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S1. Properties of penalized likelihood estimator γ̂

In this section, we investigate the consistency, and oracle property of

the penalized likelihood estimator γ̂ of γ. Without loss of generality, we

can write γ = (γ>1,γ
>
2)
>, where γ1 ∈ Rdm and γ2 ∈ Rq−dm correspond

to the nonzero and zero components of γ, respectively. Thus, the true

parameter vector γ0 of γ can be written as γ0 = (γ>10,0
>)>, where γ10 is

the true value of γ1. In addition, the penalized likelihood estimator γ̂ of

γ can be written as γ̂ = (γ̂>1, γ̂
>
2)
>. Let Aγ = {j : γ0j 6= 0} be the index

set of nonzero components of γ0, where γ0j is the jth component of γ0 for

j = 1, . . . , q. Denote the cardinality of Aγ as dm = |Aγ|, which is usually

unknown to be estimated in applications. Here, we assume that the non-
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sparsity size dm � n, and the dimensionality satisfies log(q) = O(nα) for

some α ∈ (0, 1/2). Following Lv and Fan (2009), Zhang (2010), and Fan

and Lv (2011), we define the local concavity of the penalty function fλn(t)

at v = (v1, . . . , vq)
> ∈ Rq (i.e., ‖v‖0 = q) as

ρ(fλn ;v) = lim
ε→0+

max
1≤j≤q

sup
t1<t2∈(|vj |−ε,|vj |+ε)

−∂tfλn(t2)− ∂tfλn(t1)

t2 − t1
,

where ∂kt fλn(t) represents the k-order derivation of fλn(t) with respect to t,

and ‖A‖m denotes the Lm norm of a vector or matrix A for m ∈ [0,∞].

We use tr(A) to represent the trace of matrix A. Denote gi(γ) =

log[π(U i;γ)/{1− π(U i;γ)}] for i = 1, . . . , n, and define the Fisher infor-

mation matrix as

F n(γ) = E{−∂2ln(γ)/∂γ∂γ>} = ∂>γg(γ)Σ(γ)∂γg(γ),

where g(γ) = (g1(γ), . . . , gn(γ))>, and Σ(γ) = diag(π1(1− π1), . . . , πn(1−

πn)) with πi = πi(γ) = π(U i;γ), for i = 1, . . . , n. Let sn = 1
2

minj{|γ0j| :

γ0j 6= 0}, and define N = {τ = (τ>1, τ
>
2)
> ∈ Rq : τ 2 = 0, ‖τ 1−γ10‖∞ ≤ sn}.

The following assumptions are required to ensure the consistency of γ̂.

Assumption 4. The penalty function fλn(t) is increasing and concave

with respect to t ∈ [0,∞), and has a continuous derivation ∂fλn(t) with

∂fλn(0+) = c0, where c0 is a positive constant. Also, ∂fλn(t) is increasing

with respect to λn ∈ (0,∞), and ∂fλn(0+) is independent of λn.
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Assumption 4 holds for a class of penalty functions, such as the SCAD

and MCP penalty functions. By Assumption 4, fλn(t) is a concave function

with respect to t ∈ [0,∞) to ensure ρ(fλn ;v) ≥ 0.

Assumption 5. (i) minτ∈N Emin{F n(τ )} ≥ cn and tr{F n(γ0)} =

O(dmn);

(ii)
∥∥∥∂>γ2

g(γ0)Σ(γ0)∂γ1
g(γ0)

∥∥∥
2,∞

= O(n), where notation ‖B‖2,∞ rep-

resents max‖v‖2=1 ‖Bv‖∞;

(iii) maxτ∈N ,1≤j≤q Emax

[
∂>γ1

g(τ )diag
{
|∂γjg(τ )|◦ |∂2γ1

V (τ )|
}
∂γ1

g(τ )
]

= O(n), where V (γ) = (π1(γ), . . . , πn(γ))>.

Assumption 5(i) has been used in Fan and Lv (2011), and ensures that

the information matrix F n(τ ) is positive definite, and its eigenvalues are u-

niformly bounded. Assumption 5(ii) measures the correlation between each

unimportant variable and important variable using the weighted matrix

Σ(γ0), and controls the uniformly growth rate of these regression coeffi-

cients. This assumption is similar to the strong irrepresentable condition

of Zhao and Yu (2006) for the consistency of Lasso estimator. Assumption

5(iii) is used to control the order of the remainder term when taking the

third-order expansion of the objective function.

Assumption 6. sn � λn �
√
dm/n,

√
n∂fλn(sn) = O(1) and ρ0 =

o(1), where ρ0 = maxτ∈N ρ(fλn ; τ ).
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Assumption 6 shows that the minimum signal sn should be satisfied,

and is used to obtain nice properties of the proposed PLE like other variable

selection methods. However, for the L1 penalty, λn = ∂fλn(sn) = O(n−1/2)

is in conflict with the assumption λn �
√
dm/n, which implies that the L1

penalized likelihood estimator can usually not achieve the consistency rate

of Op(
√
dm/n) given in Theorem S1.1, and has not the oracle property like

the SCAD penalty function. The assumption sn � λn holds automatically

for the SCAD penalty function. Thus, Assumption 6 is less restrictive for

the SCAD penalty function.

Theorem S1.1. Suppose that Assumptions 4–6 hold. There is a strict local

maximizer γ̂ = (γ̂>1, γ̂
>
2)
> of the nonconcave penalized likelihood Qn(γ) with

respect to γ such that γ̂2 = 0 with probability tending to 1 as n → ∞ and

‖γ̂1 − γ10‖2 = Op(
√
dm/n).

Theorem S1.1 shows that the sparsity property of the proposed PLE still

holds in a high-dimensional parametric model. That is, zero components

in γ0 are estimated as zero with probability tending to one. Also, Theorem

S1.1 establishes the consistency of the proposed PLE γ̂1 of γ1, i.e., there is

a root-(n/dm)-consistent PLE of γ1.

To establish the asymptotic normality of the proposed PLE, we need

the following additional assumption, which is associated with the Lyapunov
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assumptions.

Assumption 7. ∂fλn(sn) = o(1/
√
ndm), maxiE|δi − πi(γ0)|3 = O(1),

and
∑n

i=1{∂>γ1
gi(γ0)F

−1
n11(γ0)∂γ1

gi(γ0)}3/2 → 0 as n→∞, where F n11(γ0) =

∂>γ1
g(γ0) Σ(γ0)∂γ1

g(γ0).

Theorem S1.2. Suppose that Assumptions 4–7 hold and dm = o(n1/4).

Then, we have

(i) (Sparsity) γ̂2 = 0 with probability tending to 1 as n→∞.

