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In the supplementary materials, we provide the proofs for Proposition 1, and Theorems 1-3.
Proof of Proposition 1
By the definition of Q(n, 8, o, v), we have
Q(n(k+1)aﬂ(k+1)a a(k+1)a V(k+1) ‘ e(k)) - Q(n(k+1)7ﬁ(k+1>v a(k+1)7 V(k) ‘ 6<k)) = é”u<k+l> - l/(k)”2 (Al)
Since a**Y is the minimizer of Q(n<k+1),ﬁ(k+1), a, I/(k)), we have
Q™Y B, ™ W M) — (™Y, Y, o™ M [0™) <. (A.2)

Moreover, 8 — Q(n**V, 8, a®™ v® | %)) and n — Q(n, 8", a™ v™® | ) are both convex, because the
Hessian matrix (XQZX + goQTQ) and ZZ are both positive definite. Thus there exist constants ¢; > 0 and ¢z > 0

such that the following inequalities hold:
QU™ B*Y e M 1 0M) — Q™Y BN, a® M | 9 < —T|g* Y — g (A:3)
and

Q™Y BM, M, b 16%) — @™, BN, al™ L™ | §®) < 2yt — @2, (A.4)
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Summing (A.1)-(A.4), we have
Q(n(kJrl)?B(kJrl), a(k+1), p D | g(k)) _ Q(n(k)7ﬁ(k)7 a(k)7 v(F) ‘ e(k))

1 c c
< Sy g g R ) (A.5)

Since {a®}% | is bounded, by the ADMM iterative procedure, 8*) and n® are also both bounded. Thus

Q™ , 8™ a® p® | M) and {n™, " o™ LM} are bounded. For convenience, we note
A(k) _ Q(n(k),u(k>,a(k),u(k) | B(k)),B(k) — %Hﬂ(k-H) _ 5(k)H2 + %Hn(k-H) _ n(k)H27C _ éHy(k-H) _ I/(MHQ,
Since A™ is bounded, then there exists a subsequence {A%*3)}, such that
limkjﬁooA(kﬂ = liminfk_moA(k).
By Lemma and limk%ooc(m — 0, we have

liminfk].ﬁooA(kj) < liminfkjﬁoo(A(kﬂ — Ak +C(kj))
= liminfr_ oo A® — liminfy, 00 d® Y < 0.
As B*i) > 0, thus liminfkjﬁooB“j) = 0, which means
liminfy, oo {e]|8*7) — B 4 oIy FY —p*) |} =0,
together with the last step of ADMM iteration and |[v**" — v®) || — 0, we have
(kj+1) a(kj)” —=0.

liminfy; oo ||

Therefore, the sequence {n(k),ﬁ<k),a(k>,u(k>}z‘;l has a subsequence {n(k-7>,,3<kj),a(k-7>,u(’“i)}2§f:1 which converges

to a point {n*, 8", a*,v"}, and we have

Bi —Bj —ai; =0,V1<i<j<n.

Define

ftoo h(s)dF(s)

Wit h) = hit) = 5



Subgroup Analysis in Censored Regression

o It > w)dF(u)

M(s,t | F)=1(t<s)— T F(0) ,

and

S(s,t|F):tI(t§s)+w

= F(s) I(t > s).

The Buckley—James type least squares estimating function for the oracle estimator d)or is equivalent to

Ua(g)=n""23 / I(Gi(¢) = u)(Us = Dip,i (u)) W, (w)dM (u, () | Fp)

(Proposition 3.2 of Ritov (1990)). Define

To(@) =n/? S [ 16(8) 2 0)(U: ~ D ()W (w)dM (. (6 | Fo). (4.6)

Lemma 1. For a given small constant €,
1

(i) sup{|Wp, (t) = Wr, ()] : ]l < 5,50, I(wil@) = ) = 5"t < s < bo} = O(n™V/2"44) as., then

sup{|W};e (t) = Wrg (t)| - sup; [|6:]] < 5,20 T(vi(6:) > ) > W%q,t <s5<bo} =O(n~V/2HHe) g
(ii) sup{[[n~" 31, [6:Us — 6:Dgi(ei(@))]] : |9]] < K} = O(n™/?%%) a.s.
(iii) sup{| Dy (w) = DG (w)]| : w < bo, ]| < #,j = 1,2} = O(n™"/**%) as.
Proof of Lemma [1]
By Lemma 2 of Lai and Ying (1991), we have

