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Abstract: This study considers the ultrahigh-dimensional prediction problem in the

presence of responses missing at random. A two-step model-averaging procedure

is proposed to improve the prediction accuracy of the conditional mean of the

response variable. The first step specifies several candidate models, each with low-

dimensional predictors. To implement this step, a new feature-screening method is

developed to distinguish between the active and inactive predictors. The method

uses the multiple-imputation sure independence screening (MI-SIS) procedure, and

candidate models are formed by grouping covariates with similar size MI-SIS values.

The second step develops a new criterion to find the optimal weights for averaging a

set of candidate models using weighted delete-one cross-validation (WDCV). Under

some regularity conditions, we show that the proposed screening statistic enjoys the

ranking consistency property, and that the WDCV criterion asymptotically achieves

the lowest possible prediction loss. Simulation studies and an example demonstrate

the proposed methodology.

Key words and phrases: High-dimensional data, missing at random, model averag-

ing, multiple imputation, screening, weighted delete-one cross-validation.

1. Introduction

Model selection and model averaging are two popular approaches to improv-

ing the prediction accuracy in a regression analysis. Model selection is often

implemented by using some proper criterion, such as the Akaike information cri-

terion (AIC) (Akaike (1973)) or Bayesian information criterion (BIC) (Schwarz

(1978)), to select the best model from among a set of candidate models. Be-

cause these model-selection methods ignore the contributions of other candidate

models, they may suffer from the model selection uncertainty and bias prob-

lem when a single model is not overwhelmingly supported by the data (Hjort

and Claeskens (2003)). More importantly, different model-selection methods or
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criteria may lead to different best models; thus statistical inferences based on

the final model would vary between data sets. To address this issue, a model-

averaging approach has been proposed to improve the prediction accuracy that

pools predictions by giving higher weights to better models. As such, it often

reduces the bias in the regression prediction, by not depending on only one best

model. Furthermore it ensures that we do not ignore useful information from the

relationship between the response and the covariates (Zhang (2013)). Various

model-averaging approaches have been proposed, including AIC model averaging

(Akaike (1979)), BIC model averaging (Hoeting et al. (1999)), Mallows model av-

eraging (Hansen (2007); Wan, Zhang and Zou (2010)), jackknife model averaging

(Hansen and Racine (2012)), Kullback–Leibler (KL) loss model averaging (Zhang

et al. (2016)), and generalized least squares model averaging with heteroskedastic

errors (Liu, Okui and Yoshimura (2016)). However, the aforementioned methods

are applicable only when the dimension of the predictors is less than the sample

size, and thus cannot be applied directly to ultrahigh-dimensional data.

High-dimensional data in which the number of predictors is much larger than

the sample size, are often encountered in fields such as biomedicine, social sci-

ence, and economics. A statistical analysis of high-dimensional data is quite chal-

lenging. For conducting inferences on statistical models with high-dimensional

data, many penalized methods have been developed that simultaneously select

important predictors and estimate unknown parameters in the considered mod-

els. These methods include the Lasso (Tibshirani (1996)), smoothly clipped

absolute deviation (SCAD) (Fan and Li (2001)), and minimax concave penalty

(MCP) (Zhang (2010)). When the dimensionality of the predictors grows expo-

nentially fast with the sample size, we use feature-screening methods to reduce

the dimensionality of the predictors to a moderate scale, allowing us to apply

classical statistical inference methods to the reduced models. For example, see

Fan and Lv (2008), Fan and Song (2010), and Chang, Tang and Wu (2013) for

model-based feature-screening methods; and Zhu et al. (2011); Li, Zhong and

Zhu (2012); He, Wang and Hong (2013); Chang, Tang and Wu (2016); Xie et

al. (2020) for model-free feature-screening approaches. A few works have investi-

gated model averaging in ultrahigh-dimensional data. For instance, Ando and Li

(2014) proposed a two-step model-averaging procedure for ultrahigh-dimensional

regression models using a delete-one cross-validation procedure to estimate the

model weights; Lan et al. (2018) proposed a sequential model-averaging approach

to making stable predictions for high-dimensional linear regression models. How-

ever, existing model-averaging methods for high-dimensional regression models
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focus mainly on fully observed data.

Missing data are relatively common in surveys, clinical trials, and longitudi-

nal studies. For example, some individuals may be unwilling to answer sensitive

questions, information may be lost as a result of uncontrollable factors, and indi-

viduals may be surveyed intermittently or drop out of the study (Little and Rubin

(2019)). Ignoring missing data may lead to prediction bias. To address this issue,

model-selection and model-averaging methods have been developed to improve

the prediction accuracy in the presence of missing data. For example, Ibrahim,

Zhu and Tang (2008) developed a novel model-selection criterion for the miss-

ing data problem based on the EM algorithm; Schomaker, Wan and Heumann

(2010) presented two approaches to handle missing data for the model-averaging

problem; Dardanoni, Modica and Peracchi (2011) adopted a model-averaging

approach to tackle the bias–precision trade-off in the presence of missing covari-

ate values in linear regression models; Zhang (2013) proposed using the Mallows

model-averaging approach to handle covariates missing completely at random;

and Fang et al. (2017) presented a model-averaging approach in the context of

fragmentary data. However, the aforementioned works all apply to the classi-

cal setting in which the number of predictors is fixed and less than the sample

size. To the best of our knowledge, few works have examined model-averaging

for ultrahigh-dimensional regression models with responses missing at random

(MAR).