(ii) (Asymptotic Normality) UnF
1/2
n11(γ0)(γ̂1−γ10)

L→ N (0,G), where

Un is an m × d matrix such that UnU
>
n → G, G is an m ×m symmetric

positive definite matrix with the fixed m, and
L→ represents convergence in

distribution.

Theorem S1.2 indicates that the sparsity and asymptotic normality of

the proposed PLE still hold even for dimensionality of nonpolynomial order

of sample size.

S2. Properties of the proposed screening procedure

Under the assumption Y⊥δ|Xk for k = 1, . . . , p, r̂k can be regarded

as the empirical estimator of E(XkY ) in the presence of responses MAR.

Without of loss generality, for each k = 1, . . . , p, the kth column of covari-

ates satisfies E(Xk) = 0, E(X2
k) = 1. Then we have E(XkY ) = cov(Xk, Y )
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and βk = cov(Xk, Y ), which indicates that βk is the covariance between

Xk and Y . Hence, βk = 0 is equivalent to the fact that Xk and Y are

marginally uncorrelated. Thus, define the index set of the active predictors

asM∗ = {k : βk 6= 0 for 1 ≤ k ≤ p}, which corresponds to the true sparse

model with nonsparsity size |M∗|, where |M∗| is the cardinality of M∗,

and denote I∗ = {1, . . . , p}\M∗ as the index set of the inactive predictors,

where p � n. Here, we assume that p � |M∗| in ultrahigh-dimensional

data analysis and define rk = E(XkY ). To investigate the sure screen-

ing properties of the presented screening criterion, we require the following

assumptions.

Assumption 8. For k = 1, . . . , p, the probability density function of

Xk, say fk(x), has continuous and bounded second order derivatives over

the support Xk of Xk, and is bounded away from zero and infinity uniformly

over Xk.

Assumption 9. The kernel function K(·) is a probability density func-

tion such that (i) it is bounded and has compact support; (ii) it is symmetric

with
∫
t2K(t)dt < 1; (iii) K(·) ≥ d1 for some positive constant d1 in some

closed interval centered at zero; (iv)
√
nh2 → 0 as n→∞.

Assumption 10. Variables Xk, Y and XkY satisfy the sub-exponential

tail probability uniformly in p. That is, there exists a positive constant u0
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such that for all 0 < ũ ≤ 2u0,

max
1≤k≤p

E{exp(2ũX2
k)} <∞, E{exp(2ũY 2)} <∞,

max
1≤k≤p

E{exp(2ũXkY )} <∞.

Assumption 11. There exists a positive constant c0 > 0 and 0 < ς <

1/2 such that mink∈M∗ |rk| ≥ c0n
−ς .

Assumption 12. limp→∞ inf{mink∈M∗ |rk| − maxk/∈M∗ |rk|} ≥ m0 for

some m0 > 0.

Assumptions 8 and 9 impose some regularity assumptions on the prob-

ability density functions fk(x) and kernel function K(·), respectively, which

hold for the widely used distributions and kernel functions. The assump-

tion that
√
nh2 → 0 is to control the bias induced by the kernel smoothing.

Assumption 10 has widely used in high-dimensional data analysis (Fan and

Lv, 2008, and Li et al., 2012), and holds if X, Y and XkY are bound-

ed uniformly of X, Y , and XkY have multivariate normal distribution.

Assumption 11 allows the minimal signal between active variables and re-

sponse variable to be the order of n−ς , which is a widely used condition

to guarantee the sure screening property. Assumption 12 ensures that the

active and inactive predictors can be well separated in the population level.

Assumption 12 is similar to Condition (C3) of Cui et al. (2015).
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Theorem S2.1. (Sure Screening Property) Under Assumptions 1 and 8–

10, then for any constant c2 > 0, there exists c7 > 0 such that

Pr
(

max
1≤k≤p

|r̂k − rk| ≥ c2n
−ς
)
≤ O{p exp(−c7n(1−2ς)/3 + log(n))}

for n sufficiently large. Furthermore, under Assumption 11, by taking %n =

c8n
−ς with c8 ≤ c0/2, there exists some positive constant c9 such that

Pr(M∗ ⊂ M̂) ≥ 1−O{|M∗| exp(−c9n(1−2ς)/3 + log(n))}.

(Ranking Consistency Property) If Assumptions 1, 8–12 and additional as-

sumptions log(p) = o(n1/3m
2/3
0 ) and log(n) = o(n1/3m

2/3
0 ) hold. Then, we

have

lim
n→∞

inf

{
min
k∈M∗

|r̂k| −max
k∈I∗
|r̂k|
}
> 0, a.s..

Theorem S2.1 shows the sure screening and rank consistency properties

of the proposed screening procedure, which indicates that the proposed

MI-SIS method can handle the NP-dimensionality problem. Specifically, as

n→∞, the maximum dimensional is p = o{exp(n(1−2ς)/3)} for ς ∈ (0, 1/2).

In addition, through the ranking consistency property, we can separate the

active and inactive predictors by taking an ideal threshold value %n, which

is smaller than the minimum signal.
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S3. Proofs of all theorems

Let P ∗s = Ds(P s−I)+I, where P s = Xs(X
>
sXs)

−1Xs,Ds = diag(ds1, . . . , d
s
n),

dsi = 1/(1−hsii) and hsii is the ith diagonal element of P s = Xs(X
>
sXs)

−1X>s.

Let ‖A‖ be the Frobenius norm (e.g., ‖A‖ =
√

tr(A>A)), and ‖A‖2 be the

Euclidean norm (e.g., ‖A‖2 =
√

Emax(A
∗A)) of matrix A, where A∗ rep-

resents the conjugate transpose of matrix A. Denote P ∗(ω) =
∑S

s=1 ωsP
∗
s

and P (ω) =
∑S

s=1 ωsP s.

Proof of Theorem S1.1. First, we show the consistency of the proposed

PLE in the dm-dimensional subspace. To this end, we constrain the Qn(γ)

on the dm-dimensional subspace {γ ∈ Rq : γj = 0, j ∈ A c
γ } of Rq, and the

corresponding constrained penalized likelihood function is given by

Q̃n(τ ) =
1

n
l̃n(τ )−

dm∑
j=1

fλn(|τj|), (S3.1)

where τ = (τ1, . . . , τdm)>and l̃n(τ ) =
∑n

i=1[δi log{πi(U τ
i ; τ )}+(1−δi) log{1−

π(U τ
i ; τ )}] in which U τ

i is the subvector of U i corresponding to τ .