1—¢

|l <kt <s< bo,;l(vi(cﬁ) >5) > C”2 }

“ {’ftbo sdFy(s) B ftbo sdFy(s)
PUNT R0 T 1o Fe()

= O(n V¥t .

for every 0 < ¢ < 1 and £ > 0, and thus Lemma [I| (i) holds. We obtain Lemma 1 (ii) using
Ui = Dg.i(e(¢)) = [(Zi = Dy (ei(@), (Xi = DG (@) i, -+ (Xs = DG (e())) Tmam]

with

DY (u) = B[Z: | Y7 —Ul¢ > ul = B[Z: | Y7 = Ul¢ > u, 8 = 1]

3
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and

DY (u) = E[Xi | Yy = Ulp >u] = E[X; | Y] = Ul > u,8; = 1]

(Lai and Ying, 1991) and
E(6:Z:) = E[06: DY (ei(#))],  E[6:X:] = E[6: D} (ei(e))]-

We conclude Lemma (iii) from the definitions of D((;)(u) and Df;) (u).

O(n_ 1/2+3<+25)

Lemma 2. supj <, [¥n(¢) — U, ()| = a.s.

Proof of Lemma 2
Note that Uy, (¢p) — W, () = Jin(@) + Jon(h) + Jan (), where
Jin(¢) = n” Z / ) > u)(Us — B s(){ Wi, (W) — We, () }dM(u, () | Fy),
Jon() =2 Z [ 16(6) 2 U B ) W (M, 4(8) | Fa) — Ml (@) | Fah
Jan() =0 _Z [ 16(6) 2 0){Des(0) ~ B s} W ()M (u,5(9) | F).
For Ji,, we consider the process
Lyn(@) = Jin(9) — Qun(9),

where Qua(¢) = n™? 3 [1(G(¢) > wfWp, (1) — Wr, (u)H{Dg,i(u) — Dgi(u)}dNi($,u), and Ni($,u) =

I(ei(¢) < u). By Lemmal[] (i) and (ii), we have

[ Zn ()]l

||In="/2 Z{Wﬁ¢(€i(¢)) — Wr,(ei(9))}

% [Us = {Dg.s(ei(@)) ~ Dipi(e ZU Iy ei<¢>>%]&w

= |||n‘”22{w €i(})) — Wr, (€i(#))}[Ui — Dg,ilei())] 5]

< sup ’Wﬁd, () = W, @)|[l|n ™2 {8:U: — 6:Dgi(ei(0))

llll <r.t<bo o

O(n71/2+3§+25) a.s.
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On the other hand, using Lemma [I] (i) and (iii), we have

[Qin(P)l < HWUQZ/{W@, () = Wry () H{Dg,i(u) — Dg,i(w)}dNi(, w)]|
= InY2 Y6 Wi, (ci(9) — Wy (6:() HDg.i(€1(#)) — Des,ilei())}
i=1
—-1/2 € N €
< o2 (W, () = Wr, (8)]|In Z Dg.i(€i(¢)) — De.i(ei()ll
— O(n71/2+3§+26) a.s.
Therefore, [[J1n ()] < [La(D)[| + |Qua ()l = O(n™/25%) aus.
For Jan, by Wr, (u) < 2bo and Lemma (i) and (iii),
il . % _udF, *_udF,
an (@)l < %20 sup | 306U~ Do(e(@))]sup] — f () S f1°°up¢2f)u)|
= O(n V#3712 g
Since
- - S dFy(u)

> {Dos(e(@) - Dos(e(@e(@) = [

i=1 i=1

then Js3, can be written as

In(@) = 7Y / I(G($) > u){Dgi(u) — Doi (w)}dS(u, i () | Fa)

Do.i(ei(¢)) }ei ()0

n!? Z{DdJ i(ei()) —

I(Gi(¢) > u){Dg,i(u) — Dg,i(u)tu

1— Fy(u)’