This study proposes a two-step model-averaging approach for ultrahigh-

dimensional regression models in the presence of responses MAR. The first step

constructs a set of candidate models, each with low-dimensional predictors. To

implement this step, we develop a new feature-screening index, called the multiple-

imputation sure independence screening (MI-SIS) index, to identify the active

and inactive predictors. Thus, candidate models are formed by grouping predic-

tors with similar size MI-SIS values. Under some mild regularity assumptions,

we show its sure screening and ranking consistency properties. The proposed

feature-screening procedure is robust to a misspecification of the propensity score

function. The second step uses the weighted delete-one cross-validation (WDCV)

criterion to identify the optimal weights for averaging a set of candidate mod-

els. Under some regularity assumptions, we prove that the derived weights are

asymptotically optimal, in the sense that the corresponding weighted squared

error is asymptotically identical to that of the infeasible best positive model av-

eraging estimator, where the standard constraint that the sum of the weights is

equal to one is removed.
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For simplicity, we assume a parametric propensity score function with high-

dimensional covariates. A penalized likelihood method with some proper penalty

function is employed to simultaneously estimate the regression coefficients and

select the significant covariates in the assumed parametric propensity score func-

tion. In addition, we present a data-driven approach (e.g., the BIC) in numerical

studies to select the tuning parameter in the penalized likelihood function. Un-

der some regularity assumptions, we prove the oracle properties of the proposed

penalized likelihood estimators of the parameters, including the sparsity and

asymptotic normality.

The rest of this paper is organized as follows. In Section 2, we describe the

model setting and present our two-step model-averaging procedure in the pres-

ence of responses MAR. In Section 3, we systematically investigate the asymp-

totic properties of the proposed shrinkage estimators, establish the sure screening

and rank consistency properties of the proposed screening procedure, and demon-

strate the optimality of the weighted model-averaging estimator. In Section 4, we

evaluate the proposed methods using simulation studies and a real-data exam-

ple. Section 5 concludes the paper. All technical details are given in the online

Supplementary Material.

2. Method

Consider a data set {(Yi,Xi), i = 1, . . . , n} with n individuals, where Yi is

the response variable and Xi = (Xi1, . . . , Xip)
> is a p× 1 vector of predictors. It

is assumed that Xi are fully observed, whilst Yi are subject to missingness. We

define δi = 1 if Yi is observed, and δi = 0 otherwise. Thus, the complete data set

consists of observations {(Xi, Yi, δi), i = 1, . . . , n}. To quantify the relationship

between the response variable and the predictors, we consider the following linear

regression model:

Yi = X>iβ + εi, i = 1, . . . , n, (2.1)

where β = (β1, . . . , βp)
> is a p × 1 vector of unknown regression coefficients,

and εi is an independent random error with mean zero and finite variance σ2ε .

Without loss of generality, we omit the intercept term. Throughout this paper,

we assume that the number of predictors is allowed to grow with the sample size;

that is, log(p) = o(nv), for some constant v ∈ (0, 1). In this case, it is recognized

that only a few predictors may indeed contribute to Yi; that is, model (2.1) has a

sparse structure. Thus, a feature-screening method should be employed to select

the important predictors.
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For missing data Yi, we assume that δi is independent of δj , for any i 6= j, and

that δi depends only on some components of Xi; that is, the missingness data

mechanism is MAR. However, in practice, it is rather difficult to determine which

components of Xi contribute to the missingness of Yi. More importantly, it is

recognized that only a few covariates may indeed contribute to the missingness

of Yi (Lee and Tang (2006)). In general, we initially incorporate many covariates

to specify the missingness data mechanism, and then use a penalized method to

identify those that contribute to the missingness of Yi. For example, following

much of the literature on missing data, we consider the following parametric

model for δi:

Pr(δi = 1|U i,γ) = π(U i;γ) := πi(γ), (2.2)

which defines a MAR mechanism, where γ is a q× 1 vector of unknown parame-

ters, and π(·) is the selection probability function. Furthermore U i is a subvector

of Xi (i.e., U i is composed of some components of Xi), but the true components

of U i (i.e., the covariates indeed contribute to the missingness of Yi) may be

different from those of Xi (i.e., the predictors indeed contribute to Yi). As an

illustration, consider logit{πi(γ)} = U>iγ, where logit(πi) = log{πi/(1 − πi)}.
For identification, we assume that q may be less than p, and log(q) = O(nα)

for α ∈ (0, 1/2). We again assume that the aforementioned missingness data

mechanism model has a sparse structure.