Let αn =
√
dm/n, and define the closed set N0 = {τ ∈ Rdm : ‖τ −

γ10‖2 ≤ αnu} for u ∈ (0,∞). Here, the purpose is to show that, for any

κ > 0 and a sufficiently large n, we have

Pr

{
sup
τ∈∂N0

Q̃n(τ ) < Q̃n(γ10)

}
≥ 1− κ,

where ∂N0 denotes the boundary of the closed set N0, which implies that
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there exists a local maximizer γ̂1 in N0 such that ‖γ̂1−γ10‖2 = Op(
√
dm/n).

For a sufficiently large n, it follows from Assumption 6 that αnu ≤ dm.

Taking Taylor expansion of Q̃n(τ ) at the true value γ10 of γ1 yields

Q̃n(τ )− Q̃n(γ10) = (τ − γ10)
>D1 −

1

2
(τ − γ10)

>D2(τ − γ10) (S3.2)

for any τ ∈ N0, where D1 = ∂Q̃n(γ10)/∂γ1 = ∂>γ1
g(γ10){δ−V (γ10)}/n−

∂fλn(γ10),D2 = ∂2Q̃n(γ̃1)/∂γ1∂γ
>
1, and γ̃1 lies on the line segment jointing

τ and γ10. Following Fan and Peng (2004), we can obtain

D2 = − 1
n
∂2l̃n(γ̃1)/∂γ1∂γ

>
1 + diag{∂2fλn(|γ̃1|)}

= 1
n
F n(γ̃1)− 1

n

{
∂2l̃n(γ̃1)/∂γ1∂γ

>
1 − E(∂2l̃n(γ̃1)/∂γ1∂γ1

>)
}

+diag{∂2fλn(|γ̃1|)}

= 1
n
F n(γ̃1) + diag{∂2fλn(|γ̃1|)}+ op(1).

Without loss of generality, when there is no the second-order derivative

of the penalty function fλn(·), it is easily shown that matrix D2 can be

replaced by a diagonal matrix whose maximum absolute element is bounded

by ρ0. Thus, for a sufficiently large n, under Assumptions 5(i) and 6, we

have Emin(D2) ≥ c− ρ0 ≥ c
2
, where c is a constant.

Using the Markov’s inequality and (S3.2) yields

Pr

{
sup
τ∈∂N0

Q̃n(τ ) < Q̃n(γ10)

}
≥ Pr

{
uαn

(
‖D1‖2 −

cuαn
4

)
< 0
}
≥ 1−16E‖D1‖22

c2u2α2
n

.
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However, under Assumptions 5(i) and 6, we have

E‖D1‖22 ≤
1

n2
tr{F n(γ10)}+ dm∂fλn(dm)2 = O(α2

n),

which leads to

Pr

{
sup
τ∈∂N0

Q̃n(τ ) < Q̃n(γ10)

}
≥ 1−O

(
16

c2u2

)
.

Thus, we prove ‖γ̂1 − γ10‖2 = Op(
√
dm/n).

Next, to show the sparsity of the proposed estimator, it is necessary to

prove that γ̂ ∈ Rq is a strict local maximizer of Qn(γ) such that γ̂Aγ =

γ̂1 ∈ N0 ⊂ N and γ̂A c
γ

= γ̂2 = 0. Similar to the proof of Theorem 1 of

Fan and Lv (2011), we only require showing

∥∥∥ 1

nλn
∂γ2

ln(γ̂)
∥∥∥
∞
≤ ∂fλn(0+). (S3.3)

Thus, we have

1
n
∂γ2

ln(γ̂) = 1
n
∂>γ2

g(γ̂){δ − V (γ̂)}

= 1
n

[
ηA c

γ
+
{
∂>γ2

g(γ̂)δ − ∂>γ2
g(γ̂)V (γ̂)

}
−
{
∂>γ2

g(γ0)δ − ∂>γ2
g(γ0)V (γ0)

}]
,

where η = (η1, . . . , ηq)
>= ∂>γg(γ0){δ − V (γ0)}.

Denote Bγ = {‖ηA c
γ
‖∞ ≤ c1

√
n}, where c1 is some constant. Under

Assumption 1, it is easily known that the first- to third-order derivatives

of gi(γ) with respect to γ are bounded. By Bonferroni’s inequality and
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log(q) = O(nα) for some α ∈ (0, 1/2), there exists a constant c′ such that

Pr(Bγ) = Pr(‖ηA c
γ
‖∞ ≤ c1

√
n) = 1− Pr(‖ηA c

γ
‖∞ > c1

√
n)

≥ 1− 2(p− d) exp(−c′n) ≥ 1− 2q exp(−c′n)→ 1.

Under Assumptions 5(ii), 5(iii) and 6, we consider the Taylor expansion

of ∂>γ2
g(γ̂)δ − ∂>γ2

g(γ̂)V (γ̂) at γ10. Thus, we obtain

∥∥ 1
nλn

∂γ2
ln(γ̂)

∥∥
∞ ≤ 1

nλn

[
‖ηA c

γ
‖∞ +

∥∥{∂>γ2
g(γ̂)δ − ∂>γ2

g(γ̂)V (γ̂)
}

−
{
∂>γ2

g(γ0)δ − ∂>γ2
g(γ0)V (γ0)

}∥∥
∞

]
≤ op(1) + 1

nλn

{
O(n)‖γ̂1 − γ10‖2 +O(n)‖γ̂1 − γ10‖22

}
= op(1) +Op(λ

−1
n

√
dm/n) = op(1).

Then, for a sufficiently large n, (S3.3) holds. Hence, we finish the proof of

Theorem S1.1.

Proof of Theorem S1.2. From the proof of Theorem S1.1, we only require

proving the asymptotic normality of γ̂1. For the set N , it is easily shown

that γ̂ = (γ̂>1,0
>)> ∈ N is a strict local maximizer of Q̃n(τ ), which leads

to ∂γ1
Q̃n(γ̂) = 0.

Taking Taylor expansion of ∂γ1
l̃n(γ̂) at γ10 leads to

0 =∂γ1
Q̃n(γ̂) =

1

n
∂γ1

l̃n(γ̂)− ∂fλn(γ̂)

=
1

n
∂>γ1

g(γ0){δ − V (γ0)}

− 1

n

[
F n11(γ0)−

{∂2ln(γ0)

∂γ1∂γ1
> − E

(∂2ln(γ0)

∂γ1∂γ1
>

)}]
(γ̂1 − γ10)
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+O(1)‖γ̂1 − γ10‖22dm − ∂fλn(γ̂)

=
1

n
∂>γ1

g(γ0){δ − V (γ0)} −
1

n
F n11(γ0)(γ̂1 − γ10)− ∂fλn(γ̂)

+ op(n
−1/2d−1/2m ) +Op(d

2
mn
−1).