_1/22/ (Ci(d) > u){Dg,s(u) — ﬁ)asz(U)}Uld_F;SzL)
= n*mz / 1(Gi(9) = u){Dg,i(u) Dtﬁvi(“)}“ld—%ﬁ))
02 Y [ 16(@) > 1) D)~ Bos(a) 1d—F?i<))
_ n71/2z/[(@,(¢) > u){Dg,:(u) — Dg.i(u)}u { dF¢. B 1d_F;SEL)}
_ o S uqub( > J24 udFy(u) -
/2 s G (w) — DD (4 = su - == =0(n /P s,
< n sup (1D (w) = Dy (W)l g = 1,2} sup [ == o = S ] = O |

Hence, we complete the proof of Lemma [
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Lemma 3. n'/*W, (@) = n'/*W,(¢y) + Vu (¢ — ¢g) + o{max(n'/? Ernax (U'U) || — )} a.s. for || — || < n 7.

Proof of Lemma [3
Set

V(e g) = n Y0 / 1(Gi($) > w)(Us — Dipi(u)) W, (w)dF (u + ali),

[ dF(s 4 als;)

Tuaa.d) = 073 [1G(8) 2 W)U = Do) Wi (w2

dFg(u).
Under the condition sup, ||U;|| < ¢2 + c3, we have

V() = Wni (¢ — o ) — Una(d — . d) + 0(1)
for ¢ — ¢y < n~7. Taking Taylor’s expansion for Fy(u + aU;) and Fg(s + alU;), as ¢ — ¢,

\inl(d) - ¢07 (:b) - @nl (0’ d))

= 2 Z / 1(Gi($0) = WUi(Us = Dy () Wi (w)df (u) } (6 — o)
+0(n B (UTU) | — by )

= Y [ 16(0) 2 U~ D) Wi arw}e - ¢

+o(n™ P Emax(UTU)||¢p — o)),

and
W2 (@ = o, b) — Va0, @)
_ _1/2 Z/[(g (Do) > WU (Ui — Dy, +(u) Wi (u) 22— J,” s (U)}(¢—¢)
“Po 1 o 1= F(u —) ’
+o(n”*Emax (U'U) ¢ — ¢o])
n = £1(8) g (s
= Y [ 1) = wuiw —D%,i(u)fwu)m F()}(& - )
+o(n P Emax(U'U) | — ¢y |)).
Therefore,

n' 20 () —n'PUn(¢y) = n'H{Uni(d— by, @) — Vna(d — ¢y, d)}
—n'?{0,1(0, ¢g) — Tn2(0, )} + o(n'/?)
= Va(¢— ¢p) + o(max{n'’?, Emax (UTU)||p — o 1}),

6
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where

Vo = ;/I(Ci(%) > w)Ui (Ui = Dgy.i(w)) We (W)W (u, f'/ f)AF (u).

Proof of Theorem 1 (i)

Lemma [2] is equivalent to

sup ||V (¢) = Wi ()| = o(n~ /%) aus. (A7)
Il <

under the condition limy, n1/2_4‘{ Infycp |p—dpglzn— ||\T’(¢)H} = oo and l’
P{¥,(¢) have a zero-crossing on ||¢ — ¢,|| > n~ " and ||@|| < & for large n} = 0.
Since \I!n(a)or) =0, then by Lemmaand conditions Emax(UTU) < n and 45 + v > 1 with é <¢ <1, we have

Cosup ([ W)+ V(@ — )l = o(n” ) as. (A8)
16" =g ll<n—7

Since E{WU,,(¢,)} = 0, we have ||n'/2¥,,(¢,)|| = O(n'/**%) a.s. Therefore, under ||V;; || < L |Gumin|

= ¢4

~or

1™ = ¢o)ll = o(max{n'"* /Guin, n" /Guwin}) a.s.,

and
1B°" = poll = 177" = noll = o(max{n'’? /Gumin, n** /Gumin}) a.5.
Moreover,
1B” = Bol? = S Sieg, (37— po)? < G S (7~ por)?
= o(max{nGmax/Grmin: 1" Gmax/Grmin}) @.5.
and

supl|B;” — Bosll = sup [[i" — poull < [15™ — poll = o(max{n'’®/Gunin, n* /Gumin}) a.s.

