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S1 Local linear estimators

We propose the criterion function,

N∑
i=1

T∑
t=2

(
∆Y ∗it −∆W>

Xit
γ1 −

(
WXit ⊗ (Zit − z)−WXi(t−1)

⊗(Zi(t−1) − z)
)>
γ2

)2

KH(Zit − z)KH(Zi(t−1) − z), (S1.1)

where γ1 = m(z) and γ2 = Dm(z), with Dm(z) being a (dq × 1) vector of

partial derivatives of the m(z) function respect to the elements of the (q×1)

vector z such that Dm(z) = vec(∂m(z)/∂z>). Replacing the unknown

quantities by their corresponding estimators as before, we define ∆ŴXZ(z)
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as a n× d(1 + q) dimensional matrix of the form

∆ŴXZ(z) =


∆Ŵ>

X12
Ŵ>
X12
⊗ (Z12 − z)> − Ŵ>

X11
⊗ (Z11 − z)>

...
...

∆Ŵ>
XNT

Ŵ>
XNT
⊗ (ZNT − z)> − Ŵ>

XN(T−1)
⊗ (ZN(T−1) − z)>

 .

Assuming that ∆ŴXZ(z)>K(z;H2)∆ŴXZ is nonsingular, it is straight-

forward to show that the value of γ1 that minimizes (S1.1) has the solution

m̂β̃,LL(z;H2) = e>1 (∆ŴXZ(z)>K(z;H2)∆ŴXZ(z))−1

×∆ŴXZ(z)>K(z;H2)(∆Y −∆ŴU β̃LL), (S1.2)

where e1 = (Id
...0dq×d) is a (d(1 + q) × d) matrix, Id is a (d × d) identity

matrix, and 0dq×d is a (dq × d) matrix of zeros.

Also, β̃LL is the corresponding profile least squares estimator for a local

linear fitting given by

β̃LL = [∆Ŵ>
U (In − ŜLL)>(In − S̃LL)∆WU ]−1

× ∆U>(In − ŜLL)>(In − S̃LL)∆Y, (S1.3)

where S̃LL = (S̃>LL12
, . . . , S̃>LLNT )> is a n×n matrix such as its it th element

is of the form

S̃LLit = (X>it 0>dq)(∆ŴXZ(Zit)
>K(Zit;H2)∆ŴXZ(Zit))

−1∆ŴXZ(Zit)
>K(Zit;H2)

− (X>i(t−1) 0>dq)(∆ŴXZ(Zit)
>K(Zit;H2)∆ŴXZ(Zit))

−1∆ŴXZ(Zit)
>K(zi(t−1);H2),

where 0dq is a dq-dimensional vector of zeros. ŜLL is defined in a similar way

as above, with ŴXit and ŴXi(t−1)
instead of Xit and Xi(t−1), respectively.
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Under the previous assumptions, the asymptotic normality of m̂β̃,LL(z;H2)

and β̂LL is collected in the following Corollaries.

Corollary S1.1. Suppose that Assumptions S2.1–S2.10 hold. When Ntr(H2)2 →

0, because N tends to infinity and T is fixed, we have

√
n
(
β̃LL − β

)
d−−→ N

(
0,Σ−1Σ∗Σ−1

)
.

Corollary S1.2. Suppose that Assumptions S2.1–S2.10. Because N tends

to infinity and T is fixed, we have

√
n|H2|

(
m̂β̃,LL(z;H2)−m(z)−BLL(z;H2)(1 + op(1))

)
d−−→ N (0, VLL(z;H2)) ,

where

BLL(z;H2) =
µ2(K)

2
diagd (tr (Hmκ(z)H2)) ıd,

VLL(z;H2) = 2σ2
εR

2(K)B−1
∆WX∆WX

(z, z) .

The proofs of these corollaries follow a similar proof scheme as the

corresponding for Theorems 3.1 and 3.2, respectively, and therefore they

are omitted.

Assuming Ntr(H2)5/2 → 0, the higher-order bias can be ignored and

the result of Corollary S1.2 can be rewritten as

√
n|H2|

(
m̂β̃,LL(z;H2)−m(z)

)
d−−→ N (0,ΣLL(z;H2)) . (S1.4)
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We propose a consistent estimator for Σ̂LL(z,H2) of the form

Σ̂LL(z,H2) = R2(K)e>1

(
1

n
∆Ŵ>XZK(z;H2)∆ŴXZ

)−1

×
[

1

n
∆ŴXZ(z)>K(z,H2)V̂ K(z,H2)ŴXZ(z)

](
1

n
∆Ŵ>XZK(z;H2)∆ŴXZ

)−1

e1.