Under the MAR assumption defined above, penalized methods such as the

Lasso, Adaptive Lasso, and SCAD methods can be employed to evaluate the

maximum likelihood estimation (denoted as γ̂) of γ. That is, γ̂ can be obtained

by maximizing the following penalized log-likelihood function with respect to γ:

Qn(γ) =
1

n
ln(γ)−

q∑
j=1

fλn
(|γj |), (2.3)

where ln(γ) =
∑n

i=1 [δi log π(U i,γ) + (1− δi) log{1− π(U i,γ)}], fλn
(t) is some

proper penalty function, γj is the jth component of γ, and λn ≥ 0 is a regu-

larization parameter controlling the trade-off between the bias and the model

complexity. For example, one can take fλn
(t) as the SCAD regularization (Fan

and Li (2001)), which is defined in terms of its first derivative and is symmetric

around the origin. For γ > 0, the first derivative of the SCAD regularization has

the form

f ′λn
(γ) = λn

{
I(γ ≤ λn) +

(aλn − γ)+
(a− 1)λn

I(γ > λn)

}
,
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where a > 2 and λn > 0 are the tuning parameters, b+ = bI(b ≥ 0), and

I(γ ≤ λn) is an indicator function of the event {γ ≤ λn}, which takes one if

γ ≤ λn, and zero otherwise. Fan and Li (2001) proposed using a = 3.7, from a

Bayesian point of view. The parameter λn can be determined using a data-driven

method such as cross-validation (CV) or generalized cross-validation (GCV).

For the linear regression model defined in (2.1), we denote the number of true

predictors (i.e., those with nonzero regression coefficients βj) as d. In practice,

both d and the set of true predictors Aβ = {j : |βj | > 0} are unknown. Model

averaging is widely used to improve the prediction accuracy for the considered

model (2.1). Prior studies on model averaging have mainly focused on settings

with no missing data or a low-dimensional linear regression. In what follows, we

extend the model-averaging approach to a setting that simultaneously includes

responses MAR and a high-dimensional linear regression. Thus, to improve the

accuracy of predicting the mean of Y in a high-dimensional linear regression in the

presence of responses MAR, we propose the following two-step model-averaging

procedure.

Step 1: Construct candidate models

In this step, we construct the candidate models. Denote a set of S candidate

models M1, . . . ,MS as

Ms : Yi =
∑
j∈As

Xijβj + εi, i = 1, . . . , n,

where As is the index set of predictors in the sth candidate model Ms, for s =

1, . . . , S. Here, we assume that Aβ ⊂ {A1∪A2∪· · ·∪AS} ⊂ A and Ak∩Aj = φ, for

any k 6= j, where A = {X1, . . . , Xp}. Let Y = (Y1, . . . , Yn)>, βs = {βj : j ∈ As}
be a ps×1 vector of unknown regression coefficients, Xs = {Xij : i = 1, . . . , n, j ∈
As} be an n× ps design matrix, and ε = (ε1, . . . , εn)>. Thus, the sth candidate

model Ms can be written as Y = Xsβs + ε.

For the sth candidate model Ms, we adopt the propensity score adjusted

least squares (PS-LS) method to estimate βs. That is, under the aforementioned

assumption, the PS-LS estimator β̃s of βs can be obtained using

β̃s = argmin
β

s

(Y −Xsβs)
>W (Y −Xsβs),

where W = diag(δ1/π1, . . . , δn/πn), in which πi = π(U i;γ), for i = 1, . . . , n.

It is easily shown that β̃s = (X>sWXs)
−1X>sWY . Thus, based on the sth
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candidate model Ms, the PS-LS prediction of the mean of the response variables

Y is given by µ̃s = Xsβ̃s = Xs(X
>
sWXs)

−1X>sWY . When γ is unknown,

we use γ̂ in place of γ. Thus, the corresponding estimator of µs has the form

µ̂s = Xsβ̂s = Xs(X
>
sŴXs)

−1X>sŴY , where β̂s = (X>sŴXs)
−1X>sŴY , and

Ŵ = diag(δ1/π̂1, . . . , δn/π̂n), in which π̂i = π(U i; γ̂), for i = 1, . . . , n.

After applying the PS-LS estimation procedure to the S candidate models

introduced above, we obtain S PS-LS predictions of the mean of the response

variable, that is, {µ̂1, . . . , µ̂S}. Given a weight vector ω = (ω1, . . . , ωS)> ∈ W =

{ω ∈ [0, 1]S : 0 ≤ ωs ≤ 1}, the model-averaging predictor of the mean of the

response variables is defined as

µ̂(ω) =

S∑
s=1

ωsµ̂s =

S∑
s=1

ωsXs(X
>
sŴXs)

−1X>sŴY =

S∑
s=1

ωsP̂ sY = P̂ (ω)Y ,

where P̂ s = Xs(X
>
sŴXs)

−1X>sŴ , for s = 1, . . . , S, and P̂ (ω) =
∑S

s=1 ωsP̂ s is

the corresponding hat matrix. In the literature on model averaging, one usually

assumes that
∑S

s=1 ωs = 1. Here, we omit this assumption, following Ando and

Li (2014).

When there are many candidate models, it is computationally intensive

to evaluate the model-averaging estimator µ̂(ω) in high-dimensional regression

models. Thus, it is desirable to adopt a feature-screening approach to screen

important predictors prior to the model averaging in the presence of responses

MAR. To this end, a novel feature-screening procedure is developed, which we

describe below.