Under Assumption 7, it follows from minj |τj| ≥ minj∈Aγ |γ0j|−sn = sn and

the monotonicity of ∂fλn(t) that

‖∂fλn(γ̂)‖2 ≤
√
sn∂fλn(sn) = op(n

−1/2). (S3.4)

Combining dm = o(n1/4), (S2.4) and (S3.4) leads to

F n11(γ0)(γ̂1 − γ10) = ∂>γ1
g(γ0){δ − V (γ0)}+ op(

√
n).

By Assumption 5(i), we obtain

F
1/2
n11(γ0)(γ̂1 − γ10) = F

−1/2
n11 (γ0)∂

>
γ1
g(γ0){δ − V (γ0)}+ op(1). (S3.5)

Let UnU
>
n = G, where Un is an m × dm matrix, and G is an m ×m

symmetric positive define matrix. Then, we have UnF
1/2
n11(γ0)(γ̂1 − γ10) =

νn + op(1), where νn = UnF
−1/2
n11 (γ0)∂

>
γ1
g(γ0) {δ − V (γ0)}.

If we can prove νn
L→ N (0,G), it follows from Slutsky’s theorem that

UnF
1/2
n11(γ0)(γ̂1 − γ10)

L→ N (0,G). For any unit vector a ∈ Rm, we have

vn = a>νn = a>UnF
−1/2
n11 (γ0)∂

>
γ1
g(γ0){δ − V (γ0)} =

n∑
i=1

zi,

where zi = a>UnF
−1/2
n11 (γ0)∂γ1

gi(γ0){δi−Vi(γ0)}. It is easily seen that zi’s

13



are independent. For i = 1, . . . , n, we have E(zi) = 0 and

n∑
i=1

var(zi) = a>UnF
−1/2
n11 (γ0)F n11(γ0)F

−1/2
n11 (γ0)U

>
na = a>UnU

>
na

P→ a>Ga,

where
P→ represents the convergence in probability.

Under Assumption 7, it follows from Cauchy-Schwarz inequality that

n∑
i=1

E|zi|3 =
n∑
i=1

|a>UnF
−1/2
n11 (γ0)∂γ1

gi(γ0)|3E|δi − Vi(γ0)|3

= O(1)
n∑
i=1

|a>UnF
−1/2
n11 (γ0)∂γ1

gi(γ0)|3

≤ O(1)
n∑
i=1

‖a>Un‖32 · ‖F
−1/2
n11 (γ0)∂γ1

gi(γ0)‖32

= O(1)
n∑
i=1

{∂γ1
gi(γ0)F

−1
n11(γ0)∂γ1

gi(γ0)}3/2 = o(1).

Using the Lyapunov’s Theorem leads to a>νn =
∑n

i=1 zi
L→ N (0,a>Ga),

which holds for any unit vector a ∈ Rm. Thus, we finish the proof of

Theorem S1.2(ii).

Lemma 1. Suppose that Assumptions 1, 2 and 3(ii) hold. Let pm =

sup1≤s≤S ps. Then, as n→∞, we have

(i) sup1≤s≤S ‖ 1nXs
>ŴXs − 1

n
Xs
>WXs‖ = Op

(
pm

√
dm
n

)
;

(ii) sup1≤s≤S
∥∥( 1

n
Xs
>ŴXs

)−1
−
(
1
n
Xs
>WXs

)−1 ∥∥
2

= Op

(
pm

√
dm
n

)
;

(iii) sup1≤s≤S
∥∥( 1

n
Xs
>ŴXs

)−1 ∥∥
2

= Op(1);

(iv) P̃ (ω)− P̂ (ω) = P ∗(ω)− P (ω) +Op

(
p2mS

√
dm
n

)
.
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Proof. By the definition of Ŵ and W , we obtain

∥∥ 1

n
X>sŴXs −

1

n
X>sWXs

∥∥ =
∥∥n−1 n∑

i=1

(
δi
π̂i
− δi
πi

)
XsiX

>
si

∥∥
≤ sup

i

∣∣ δi
π̂i
− δi
πi

∣∣n−1 n∑
i=1

∥∥XsiX
>
si

∥∥.
Following Lemma 1 of Hirano et al. (2003), and by Theorem S1.1 and

Assumption 1, we have

sup
i

∣∣ 1

π̂i
− 1

πi

∣∣ ≤ sup
i

∣∣∂πi/∂γ1
π2
i

∣∣ · ‖γ̂1 − γ01‖2 = Op

(√
dm
n

)
.

From Assumption 2, we have sups
∑n

i=1 ‖XsiX
>
si‖/n = Op(pm). Thus, we

have proved (i). For (ii), let Ĥs = X>sŴXs/n and Hs = X>sWXs/n.

Following Theorem 1 of Lewis and Reinsel (1985), we obtain

Ĥ
−1
s −H−1s = −Ĥ

−1
s (Ĥs−Hs)H

−1
s = −{H−1s +(Ĥ

−1
s −H−1s )}(Ĥs−Hs)H

−1
s .

Assumptions 1 and 2 imply that sups ‖H−1s ‖2 ≤ Λ <∞ for some constant

Λ. According to Assumption 3(ii) and Lemma 1(i), and sups ‖Ĥs−Hs‖2 ≤

sups ‖Ĥs−Hs‖ → 0, there exists a constant Λ
′

such that Λ‖Ĥs−Hs‖2 <

Λ
′
< 1 as n→∞. Then, with the probability tending to one, we have

sup
1≤s≤S

‖Ĥ
−1
s −H−1s ‖2 ≤ sup

1≤s≤S

Λ2‖Ĥs −Hs‖2
1− Λ‖Ĥs −Hs‖2

,

which leads to (ii). Using the Triangle inequality and Assumption 3(ii)

yields

sup
1≤s≤S

‖Ĥ
−1
s ‖2 ≤ sup

s
‖H−1s ‖2 + sup

1≤s≤S
‖Ĥ

−1
s −H−1s ‖2 = Op(1),
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which shows that Lemma 1(iii) holds. It follows from Wiener and Masani

(1958) that ‖AB‖ ≤ ‖A‖2‖B‖ + ‖A‖‖B‖2 for any matrices A and B .

Combining Theorem S1.1 and Lemma 1(iii) leads to

sup1≤s≤S ‖P̂ s − P s‖ = sup1≤s≤S ‖ 1nXsĤ
−1
s X

>
sŴ − 1

n
Xs(

1
n
X>sXs)

−1X>s‖

≤ sup
i

∣∣∣ δiπ̂i − δi
πi

∣∣∣ · sups ‖Ĥ
−1
s ‖2 · sups

1
n

n∑
i=1

‖XsiX
>
si‖

+ supi

∣∣∣ δiπi − 1
∣∣∣ · sups ‖Ĥ

−1
s ‖2 · sups

1
n

n∑
i=1

‖XsiX
>
si‖

+ sups ‖Ĥ
−1
s − ( 1

n
X>sXs)

−1‖2 · sups
1
n

n∑
i=1

‖XsiX
>
si‖

= Op

(
p2m

√
dm
n

)
.