Proof of Theorem 1 (ii)

It follows from Theorem 1 (i) and equation (A.8|) that
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~or

(@7 —¢y) = 0"V (@) + o(n"/Gunin) (A.9)

> Vi 'Bi(¢) + o(n" /Gmin),

i=1

where Bi(¢,) = [I(Ci(by) > u)(Ui—Deg, (u))Wr(u)dM (u, €(¢y) | F). Next we verify the Lindeberg—Feller condition.

Note that

E|lV, 'Bi(¢o)I* = E{Bi(¢y) Vi 'V ' Bi(eby)}’
< Vi P E{Bi(¢) Bi(g)}* = O(1/Grmin),
P([Va 'Bi(¢y)ll > ) < [IVi IPE|Bi(¢)lI*/e* = O(1/(Ging))-

Therefore, under the condition v, — 0, we have

D BNV Bi(@o)IIPL([Va ' Bi(¢o) | > €)

i=1

= nE||[V, ' Bi(¢o)IP1(|[Va ' Bu(do)ll > €)
< n{ BV, Bi(o) 'Y H{P IV Bi(o)l| > €)'

= O(n/Gmin) = 0.
By noting that Y7 | var{V,; ' Bi(¢,)} = E(V,; 'S.V,; '), where
Y = lzn;/](@(%) > u)(Ui = Do, (u)) (Ui — Dy () Wi (u)dF (u),
and applying the Lindeberg—Feller central limit theorem (van der Vaart 1998), we have

GV (" — by) — N(0,1).

Proof of Theorem 2

Define
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(,8) = LIV(O.Fo)~ 20— XBI* - S{V(0,Fo) - Z'n— X BY,
PB) = Y eallBi =B

1<i<j<n
Clnp) = IV Fo)~ Zn— XUp|* ~ L{V (6, Fy) - U9},
Fl(p) = > NG lgrlexdler = porl),

1<r<r’<R

and let £p(n, B) = £(n, B) + Pr(8), and (% (n, p) = £9(n, p) + PY(p). Let H : Mg — R®? be the mapping that H(3)
is the Rp x 1 vector consisting of R vectors with dimension p and its rth vector component equals the common value
of B; for i € G,. Let H* : R™ — RTP be the mapping that H*(3) = {|G,|™* Ziegr r=1,...,R}".

Consider the neighborhood of (1o, B):
O={neRL,BeR"™:|n—mno < cvn, sup 18: — Boill < cvn},

. - ~orl. . . e
where v, = max{nlm/gmin,n‘“/gmin}. We show that (ﬁ‘”T,,B )T is a strictly local minimizer of the proposed

penalized objective function almost surely through the following two steps:

(i) In event A1, where A1 = {||7°" — no|| < cvn, sup; ||§fT — Boill < cvn}, bp(n,B*) > fp(ﬁw,ﬁor) for any

(0", B8T) € ©and (", B £ (77, B”)T, where 8% = H~'(H*(8)).

~orT.

(i) There is an event Ay such that P(AS) < 2 and in A; N A,, there is a neighborhood ©, of (7°", 3 )', and

for (n',8")" € ©. 1O, Lr(n,B) > Lr(n,B").

It is easy to show (i) following Ma and Huang (2016). To show the result in (ii), we consider ©,, = {3; : sup, ||3; —

Afr” < s} for a positive sequence s,,. For (57, 8")" € ©,, N O, by Taylor’s expansion, we have
Lp(n,B) —Lp(n,B") = Hi + Ha,

where

"L OPx(B)

Hi=S(0,F;)X(8—8"), and Ho=

i=1

Here, S(6, ﬁg) is an n-vector with the ith component equal to S(¢i(6:),€:(6:) | ﬁé), B=aB+(1—-a)p, 0 =

af + (1 —a)0*, and 8" = (", 3"T)".
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Note that

Setting Q = (Q1, ...