Without loss of generality, we assume that the covariates have been stan-

dardized, and Y⊥δ|Xk (e.g., see He, Wang and Hong (2013)), for k = 1, . . . , p,

where ⊥ represents statistical independence. Under the above assumption, we

can use the information of Xk rather than X to impute the missing data in the

marginal utility. Thus, for k = 1, . . . , p, we define the estimated marginal MI-SIS

index between Y and Xk as

r̂k =
1

n

n∑
i=1

{
δiXikYi + (1− δi)

1

m

m∑
v=1

XikỸ
k
iv

}
, (2.4)

where m is the number of multiple imputations, {Ỹ k
iv}mv=1 are m independent

imputations for missing Yi from F̂ (y|Xik), F̂ (y|Xik) =
∑n

j=1 ϑ
j
ikI(Yi ≤ y) is a

kernel estimator of F (y|Xik), ϑ
j
ik = δjKh(Xjk − Xik)/

∑n
`=1 δ`Kh(X`k − Xik),
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F (y|Xik) is the conditional distribution of Y given Xk = Xik, Kh(u) = K(u/h),

K(·) is a kernel function on the real line, h = hn is a positive smoothing band-

width sequence, such as hn → 0, and I(·) is the indicator function. Following

Wang and Chen (2009), Ỹ k
iv effectively has a discrete distribution, where the

probability of selecting Yjk with δj = 1 is ϑjik. Thus, for a complete data set

{(Xi, Yi, δi) : i = 1, . . . , n}, it is easy to calculate r̂k using (2.4), for k = 1, . . . , p.

Then, we can sort the magnitudes of r̂k in decreasing order, and select the im-

portant predictors using the criterion M̂%n = {1 ≤ k ≤ p : |r̂k| > %n}, which is

usually called the estimated active predictor subset, where %n is the prespecified

threshold value. Based on the above feature-screening criterion, the full model

with p predictors may shrink to a reduced model with fewer than n predictors.

Based on the calculated MI-SIS statistics between the response variable and

each of the p predictors in the presence of missing responses, we partition the

p predictors into S + 1 groups, where the first group has the highest MI-SIS

value, and the (S + 1)th group has the MI-SIS value closest to zero. Let the sth

candidate model consist of those predictors with MI-SIS values in the sth group.

We drop the (S + 1)th group, and use only the first S groups to conduct the

model averaging. That is, the number of candidate models is S.

Step 2: Determine the optimal weights

The key task when evaluating µ̂(ω) is to find the optimal weights ωs. Many

methods, such as the CV and GCV methods, can be used to implement this task.

Here, the delete-one CV approach is adopted to evaluate the optimal weights,

owing to its asymptotic optimality theory for heteroskedastic errors. Let µ̃
(−i)
s be

the predicted value of the mean of the response variables computed after deleting

the ith observation (Xi, Yi, δi) from the sample in the sth candidate model Ms.

Denote µ̃ds = (µ̃
(−1)
s , . . . , µ̃

(−n)
s )>, and P s = Ŵ

1/2
Xs(X

>
sŴXs)

−1X>sŴ
1/2

. It is

easily shown that µ̃ds can be written as µ̃ds = P̃ sY , where P̃ s = D̂s(P̂ s− I) + I.

Here, D̂s = diag(d̂s1, . . . , d̂
s
n), where d̂si = 1/(1 − ĥsii) and ĥsii is the ith diagonal

element of P s, for i = 1, . . . , n. Then, the delete-one predictor of the mean of

the response variables is defined as

µ̃(ω) =

S∑
s=1

ωsµ̃
d
s =

S∑
s=1

ωsP̃ sY = P̃ (ω)Y ,

where P̃ (ω) =
∑S

s=1 ωsP̃ s. Similarly to Hansen and Racine (2012), to incor-

porate the information associated with the missing data, we use the following
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weighted squared error loss function to select the optimal weight vector ω:

WCV(ω) = {Y − µ̃(ω)}>Ŵ {Y − µ̃(ω)} = {Y − P̃ (ω)Y }>Ŵ {Y − P̃ (ω)Y },

which is also referred to as the weighted delete-one CV criterion. According to

the above definition, we can rewrite WCV(ω) as

WCV(ω) = Y>ŴY − 2
S∑
s=1

ωsY
>P̃ sŴY +

S∑
s=1

S∑
k=1

ωsωkY
>P̃
>
sŴ P̃ kY

= Y>ŴY − 2ω>A + ω>Bω,

which indicates that WCV(ω) is a quadratic function of ω, where A is an S × 1

vector with the sth component As = Y>P̃ sŴY , and B is an S × S matrix

with the (s, k)th component Bs,k = Y>P̃
>
sŴ P̃ kY . Thus, the weight vector ω is

selected by minimizing WCV(ω) over the set W; that is,

ω̂ = argmin
ω∈W

WCV(ω) = argmin
ω∈W

{−2ω>A + ω>Bω}. (2.5)

Unlike other cross-validation problems, which are often time-consuming, numer-

ous software packages (e.g., the quadprog package in R and Matlab) are available

to evaluate the above quadratic optimization problem in a short time, even if S is

quite large. That is, the proposed optimization problem is computationally feasi-

ble. Based on the optimal weights evaluated above, the model-averaging predic-

tor of the mean of the response variable can be expressed as µ̂(ω̂) =
∑S

s=1 ω̂sµ̂s.

3. Asymptotic Properties

The theoretical properties of the penalized likelihood estimator γ̂ and the

proposed feature-screening procedure can be found in the Supplementary Mate-

rial. In what follows, we investigate the asymptotic properties of the proposed

model-averaging procedure.