Similarly, we can obtain sups ‖D̂s −Ds‖ = Op

(
p2m

√
dm
n

)
. It follows from

P̃ s = D̂s(P̂ s − I) + I and the definition of P ∗s that

sup1≤s≤S ‖P̃ s − P ∗s‖ = sup1≤s≤S ‖D̂s(P̂ s − P s) + (D̂s −Ds)P s + (Ds − D̂s)‖

= Op

(
p2m

√
dm
n

)
,

which shows that (iv) holds.

Lemma 2. Under Assumption 3(v), there exists a constant C > 0 such

that (i) Emax(P
∗
s −P s) ≤ Cps/n; (ii) tr{(P ∗s −P s)

>(P ∗s −P s)} ≤ C2p2s/n;

(iii) tr{(P ∗s − P s)
>(P ∗s − P s)}2 ≤ Cp4s/n; (iv) Emax(P

∗
s) ≤ 1 + Cps/n; (v)

tr(P ∗sP
∗>
s ) ≤ Cps.

Proof. We can obtain the proof using Lemma 3.1 of Ando and Li (2014).

Lemma 3. (Hoeffding’s inequality) Let X1, . . . , Xn be independent random
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variables. Assume that Pr(Xi ∈ [ai, bi]) = 1 for 1 ≤ i ≤ n, where ai and bi

are constants. Let X̄ =
∑n

i=1Xi/n. Then the following inequality holds

Pr(|X̄ − E(X̄)| ≥ t) ≤ 2 exp
{
− 2n2t2∑n

i=1(bi − ai)2
}
,

where t is a positive constant and E(X̄) is the expected value of X.

Proof of Theorem 1. Let C
′

be a constant. Denote L∗(ω) = {µ −

µ̃(ω)}>Ŵ {µ− µ̃(ω)} and µ̃(ω) = P̃ (ω)Y . Then, we have

WCV(ω) = {Y − µ̃(ω)}>Ŵ {Y − µ̃(ω)}

= {µ+ ε− P̃ (ω)Y }>Ŵ {µ+ ε− P̃ (ω)Y }

= ε>Ŵε+ L∗(ω) + 2 < Ŵ
1/2
ε, Ŵ

1/2
{µ− P̃ (ω)Y } >

= ε>Ŵε+ L(ω)

{
L∗(ω)
L(ω)

+
2<Ŵ

1/2

ε,Ŵ
1/2

(µ−P̃ (ω)Y )>/R(ω)

L(ω)/R(ω)

}
.

Thus, ω̂ can be obtained by minimizing WCV∗(ω) = WCV(ω) − ε>Ŵε

over ω ∈ W . According to the definition of (2.4), if we can show

sup
ω∈W

|L∗(ω)/L(ω)− 1| → 0, (S3.6)

sup
ω∈W

| < Ŵ
1/2
ε, Ŵ

1/2
{µ− P̃ (ω)Y } > |/R(ω)→ 0, (S3.7)

sup
ω∈W
|L(ω)/R(ω)− 1| → 0, (S3.8)

we can obtain that L(ω̂)/ inf
ω∈W

L(ω) → 1 is valid. Using the Cauchy-

17



Schwartz inequality leads to

|L∗(ω)− L(ω)| = |{µ− P̃ (ω)Y }>Ŵ {µ− P̃ (ω)Y } − {µ− P̂ (ω)Y }>Ŵ {µ− P̂ (ω)Y }|

= |‖Ŵ
1/2
{P̃ (ω)− P̂ (ω)}Y ‖2

−2 < Ŵ
1/2
{µ− P̂ (ω)Y }, Ŵ

1/2
{P̃ (ω)− P̂ (ω)}Y > |

≤ ‖Ŵ
1/2
{P̃ (ω)− P̂ (ω)}Y ‖2 + 2

√
L(ω)‖Ŵ

1/2
{P̃ (ω)− P̂ (ω)}Y ‖.

To show (S3.6), it is sufficient to show

sup
ω∈W

‖Ŵ
1/2
{P̃ (ω)− P̂ (ω)}Y ‖2/L(ω)→ 0. (S3.9)

From Lemma 1(iv), we have P̃ (ω)−P̂ (ω) = P ∗(ω)−P (ω)+Op(Sp
2
m

√
dm/n).

By (S3.8) and triangle inequality, the proof of (S3.9) is equivalent to proving

sup
ω∈W

S2p4mdmn
−1/R(ω)→ 0, (S3.10)

sup
ω∈W

‖Ŵ
1/2
{P ∗(ω)− P (ω)}Y ‖2/R(ω)→ 0. (S3.11)

Under Assumptions 3(iii), (iv) and (vi), we obtain

sup
ω∈W

S2p4mdmn
−1/R(ω) ≤ S2p4mdmn

−1/ξn

=
(
S4G‖µ‖2G

ξ2Gn

)1/2G
·
√
n
‖µ‖ ·

(
p
8/3
m dm
n

)3/2
· 1√

dm
→ 0,

which indicates that (S3.10) holds. Applying the triangle inequality to

(S3.11) yields

||Ŵ
1/2
{P ∗(ω)− P (ω)}Y ||2

=

{
S∑
s=1

ωs‖Ŵ
1/2

(P ∗s − P s)µ‖+
S∑
s=1

ωs‖Ŵ
1/2

(P ∗s − P s)ε‖

}2

18



≤

{
S∑
s=1

‖Ŵ
1/2

(P ∗s − P s)µ‖+
S∑
s=1

‖Ŵ
1/2

(P ∗s − P s)ε‖

}2

≤S2
{

max
s
‖Ŵ

1/2
(P ∗s − P s)µ‖+ max

s
‖Ŵ

1/2
(P ∗s − P s)ε‖

}2

≤2S2
{

max
s
‖Ŵ

1/2
(P ∗s − P s)µ‖2 + max

s
‖Ŵ

1/2
(P ∗s − P s)ε‖2

}
.

To prove (S3.11), it suffices to show that as n→∞, we have

S2 max
s
‖Ŵ

1/2
(P ∗s − P s)µ‖2/ξn → 0, (S3.12)

S2 max
s
‖Ŵ

1/2
(P ∗s − P s)ε‖2/ξn → 0. (S3.13)

Note that

δi
π̂i

=
δi
πi

{
1−

∂>γ1
πi

πi
(γ̂1 − γ10) + op(

√
dm/n)

}
.