Qi

Hi

sup [|Q; |
1

where

For P4, since

IN

IA

R
Ha>d > Ah(sa)lBi = Bll-

r=14,j€G,,i<j

,Qn)" = {s(6, Fg)TX}T, we have

Xi{S(Ci(0:),(0:) | Fy) — = > S(¢i(05),¢;(6;) | Fp)}

(Q; — Qi)' (B; — Bi)
G ’

-y ¥

I=114,j€G;,i<j

< P14+ P2+ Ps,

= sup [ X5l Sljp{|8(€i(5fi)7€i(§i) | F3) — Eei(0:)]},
— s X {1 Y-S0 6 ) | Fp) ~ B (@)},

= 2sup 111§ sup ’Wﬁg (t) — Wr, )]}

P (sup 5@, 0 | Fy) - Be(@)] > v 2ot/

> P (|86, €i(8) | Fp) = Bei(@)| > V/2log(n)/ex )

1

N

2
n?

we conclude that there is an event As such that P(AS) < 2 and under the event Ay and conditions (C3) (i),

By Lemma |1 (i),

Thus, we have

(Q; —Q)'(B; — Bi)

P1 < e P2 < Ps.

2log(n)/e1),

P3 < 2ca (cn_1/2+4<).

1G]

IA

2G i sup [|Q: 1185 — Bill

IA

deaGrinlv/210g(n) [e1 + en™ /214|185 — Bill, (A.10)

10
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and

R
(r(B) — tr(8 222 3 {Aeh(sn) — desGrh [V/2og(n) fer + en ™ P TEY; — By).

4,J€Gr,i<]

Let s, — 0, and then Ao (4s,,) — cA. Since A > max(+/10g(n)/Gmin, n /T /Grin), we have £p(8) — £p(8*) > 0

for a sufficiently large n, which completes the proof of Theorem 2.

Proof of Theorem 3

Following the similar arguments used in the proof of Theorem 1, we can conclude the results of Theorem 3 (i) and

(ii) by letting XII = @ and Gmin = Gmax = n. Here we give a simplified proof similar to that of Theorem 2.
Define M = {8 € R™ : 1 = --- = B, }. Note that 3; = p for all i. Let H: M — R? be the mapping that H(3)
is the p-vector equal to p. Let H* : R™ — RP be the mapping that H(8) = {n~! >, Bi}. Clearly, when 8 € H,

H(B) = H*(3). Define the neighborhood of 3,:
O = {BER™ :sup |8 — Boill < cvl},

where v}, = rnax(n_l/ 2 n*~1). We show that BDT is a strictly local minimizer of the proposed penalized objective

function with probability approaching 1 through the following two steps.

(i) In the event A}, where A} = {sup, HB;’T — Boill < evn}, Lp(BF) > ZP(BOT) for any B8* € © and B* # BOT

where 8* = H™!(H*(8)).

(ii) There is an event A5 such that P(A;C) < 2 and in A} N A5, there is a neighborhood ©, of B°", and for any

B €O, NO, we have £p(3) > £p(8%).

Using the idea of Ma and Huang (2016), we can obtain (i). Next we show (ii). For a positive sequence sy,

O, = {B; : sup, ||B; — B"|| < sn}. For (', ") € ©, N @', by Taylor’s expansion, we have
(p(B) — Lp(B") = Hi + Ha,
where
Hi = S(0,F5)'X(8-8"),

/ 0 *
Hy = Z };Aﬂ‘r /61 )7

11
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with ,@ =aB+ (1—a)B", 0 =ab+ (1—-a)0*, and 6" = (17T, ,@*T)T.

Note that

Hy > Y Aoh(4sa)]1Bi = Bill,
i<j
Hi = —n7') (Qi— Q)8 - Bi).

i<j

Following the similar proof of l) under event A5 such that P(AIQC) < %, we have

”_1’(Qj - Q)" (B - B)

IN

n” 2sup [|Qslll18; — Bl

IA

dcan™ " [y/2Tog(m) 1 + en ™)1, — Bil.
Then,

Cp(B) — Lp(B7) > D { A\ (4sn) — dcan™ " [y/2log(n) /er + en™ /> B; — By]l.

i<y
Let s, — 0, and then Agj(4s,) — cA. Since A > max(y/log(n)/n,n"3/27*), we have £p(8) > (p(B*) for a

sufficiently large n, and thus this completes the proof of Theorem 3.
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