Let X = (X1, . . . ,Xn)> and µ = E(Y |X). Consider the loss function

L(ω) = {µ − µ̂(ω)}>Ŵ {µ − µ̂(ω)}, with a risk function R(ω) = E[{µ −
µ̂(ω)}>Ŵ {µ− µ̂(ω)}|X]. Let ξn = infω∈W R(ω), which indicates that ξn is the

lowest risk among all the considered weights. Here, C0, C1, . . . , C5 denote some

appropriate constants, φ(·) represents the maximal diagonal element of a matrix,

and ps denotes the number of columns of matrix Xs. To obtain the asymp-

totic properties of the proposed model-averaging procedure using the WDCV

approach, we need the following regularity conditions.
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Assumption 1. The propensity score function π(U i;γ) > C0 > 0, for i =

1, . . . , n. Its first three order derivations with respect to γ are continuous and

bounded.

Assumption 2. E(X>sWXs) is nonsingular, and there exists a constant C1 > 0,

such that Emin(
∑n

i=1XisX
>
is/n) ≥ C1, for any s and n, and Emax(

∑n
i=1XisX

>
is/n)

is uniformly bounded with respect to s and n, where Emin(A) and Emax(A) rep-

resent the smallest and largest eigenvalues, respectively, of matrix A.

Assumption 3. For some fixed integer 1 ≤ G < ∞, (i) E(ε4Gi ) ≤ C2 <

∞, for i = 1, . . . , n; (ii) sup1≤s≤S p
2
sdm/n = o(1); (iii) sup1≤s≤S p

8/3
s dm/n ≤

C3 < ∞; (iv) ‖µ‖2/n ≤ C4 < ∞; (v) sup1≤s≤S{φ(P s)/ps} ≤ C5/n; and (vi)

S4G+2‖µ‖2G/ξ2Gn = op(1), where P s = Xs(X
>
sXs)

−1X>s, for s = 1, . . . , S.

Assumption 1 is necessary for missing data. The lower bound guarantees

that the weights do not go to infinity as the sample size increases, and that

the proposed parametric weights are asymptotically consistent. Assumption 2

states that the design matrix is uniformly bounded; the nonsingular assumption

is necessary to ensure the existence of the hat matrix. Assumption 3(i) is a

moment condition on the random error, and can be satisfied for Gaussian noise.

Assumption 3(ii) limits the increasing rate of ps as n → ∞, and implies that

the quantity p2sdm increases at a slower rate than n for s = 1, . . . , S. Thus,

this assumption is stronger than assumption (6) of Ando and Li (2014). The

cost of imposing this restriction is using the estimated propensity score function

in the PS-LS estimation. Assumption 3(iii) shows that p
8/3
s dm has the same

increasing rate as n. Assumption 3(iv) is a commonly used condition in linear

regression models; for example, see Wan, Zhang and Zou (2010) and Ando and Li

(2014). Assumption 3(v) excludes extremely unbalanced designs for each of the

candidate models, and is the same as Condition (5.2) of Li (1987). Assumption

3(vi) indicates that ξn → ∞, that is, there is no finite approximating model for

which the bias is zero. If the number of candidate models S increases to infinity

as the sample size increases, ξn should grow at a rate no slower than
√
n, under

Assumption 3(iv). Suppose that the order of ξn is n1−φ, with φ ≥ 0. Then,

Assumption 3(vi) reduces to S(2+1/G) = op(n
(1−2φ)/2). In particular, when G is

fixed and φ < 1/2, S is allowed to grow to infinity.

Theorem 1. Suppose that Assumptions 1–3 hold. Then, as n→∞, we have

L(ω̂)

inf
ω∈W

L(ω)
→ 1, (3.1)



MODEL-AVERAGING METHOD FOR HIGH-DIMENSIONAL AND MISSING DATA 1015

where the convergence is in probability.

Theorem 1 shows that the proposed WDCV criterion for selecting the op-

timal weights is asymptotically equivalent to the weighted squared error. Thus,

the proposed model-averaging estimator of µ is asymptotically optimal in the

class of model-averaging estimators, where the weight vector is restricted to the

set W.

4. Numerical Studies

In this section, we first conduct simulation studies to investigate the finite-

sample performance of the proposed two-step model-averaging procedure and

MI-SIS procedure for identifying the active and inactive predictors. We then use

an example to illustrate the proposed methodologies.

4.1. Simulation studies

In this subsection, we use the weighted mean square error (WMSE) for 100

replications to measure the effectiveness of the proposed model-averaging ap-

proach. Here, the WMSE for 100 replications is defined as

WMSE =
1

100

100∑
k=1

n∑
i=1

δi
π(U i; γ̂)

(
µi0 − µ̂

(k)
i (ω̂)

)2

,

where µi0 is the true value of the mean of the response variable Y given Xi, and

µ̂
(k)
i is the estimated mean of the response variable Y in the kth replication.

First, to investigate the sensitivity of the proposed model-averaging approach

to the feature-screening methods used in step 1, we calculate the WMSEs for the

MI-SIS method and for existing feature-screening methods, such as the inverse

probability weighted sure independence screening method (IPW-SIS; Lai et al.