By Theorem S1.1 and Assumption 1, we have

sup
i

∣∣∣∣ δiπ̂i
∣∣∣∣ ≤ sup

i

∣∣∣∣ δiπi
∣∣∣∣+ sup

i

∣∣∣∣∣∂
>
γ1
πi

π2
i

∣∣∣∣∣ · ‖γ̂1 − γ10‖2 ≤
1

C0

+Op(
√
dm/n) ≤ C

′
.

(S3.14)

Therefore, for (S3.12) and (S3.13), it is sufficient to show

S2 max
s
‖Ŵ

1/2
(P ∗s − P s)µ‖2/ξn ≤ S2 max

s
sup
i
|δi/π̂i| · ‖(P ∗s − P s)µ‖2/ξn

≤ C
′
S2 max

s
‖(P ∗s − P s)µ‖2/ξn → 0,

(S3.15)
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S2 max
s
‖Ŵ

1/2
(P ∗s − P s)ε‖2/ξn ≤ S2 max

s
sup
i
|δi/π̂i| · ‖(P ∗s − P s)ε‖2/ξn

≤ C
′
S2 max

s
‖(P ∗s − P s)ε‖2/ξn → 0.

(S3.16)

By Lemma 2(i), Assumptions 1 and 3(iii), (iv) and (vi), for any κ > 0, we

only require showing

Pr
(
S2 max

s
‖(P ∗s − P s)µ‖2/ξn > κ

)
≤

S∑
s=1

Pr
(
S4G‖(P ∗s − P s)µ‖4G/ξ2Gn > κ2G

)
≤ S4G

κ2Gξ2Gn

S∑
s=1

{E‖(P ∗s − P s)µ‖4G}

≤C ′ S4G

κ2Gξ2Gn

S∑
s=1

‖(P ∗s − P s)µ‖4G

≤C ′ S4G

κ2Gξ2Gn

S∑
s=1

{Emax(P
∗
s − P s)}4G‖µ‖4G

≤C ′C4G · S
4G+1‖µ‖2G

ξ2Gn κ2G
·
(
‖µ‖2

n

)G
·

(
p
4/3
m

n

)3G

→ 0,

which implies that (S3.15) holds.

To prove (S3.16), it is sufficient to show that for any κ > 0, we have

S∑
s=1

Pr
{
S2|‖(P ∗s − P s)ε‖2 − E‖(P ∗s − P s)ε‖2|/ξn > κ

}
→ 0, (S3.17)

S2 max
s
E‖(P ∗s − P s)ε‖2/ξn → 0. (S3.18)

By Theorem 2 of Whittle (1960) and Lemma 1(iii), it follows from (S3.17)
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and Assumptions 3(i), (iii) and (vi) that

S∑
s=1

Pr
{
S2|‖(P ∗s − P s)ε‖2 − E‖(P ∗s − P s)ε‖2|/ξn > κ

}
≤

S∑
s=1

S4GE
{
‖(P ∗s − P s)ε‖2 − E‖(P ∗s − P s)ε‖2

}2G
/(ξ2Gn κ2G)

≤C ′
S∑
s=1

S4G
[
tr{(P ∗s − P s)

>(P ∗s − P s)}2
]G
/(ξ2Gn κ2G)

≤C ′CG · S4G

ξ2Gn κ2G

S∑
s=1

(
p4s
n3

)G

≤C ′CG · S
4G+1

ξ2Gn κ2G
·

(
p
4/3
m

n

)3G

→ 0,

which implies that (S3.17) holds. Also, it follows from Assumptions 3(iii),

(vi) and Lemma 2(ii) that

S2 max
s
E‖(P ∗s − P s)ε‖2/ξn =S2 max

s
tr[(P ∗s − P s)σε(P ∗s − P s)

>]ξ−1n

≤C2Emax(σε)
p2sS

2

nξn

=C2 · Emax(σε) · p
2
s

n
·
(
S4G

ξ2Gn

)1/2G

→ 0,

which implies that (S3.18) holds. Combining the proof of Lemma 1(iv) and

triangle inequality, we obtain the following decomposition of (S3.7):

| < Ŵ
1/2
ε, Ŵ

1/2
{µ− P̃ (ω)Y } > |

≤| < Ŵ
1/2
ε, Ŵ

1/2
µ > |+ | < Ŵ

1/2
ε, Ŵ

1/2
P ∗(ω)µ > |

+ | < Ŵ
1/2
ε, Ŵ

1/2
P ∗(ω)ε > |+Op

(
Sp2m

√
dm
n

)
.
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Similar to the proof of (S3.10), under Assumptions 3(iii), (iv) and (vi), we

delete the term Op(Sp
2
m

√
dm/n). Thus, the proof of (S3.7) is equivalent to

proving

sup
ω∈W

| < Ŵ
1/2
ε, Ŵ

1/2
µ > |/R(ω)→ 0, (S3.19)

sup
ω∈W

| < Ŵ
1/2
ε, Ŵ

1/2
P ∗(ω)µ > |/R(ω)→ 0, (S3.20)

sup
ω∈W

| < Ŵ
1/2
ε, Ŵ

1/2
P ∗(ω)ε > |/R(ω)→ 0. (S3.21)

Using the similar arguments of (S3.14) and (S3.15), by Markov’s inequality,

under Assumptions 3(i), (vi) and (S3.14), given any κ > 0, we have

Pr

{
sup
ω∈W

| < Ŵ
1/2
ε, Ŵ

1/2
µ > |/R(ω) > κ

}
≤E|ε

>Ŵµ|2G

κ2Gξ2Gn
≤ C

′
κ−2G

‖µ‖2G

ξ2Gn
→ 0.

For (S3.19), under (S3.14), we obtain |ε>ŴP ∗(ω)µ| ≤ C
′ |ε>P ∗(ω)µ|. Ac-

cording to Lemma 2(iv) and Assumption 3(i) and (vi), we just require

proving

Pr

(
sup
ω∈W

| < ε,P ∗(ω)µ > |/R(ω) > κ

)
≤Pr

(
Smax

s
| < ε,P ∗sµ > | > κξn

)
≤

S∑
s=1

Pr
(
S2G| < ε,P ∗sµ > |2G > κ2Gξ2Gn

)

22



≤ S2G

ξ2Gn κ2G

S∑
s=1

E|εP ∗sµ|2G

≤C ′ S2G

ξ2Gn κ2G

S∑
s=1

Emax(P
∗
s)

2G‖µ‖2G

≤C ′ · (1 + C)2G · S
2G+1‖µ‖2G

κ2Gξ2Gn
→ 0.

