with (AS), we have

tim s [P < ea(e) — (1 a)| =0,

ae(0,1

by Lemma H.7 in Ning and Liu (2017), which completes the proof.

Proof of Theorem 3. First, for the decorrelated Wald test, by definition, we have

1% 1/2A-171 A 1/2A-1/7 AT ‘
W =n!/ Aoy Tt T, = 10 / Ay (B, = 0 g, )i,

1/2 4 —1 —1n —1 ~1\/ ,
=n! Ay, (R 0y, Oy, —n" O O, )0
where

Tt = T, — L0 (N, e ) /O, Y S (e, T )

= —{Ayl (N0}, O, — n MO Oy, )} T

Hence, by combining (S3.54) with (S3.55), it is easy to see that

A ~

W*=-T".

Second, for the decorrelated likelihood ratio test, by definition, we have

L* = A} diag{(Ong 0 — On,) (Ongd — O, ) /n} T,

(S3.54)

(S3.55)

(S3.56)

(S3.57)

where T = (T4, ..., T 1)snihr - -» Thys,) Whose {(j — 1)s,, + k}’th element
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is

Y (-1ysutre =20{ L0, 0,700 ) — Lijse (s 0,70 )} = || — Oe e I3

— ||Y — GH%ﬁHﬁ — ﬁjk(@’}-[n,(j—l)sn—l—k - @H%w(j—l)sn-l-k)H%a

where Oy, (j_1)s,+r Tepresents the {(j — 1)s,, + k}’th column of ©4,,. Hence,

we have

T -tysntk = 1Y = Oneie |5 — |1Y — One Niage — Nk (O (= 1)smtk — Ome Wii—1ysn+k)| |5
= 21 (Ort,. (- sntk — O W(-1)s,+x) (Y — O g ) —

N5 (O3 =Dtk — Ore W(-1)50+%) (Ot (- 1)snth — Org W(i—1)sn+k);

with 7 = { (O, (= 1)snth—One W(i—1)sn+k) (O, (i=1)s0 b —Ore W(i—1)s,+%) } -

{(On,,,(j=1)sntk — OncW(j-1)sp+k) (Y — One e ) }. Then

T (j—ysntk ={(On,(j= 1)tk — Ome Wij—1)s,+k) (Orn,(i—1)sntk — @H;ﬁ)(jq)sﬁk)}_l

A(Or G- 1)snth — O W(-1)s,4x) (Y — Opg g )}, (S3.58)

A

Then, by combining (S3.57) with (S3.58), one has ﬁ(j_1)5n+k = T(*]‘2—1)sn+k-
Combining with (53.56) yields ||7*||oc = ||[W*||sc = ||L*||5%, which completes

the proof. [
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