(2017)), borrowing missingness information (BMI) containing missing indicator

surrogate feature screening method (MI-S), and missing indicator imputation

screening method (MI-I; Wang and Li (2018)). Second, for the predictors selected

using the proposed feature-screening procedure, we compare the performance

of the proposed model-averaging approach with that of the following methods:

(A) model averaging with the AIC under the restriction
∑S

s=1 ωs = 1 (MAIC);

(B) model averaging with the BIC under the restriction
∑S

s=1 ωs = 1 (MBIC);

(C) weighted model-averaging method of Ando and Li (2014), without adjusting

the missing data (MCV); (D) weighted model averaging with the CV method,

without the restriction
∑S

s=1 ωs = 1 (WMCV1); (E) model averaging with the
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CV method for the CC data, without the restriction
∑S

s=1 ωs = 1 (CC1); (F)

weighted model averaging with the CV method under the restriction
∑S

s=1 ωs = 1

(WMCV2); (G) model averaging with the CV method for the CC data under the

restriction
∑S

s=1 ωs = 1 (CC2); (H) the penalized likelihood method with the

SCAD (SCAD); (I) the penalized likelihood method with the MCP (MCP); (J)

the penalized likelihood method with the Lasso (LASSO); (K) the penalized

likelihood method with the group Lasso (G-LASSO). The latter is implemented

by partitioning p predictors into S + 1 groups, and the first S groups are the

same as those obtained in the model-averaging procedure. To implement the

proposed feature-screening procedure, we employ the Gaussian kernel function

K(u) = exp(−u2/2)/(2π)1/2, and select the bandwidth using the CV method.

Experiment 1. Consider the following linear model:

Yi = X>iβ + εi, i = 1, . . . , n,

where β = (β1, . . . , βp)
>, Xi = (Xi1, . . . , Xip)

> is a p × 1 vector of predictors,

and the noise εi is independent of the predictors. Here, Xi is generated from

a multivariate normal distribution N (0,Σ), with components of Σ = (σjk)p×p
being σjk = ρ|j−k|, for 1 ≤ j, k ≤ p. The true values of nonzero βj are indepen-

dently sampled from the normal distribution N (0, 0.52). Thus, the mean of the

response variables is µ = (X>1β, . . . ,X
>
nβ)>. We assume that Xi are completely

observed, but that Yi are subject to missingness. The missing indicators δi of

Yi are generated independently from the Bernoulli distribution with probability

π(U i;γ) = Pr(δi = 1|U i), where U i = (Xi1, Xi2)
> and γ = (γ0, γ1, γ2)

>. In this

experiment, we take n = 60, p = 1,000, and d = 50, and assume that the true

index set of nonzero βj is Aβ = {j : j = 20(k − 1) + 1, k = 1, . . . , 50}. Here, we

consider the following four settings for ρ, π(U i;γ) and the distribution of εi:

(a) ρ = 0.7, εi ∼ N (0, 0.5), logit{π(U i;γ)} = γ0 +γ1Xi1 +γ2Xi2, where the true

value of γ is taken as γ = (2.2, 2.5,−1.9)>, giving the average proportion of

missing data of about 19.35%;

(b) ρ = 0.5, εi ∼ 0.7N (0, 1)+0.3t(5), and the propensity score function π(U i;γ)

is taken as that given in setting (a), giving the average proportion of missing

data of about 22.33%, where t(5) denotes the Student’s t distribution with

five degrees of freedom;

(c) ρ = 0.7, εi ∼ N (0, 0.5), and the propensity score function π(U i;γ) is taken as

π(U i;γ) = Φ(γ0 + γ1Xi1 + γ2Xi2), where Φ(·) is the cumulative distribution
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function of the standard normal distribution, and the true value of γ is set as

γ = (1.3, 2.9,−1.9)>, giving the average proportion of missing data of about

28.43%;

(d) ρ = 0.7, εi ∼ 0.7N (0, 0.5) + 0.3t(5), and the propensity score function

π(U i;γ) is taken as that given in setting (c), giving the average proportion

of missing data of about 28.25%.

For each of the 100 replicated data sets generated from each of the four

settings, we use a penalized likelihood method and an appropriate data-driven

approach to select the penalty parameter λn. This enables us to evaluate the esti-

mate of γ = (γ0, . . . , γq)
> for q = p, and we use the proposed model-averaging ap-

proach to compute µ̂. To select the penalty parameter λn, we consider the follow-

ing high-dimensional BIC-type criterion: BIC(λn) = −2ln(γ̂λn
) + |Aλn

|{log(n) +

2 log(q)}, where γ̂λn
is the PLE of γ, given the penalty parameter λn, Aλn

is the

index set of nonzero components of γ̂λn
, and |Aλn

| is the cardinality of the set

Aλn
. Thus, we select the tuning parameter λn by minimizing BIC(λn). Prior to

the model averaging, we sort the predictors using the proposed MI-SIS method,

leading to M̂ςn for ςn = 100. Then, we take S = 10, yielding a class of 10

candidate models, each with 10 predictors.