Similarly, by Lemma 2(v), we only require proving

Pr

(
sup
ω∈W

| < ε,P ∗(ω)ε > |/R(ω) > κ

)
≤Pr

(
Smax

s
| < ε,P ∗sε > | > κξn

)
≤ S2G

κ2Gξ2Gn

S∑
s=1

E|ε>P ∗sε|2G

≤C ′σ2G
ε

S2G

κ2Gξ2Gn

S∑
s=1

{tr(P ∗sP ∗>s )}G

≤C ′ · CG · σ2G
ε ·

S2G+1nG

κ2Gξ2Gn
→ 0,

where the third inequality holds because of Assumption 1 and Assumption

3(i), the last term converges to zero because of Assumption 3(vi).

To show (S3.8), using the similar arguments of (S3.14) and (S3.15), by

Triangle inequality, we have

|L(ω)−R(ω)|

=|{µ− µ̂(ω)}>Ŵ {µ− µ̂(ω)} − E[{µ− µ̂(ω)}>Ŵ {µ− µ̂(ω)}|X]|

≤‖Ŵ
1/2
M̃ (ω)µ‖2 + ‖Ŵ

1/2
P̂ (ω)ε‖2 + 2| < Ŵ

1/2
M̃ (ω)µ, Ŵ

1/2
P̂ (ω)ε > |
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+ E{‖Ŵ
1/2
M̃(ω)µ‖2|X}+ E{‖Ŵ

1/2
P̂ (ω)ε‖2|X}

+ |E{2 < Ŵ
1/2
M̃ (ω)µ, Ŵ

1/2
P̂ (ω)ε > |X}|

≤C ′‖M̃ (ω)µ‖2 + C
′‖P̂ (ω)ε‖2 + 2C

′ | < M̃ (ω)µ, P̂ (ω)ε > |

+ C
′
E{‖M̃ (ω)µ‖2|X}+ C

′
E{P̂ (ω)ε‖2|X}+ 2C

′ |E{< M̃(ω)µ, P̂ (ω)ε > |X}|

where M̃ (ω) = I − P̂ (ω). From the proof of Lemma 1(iv), by (S3.10)

and Assumption 3(vi), if we delete the remainder term Op(S
2p4mdm/n), the

proof of (S3.8) is equivalent to show,

sup
ω∈W

∣∣∣‖M(ω)µ‖2

R(ω)

∣∣∣→ 0, (S3.22)

sup
ω∈W

∣∣∣‖P (ω)ε‖2 − tr{P (ω)σεP
>(ω)}

R(ω)

∣∣∣→ 0, (S3.23)

sup
ω∈W

∣∣∣<M (ω)µ,P (ω)ε >

R(ω)

∣∣∣→ 0, (S3.24)

where M = I − P (ω). Based on Assumption 3(vi), we can obtain (S3.22)

using the method given in the proof of (S3.12). Next, we prove (S3.23)

under Assumptions 3(i), (iv) and (vi). For any κ > 0, we have

Pr

{
sup
ω∈W

∣∣∣‖P (ω)ε‖2 − tr
{
P (ω)σεP

>(ω)
}

R(ω)

∣∣∣ > κ

}

≤Pr

{
sup
ω∈W

S∑
s=1

S∑
k=1

ωsωk|ε>P sP kε− σεtr(P sP k)| > κξn

}

≤Pr
{
S2 max

s
max
k
|ε>P sP kε− σεtr(P sP k)| > κξn

}
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≤
S∑
s=1

S∑
k=1

Pr
{
|ε>P sP kε− σεtrP sP k| > κξn/S

2
}

≤
S∑
s=1

S∑
k=1

S4G

κ2Gξ2Gn
E|ε>P sP kε− σεtrP sP k|2G

≤C ′ S4G

κ2Gξ2Gn

S∑
s=1

S∑
k=1

{tr(P 2
sP

2
k)}G

≤C ′ · S
4G+2nG

ξ2Gn
· κ−2G → 0,

where the last inequality holds since P (ω) is the idempotent matrix. Sim-

ilarly, I − P (ω) is also the idempotent matrix. Then, under Assumptions

3(i) and (vi), for any κ > 0, we have

Pr

{
sup
ω∈W

∣∣∣<M (ω)µ,P (ω)ε >

R(ω)

∣∣∣ > κ

}
≤Pr

{
sup
ω∈W

S∑
s=1

S∑
k=1

|µ>(I − P s)P kε| > κξn

}

≤ S4G

κ2Gξ2Gn

S∑
s=1

S∑
k=1

E|µ>(I − P s)P kε|2G

≤C ′ S4G

κ2Gξ2Gn

S∑
s=1

S∑
k=1

‖P s(I − P k)µ‖2G

≤C ′ · S
4G+2‖µ‖2G

ξ2Gn
· κ−2G → 0,

which indicates that we have proved (S3.21). Thus, we finish the proof of

Theorem 1.

Proof of Theorem S2.1. We first show the sure screening property. For
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each k = 1, . . . , p, define

m(x) = E(XkY |Xk = x)

and

m̂(x) =

∑n
j=1 δjKh(x−Xjk)Yj∑n
j=1 δjKh(x−Xjk)

.

By the definition of r̂k and rk, we have

r̂k − rk =
1

n

n∑
i=1

{
δiXikYi + (1− δi)

1

m

m∑
v=1

XikỸ
k
iv

}
− E(XkY )

=
1

n

n∑
i=1

(1− δi){m̂(Xik)−m(Xik)}+
1

n

n∑
i=1

(1− δi)
{ 1

m

m∑
v=1

XikỸ
k
iv − m̂(Xik)

}
+

1

n

n∑
i=1

δi{XikYi −m(Xik)}+
1

n

n∑
i=1

{m(Xik)− E(XkY )}

=Jk1 + Jk2 + Jk3 + Jk4.

For Jk2, Wang and Chen (2009) have proved Jk3 = op(1/
√
n) as n and m→

∞. Thus, as n is sufficiently large, for any ς ∈ (0, 1/2) and c2 > 0, we have

Pr{|r̂k − rk| ≥ c2n
−ς} = Pr(|Jk1 + Jk2 + Jk3 + Jk4| ≥ c2n

−ς)

≤ Pr(|Jk1 + Jk3 + Jk4| ≥ c2n
−ς − |Jk2|)

≤ Pr(|Jk1 + Jk3 + Jk4| ≥ c2n
−ς/2).