The results for the WMSE values under the four cases are given in Figures

1 and 2. First, the figures show that the proposed screening method behaves

better than the IPW-SIS, MI-I, and MI-S methods, in the sense that it has the

smallest WMSE median for the considered cases. This implies that the selection

of the feature-screening methods in the initial step has a certain effect on the

final model-averaging result (e.g., WMSE value). Second, the weighted model

averaging with CV method behaves better than the model averaging with CV

method for the CC data regardless of the restriction
∑S

s=1 ωs = 1. Third, the

weighted model averaging with CV method without the restriction
∑S

s=1 ωs = 1

performs better than that with the restriction. Fourth, the weighted model

averaging with CV method without the restriction
∑S

s=1 ωs = 1 has almost

the same performance as the weighted model-averaging method of Ando and Li

(2014), without adjusting the missing data. Fifth, the model averaging with

AIC method behaves better than the model averaging with BIC method. Sixth,

the group Lasso method performs best of the penalized likelihood methods, fol-

lowed by the SCAD, MCP, and Lasso methods, in that order. Seventh, the

group Lasso method outperforms the WMCV2 and CC2 methods. Eighth, our

proposed weighted model-averaging method performs better than the model av-
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Figure 1. WMSE values of the proposed model-averaging method for four screening
methods: case (a) (left upper panel), case (b) (right upper panel), case (c) (left lower
panel), and case (d) (right lower panel) in Experiment 1.

eraging with the delete-one CV method for the CC data. That is, our proposed

model-averaging procedure yields the best performance of the compared methods

because it has the smallest median WMSE value.

Experiment 2. The main purpose of this experiment is to investigate the

robustness of our proposed model-averaging method to a misspecified propensity

score function. To this end, we consider the same linear regression as that given

in Experiment 1, but we use different propensity score functions to create the

missing data:

(e) logit{π(U i;γ)} = γ0 + sin(γ1Xi1 + γ2Xi2), with the true value of γ =

(γ0, γ1, γ2)
> taken as γ = (1.0, 1.8,−1.8)>, giving the average proportion of

missing data of about 27.38%;

(f) π(U i;γ) = Φ(γ0 + γ1Xi1 + γ2Xi2), with the true value of γ = (γ0, γ1, γ2)
>

taken as γ = (2.0, 2.2,−1.5)>, giving the average missing proportion of

about 13.60%.



MODEL-AVERAGING METHOD FOR HIGH-DIMENSIONAL AND MISSING DATA 1019

MAIC MBIC MCV WMCV1 CC1 WMCV2        CC2     G−LASSO     SCAD MCP LASSO

0
5

1
0

1
5

MAIC MBIC MCV WMCV1 CC1 WMCV2 CC2      G−LASSO     SCAD MCP LASSO

0
5

1
0

1
5

2
0

2
5

MAIC MBIC MCV WMCV1 CC1 WMCV2 CC2      G−LASSO     SCAD MCP LASSO

0
5

1
0

1
5

2
0

2
5

MAIC MBIC MCV WMCV1 CC1 WMCV2 CC2      G−LASSO     SCAD MCP LASSO

0
5

1
0

1
5

2
0

2
5

3
0

3
5

Figure 2. WMSE values of 11 model-averaging methods for four settings of ρ, the
distribution of εi, and the propensity score function π(U i;γ): case (a) (left upper panel),
case (b) (right upper panel), case (c) (left lower panel), and case (d) (right lower panel)
in Experiment 1.

For each of the 100 replicated data sets generated from each of the two

settings, we calculate the corresponding results based on the propensity score

function: logit{π(U i;γ)} = γ1Xi1 + γ2Xi2 + · · · + γqXiq, with q = p, using the

proposed model-averaging method. The results are presented in Figures 3 and 4.

The figures show similar patterns to those of Figures 1 and 2. This implies that

the proposed feature-screening method and model-averaging method are robust

to a misspecification of the propensity score function.

4.2. Real-data example

In this subsection, we use the rate eye microarray expression data set (Scheetz

et al. (2006)), available from http://www.ncbi.nlm.nih.gov/geo, to illustrate

the proposed model-averaging method. For this data set, 120 12-week-old male

rats were selected for tissue harvesting from the eyes and for microarray analysis.

The microarrays used to analyze the RNA from the eyes of these rats contain

over 31,042 different probe sets (Affymetric GeneChip Rat Genome 230 2.0 Ar-

http://www.ncbi.nlm.nih.gov/geo
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Figure 3. WMSE values of the proposed model-averaging method for four screening
methods: case (e) (left panel) and case (f) (right panel) in Experiment 2.
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Figure 4. WMSE values of 11 model-averaging methods for two settings of ρ, the distri-
bution of εi, and the propensity score function π(U i;γ): case (e) (left panel) and case
(f) (right panel) in Experiment 2.

ray). The intensity values were normalized using the robust multi-chip averaging

method to obtain summary expression values for each probe set. Gene expres-

sion levels were analyzed on a logarithmic scale. To investigate genetic variation

in human eye disease, Scheetz et al. (2006) applied the expression quantitative

trait locus mapping method to 18,976 probes that are considered “sufficiently

variable” and that exhibit at least a two-fold variation in expression level among

the 120 male rats. The main interest of this study is to find the genes that are

correlated with the gene TRIM32, which was recently found to cause Bardet–

Biedl syndrome (Chiang et al. (2006); Huang, Ma and Zhang (2008)). Chiang et

al. (2006) found that the gene TRIM32 at probe 1389163 at, which is regarded

as the response variable (Y ), is critical to Bardet–Biedl syndrome, a genetic hu-

man disease concerning the retina. Our purpose is to find which probes among
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the remaining 18,975 probes are most associated with TRIM32. In this case, the

sample size is n = 120 and the number of probes is p = 18,975; thus, p � n,

and this is a sparse, high-dimensional regression problem. Hence, a screening

procedure is required to screen out most of relevant genes before an elaborative

second-stage analysis. To roughly unify the scales, the selected gene expressions

are standardized.

For this data set, we consider the linear regression model: Yi = X>i β + εi,

for i = 1, . . . , n, where Xi = (Xi1, . . . , Xip)
>. Because there is no missing data

in the original data set, to illustrate the proposed model-averaging method in

the presence of responses MAR, we artificially create missing responses using

the following missingness data-mechanism model: logit{π(U i;γ)} = γ0 + γ>1U i,

where γ = (γ0,γ
>
1)
>, with γ0 an interception term and γ1 = (γ11, . . . , γ1q)

>, and

U i = (Xi1, . . . , Xiq)
> is a subvector of Xi, with q = 1,000. The true value of γ is

taken as γ = (1.5, 2.2,−1.9, 2.8,−1.8, 2.5,0>q−5)
>. Thus, the missing proportion

is about 33%.

Our main interest is to investigate the prediction performance of the pro-

posed model-averaging method. Therefore, we randomly divide the data into a

training set with n1 = 80 for model fitting and a testing set with n2 = 40. To

simultaneously estimate γ and identify the nonzero components in γ1 for the

training set using the penalized likelihood method, we select the penalty param-

eter λn by minimizing the following BIC criterion: BIC(λn1
) = −2ln1

(γ̂λn1
) +

|Aλn1
|{log(n1) + 2 log(q)}, where γ̂λn1

is the penalized likelihood estimation of

γ, given the penalty parameter λn1
, Aλn1

is the index set of nonzero components

of γ̂λn1
, and |Aλn1

| is the cardinality of the set Aλn1
. For comparison, we con-

sider the 10 methods (MAIC, MBIC, WMCV1, CC1, WMCV2, CC2, G-LASSO,

SCAD, MCP, LASSO) presented in the simulation studies for the training data

set. For the MAIC, MBIC, WMCV1, CC1, WMCV2, and CC2, we first sort

the genes using the MI-SIS procedure, yielding M̂ςn for ςn = 200. Then we set

S = 20, leading to a class of 20 candidate models, each with 10 genes.

We assess the prediction performance of the considered 10 methods using

the following weighted mean squared prediction error (WMSPE):

WMSPE =
1

NT

∑
1≤i≤n,i∈T

δi
π(U i; γ̂λn1

)
{Yi − µ̂i(ω̂)}2,

where NT =
∑

1≤i≤n,i∈T δi, ω̂ denotes the optimal weights evaluated by the CV

method based on the training data set, and T = {i: the ith sample belongs to the
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Figure 5. WMSPE values of 10 model-averaging methods in the rat eye data set. The
number in brackets is the median of the distribution of the WMSPE.

testing set}. We repeat the entire procedure 100 times, and obtain 100 WMSPE

values for each of 10 methods. The results are presented in Figure 5, and show

that our proposed model-averaging method has best predictive efficiency of the

methods considered, including those with the delete-one CV method based on

the CC data, the classical model-averaging methods, and the penalized likelihood

methods.

5. Conclusion

This study investigates the prediction accuracy problem for ultrahigh-dimen-

sional linear regression models in the presence of responses MAR, and proposes a

two-step model-averaging procedure to improve the prediction accuracy. The first

step constructs the candidate models for averaging. To implement this step, we

developed a novel feature-screening procedure in the presence of responses MAR

to separate the active and inactive predictors based on the multiple-imputation

sure independence index. Under some regularity assumptions, we showed its sure

screening property and ranking consistency property. The proposed screening

procedure is robust to a misspecification of the propensity score function. The

second step identifies the optimal weights for averaging. To implement the second

step, we first adopted the PS-LS method to estimate the regression parameters

for each candidate model. Then we proposed a WDCV criterion without the

restriction
∑S

s=1 ωs = 1 to select the optimal weights. Under some regularity

assumptions, we proved that the proposed WDCV criterion is asymptotically

equivalent to the weighted squared error, which is our theoretical basis for using
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the model-averaging method.

In addition, to simultaneously estimate the regression coefficients in γ and

select the important covariates in a parametric propensity score function in a

high-dimensional setting, we have proposed a penalized likelihood method based

on some proper penalty function. To select the tuning parameter λn in the

penalized likelihood function, we use a data-driven approach, such as the BIC,

in numerical studies. Under some regularity conditions, we proved the oracle

properties, including the sparsity and asymptotic normality, of the proposed

penalized likelihood estimator of γ.

Simulation studies and an example are used to illustrate the proposed model-

averaging method based on criteria such as the WMSE and the WMSPE. The

results show that the proposed method outperforms 10 other approaches, includ-

ing existing model-averaging methods.

The proposed MI-SIS approach used to screen the important predictors in an

ultrahigh-dimensional linear regression model in the presence of responses MAR

is a nonparametric screening method. However, it is unclear how to extend

the proposed screening procedure to a non-ignorable missing data case, which is

widely encountered in practice. In addition, their theoretical properties remain

unknown in the presence of non-ignorable missing data.

Supplementary Material

The online Supplementary Material includes the properties of the penalized

likelihood estimator, the proposed screening procedure, and all technical proofs.
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