Through defining η(x) = π(x)fk(x) and η̂(x) =
∑n

j=1 δjKh(Xik − x)/n,

where π(·) is the selection probability function and fk(·) is the probability

density function of Xk. Thus we can decompose Jk1 as
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Jk1 =
1

n

n∑
i=1

(1− δi){m̂(Xik)−m(Xik)}

=
1

n

n∑
i=1

(1− δi)
∑n

j=1 δjKh(Xjk −Xik){XikYi −m(Xjk)}/n
η(Xik)

+
1

n

n∑
i=1

(1− δi){m̂(Xik)−m(Xik)}
η(Xik)− η̂(Xik)

η(Xik)

+
1

n

n∑
i=1

(1− δi)
∑n

j=1 δjKh(Xjk −Xik){m(Xjk)−m(Xik)}/n
η(Xik)

= Jk11 + Jk12 + Jk13

= J̃k11 + (Jk11 − J̃k11) + Jk12 + Jk13,

where J̃k11 = (1/n)
∑n

i=1 δi{XikYi − m(Xik)}{1− π(Xik)}/π(Xik). Under

the Assumptions 1, 8, and 9, by the similar certification of Wang and Chen

(2009), Jk11 − J̃k11 = op(1/
√
n), Jk12 = op(1/

√
n) and Jk13 = op(1/

√
n).

Then we can write

Pr(|Jk1 + Jk3 + Jk4| ≥ c2n
−ς/2)

≤Pr(|J̃k11 + (Jk11 − J̃k11) + Jk12 + Jk13 + Jk3 + Jk4| ≥ c2n
−ς/2)

≤Pr(|J̃k11 + Jk3 + Jk4| ≥ c2n
−ς/2− |Jk11 − J̃k11| − |Jk12| − |Jk13|)

≤Pr(|J̃k11 + Jk3 + Jk4| ≥ c2n
−ς/16).

27



Note that

J̃k11 + Jk3 + Jk4

=(1/n)
n∑
i=1

δi{XikYi −m(Xik)}{1− π(Xik)}/π(Xik)

+
1

n

n∑
i=1

δi{XikYi −m(Xik)}+
1

n

n∑
i=1

{m(Xik)− E(XkY )}

=
1

n

n∑
i=1

δi{XikYi − E(XkY )} 1

π(Xik)

+
1

n

n∑
i=1

{π(Xik)− δi}
π(Xik)

[m(Xik)− E{m(Xik)}]

=I1 + I2.

Under Assumption 1, for any M > 0, we have

Pr(|I1| ≥ c2n
−ς/32) =Pr

{∣∣∣∣∣ 1n
n∑
i=1

δi{XikYi − E(XkY )} 1

π(Xik)

∣∣∣∣∣ ≥ c2n
−ς/32

}

≤Pr

{∣∣∣∣∣ 1n
n∑
i=1

δi{XikYi − E(XkY )}

∣∣∣∣∣ ≥ C0c2n
−ς/32

}

≤Pr

{∣∣∣∣∣ 1n
n∑
i=1

δi{XikYi − E(XkY )}

∣∣∣∣∣ ≥ C0c2n
−ς/32, max

i
|δiXikYi| < M

}

+ Pr(max
i
|XikYi| ≥M).

According to Assumption 10 and Lemma S3 of Liu et al. (2014), there

are some positive constants c3 and c4 such that for any M > 0, we have

Pr(|XkY | ≥ M) ≤ c3 exp(−c4M). Thus, by taking M = c−13 n(1−2ς)/3,

applying the Hoeffdings inequality in Lemma 3 and yields that there exists
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a positive constant c5 such that

Pr

{∣∣∣∣∣ 1n
n∑
i=1

δi{XikYi − E(XkY )}

∣∣∣∣∣ ≥ C0c2n
−ς/32, max

i
|δiXikYi| < M

}

+ Pr(max
i
|XikYi| ≥M)

≤2 exp(−n1−2ς/M2) +
n∑
i=1

Pr(|XikYi| ≥M)

≤O(n) exp{−c5n(1−2ς)/3}.

According to the Assumptions 1 and 10, the above argument can be used to

I2, we have Pr(|I2| ≥ c2n
−ς/32) ≤ O(n) exp{−c6n(1−2ς)/3} for some constant

c6. Thus, there exists a constant c7 such that

Pr

(
max
1≤k≤p

|r̂k − rk| ≥ c2n
−ς
)

≤pPr(|I1| ≥ c2n
−ς/32) + pPr(|I2| ≥ c2n

−ς/32)

≤O(n)p exp{−c7n(1−2ς)/3} = O{p exp(−c7n(1−2ς)/3 + log(n))}.

In fact, by Sn = {max
k∈M∗

|r̂k − rk| ≤ c0n
−ς/2} and Assumption 11, we have

min
k∈M∗

|r̂k| ≥ min
k∈M∗

(|rk| − |r̂k − rk|) ≥ min
k∈M∗

|rk| − max
k∈M∗

|r̂k − rk| ≥ c0n
−ς/2.

Thus, by taking %n = c8n
−ς with c8 ≤ c0/2, there exists some positive

constant c9 such that

Pr(M∗ ⊂ M̂) ≥ Pr(Sn) ≥ 1−O{|M∗| exp(−c9n(1−2ς)/3 + log(n))}.
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Now we show the ranking consistency property. It is easily shown that

Pr

{(
min
k∈M∗

|r̂k| −max
k∈I∗
|r̂k|
)
< m0/2

}
≤ Pr

{(
min
k∈M∗

|r̂k| −max
k∈I∗
|r̂k|
)
−
(

min
k∈M∗

|rk| −max
k∈I∗
|rk|
)
< −m0/2

}
≤ Pr

{∣∣∣(min
k∈M∗

|r̂k| −max
k∈I∗

∣∣∣r̂k|)− (min
k∈M∗

|rk| −max
k∈I∗
|rk|
) ∣∣∣ ≥ m0/2

}
≤ Pr

(
2 max
1≤k≤p

|r̂k − rk| ≥ m0/2

)
≤ pPr(|r̂k − rk| ≥ m0/4)

≤ O(n)p exp(−c10n1/3m
2/3
0 )

for some constants c10, where the first inequality holds because of Assump-

tion 12.

Note that log(n) = o(n1/3m
2/3
0 ) and log(p) = o(n1/3m

2/3
0 ) imply that

p ≤ exp(c10n
1/3m

2/3
0 /2), c10n

1/3m
2/3
0 /2 ≥ 4 log(n) for sufficiently large n.

Thus, for some n0, we have

∞∑
n=n0

pn exp(−c10n1/3m
2/3
0 ) ≤ 2

∞∑
n=n0

exp{c10n1/3m
2/3
0 /2− c10n1/3m

2/3
0 + log(n)}

≤ 2
∞∑

n=n0

exp{−3 log(n)} ≤ 2
∞∑

n=n0

n−3 < +∞.

Hence, by Borel Contelli Lemma, we have

lim
n→∞

inf

{
min
k∈M∗

|r̂k| −max
k∈I∗
|r̂k|
}
> 0 a.s.
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