S2 Assumptions

Throughout this Supplemantary Material, we use the same notation as used

in previous sections. Previously, we have used the following vectors,

∆WXit = (E(∆X>1it|Lit,Li(t−1)),∆X
>
2it)
>; ∆ŴXit = (Ê(∆X>1it|Lit,Li(t−1)),∆X

>
2it)
>,

∆WUit = (E(∆U>1it|Lit,Li(t−1)),∆U
>
2it)
>; ∆ŴUit = (Ê(∆U>1it|Lit,Li(t−1)),∆U

>
2it)
>,

Ŵ>Xit
= (Ê(X1it|Lit,Li(t−1))

>, X>2it)
>; W>Xit

= (E(X1it|Lit,Li(t−1))
>, X>2it)

>

Assumption S2.1. Let (Yit, X1it, U1it,Lit)i=1,...,N ;t=1,...,T be a set of inde-

pendent and identically distributed IR1+d1+k1+`-random variables in the sub-

script i for each fixed t and strictly stationary over t for fixed i, where Lit is

a (` × 1) vector which contains all exogenous variables (i.e. Zit, X2it, and

U2it) and other IVs such that ` = q + d2 + k2 +M .

Assumption S2.2. The idiosyncratic error terms, εit, are independent and

identically distributed with constant variance, σ2
ε . Furthermore, E (εit| Lit) =

0 and E (ε2it| Lit) = σ2
ε .
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Assumption S2.3. Let fZit (·) be the probability density function of Zit.

Moreover, let fZit,Zi(t−1)
(·, ·) be the probability density function of

(
Zit, Zi(t−1)

)
,

respectively. All density functions are continuously differentiable in all their

arguments and they are bounded from above and below in any point of their

support.

Assumption S2.4. Let z be an interior point in the support of fZit (·). All

second-order derivatives of m(z), E(∆X1it|Lit,Li(t−1)), and E(∆U1it|Lit,Li(t−1))

are bounded and uniformly continuous and they satisfy a Lipschitz condi-

tion.

Assumption S2.5. The kernel function K is the product of univariate

kernels, symmetric around zero and compactly supported. Also, the kernel

is bounded such that
∫
uu>K(u)du = µ2(K)I and

∫
K2(u)du = R(K),

where µ2(K) and R(K) are scalars and I the identity matrix. In addition,

all odd-order moments of K vanish, that is
∫
uι11 . . . u

ιq
q K(u)du = 0, for all

nonnegative integers ι1, . . . , ιq such that their sum is odd.

Assumption S2.6. The kernel function satisfies the property that |K(u)| ≤

K <∞ and
∫
|K(u)|du < κ <∞. Further, for some Λ1 <∞ and Ψ <∞,

either K(u) = 0 for ‖u‖ > Ψ and for all u, u′ ∈ IRq, |K(u) − K(u′)| ≤

Λ1‖u − u′‖, or K(u) is differentiable, |(∂/∂u)K(u)| ≤ Λ1, and for some

ς > 1, |(∂/∂u)K(u)| ≤ Λ1‖u‖−ς for ‖u‖ > Ψ.
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Assumption S2.7. Let ‖A‖ =
√
tr (A>A). E

[
‖WXitW

>
Xit
‖2|Zit = z1, Zi(t−1) = z2

]
is bounded and uniformly continuous in its support. Furthermore, let WX =

(W>Xit
,W>Xi(t−1)

)> and ∆WX = (∆W>Xit
,∆W>Xi(t−1)

)>. The matrix functions E[WXitW
>
Xit
|Zit =

z1, Zi(t−1) = z2], E[∆WXit∆W>Xit
|Zit = z1, Zi(t−1) = z2], E[WXit∆W>Xit

|Zit = z1, Zi(t−1) =

z2], E[WXitW
>
Xit
|Zi(t+1) = z1, Zit = z2, Zi(t−1) = z3],E[WXit∆W>Xit

|Zi(t+1) = z1, Zit =

z2, Zi(t−1) = z3] are bounded and uniformly continuous at any interior point,

(z1, z2) or (z1, z2, z3), in the support of fZit,Zi(t−1)
(z1, z2) and fZi(t+1),Zit,Zi(t+1)

(z1, z2, z3),

respectively.

Assumption S2.8. The bandwidth matrices H1 and H2 are symmetric

and strictly positive-definite. Also, let h1 and h2 be each entry of the

matrices H1 and H2, respectively, h1 → 0 and h2 → 0. As N → ∞,

|H2|logN(N |H1|2)−1 → c ∈ [0,∞), tr(H2)(N |H2|)1/2 → c ∈ [0,∞), and

tr (H1) = op (tr (H2)).

Assumption S2.9. Let

B∆WX∆WX
(z1, z2) = E[∆WXit∆W

>
Xit
|Zit = z1, Zi(t−1) = z2]fZit,Zi(t−1)

(z1, z2),

B∆WX−1
∆WX−1

(z1, z2) = E[∆WXi(t−1)
∆W>

Xi(t−1)
|Zit = z, Zi(t−1) = z]fZit,Zi(t−1)

(z1, z2).

The matrices B∆WX∆WX
(z1, z2) and B∆WX−1

∆WX−1
(z1, z2) are positive-definite

at any interior point, (z1, z2), in the support of fZ1t,Z1(t−1)
(z1, z2).

Assumption S2.10. For some ξ > 0, the function E
[
|εit|2+ξ|Zit = z1, Zi(t−1) = z2

]
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is bounded and it is uniformly continuous at any point, (z1, z2), in the sup-

port of fZit,Zi(t−1)
(z1, z2).

Assumptions S2.1 and S2.2 are standard in the nonparametric panel

data regression analysis and characterizes the data-generating process. Specif-

ically, it states that individuals are independent and, for a fixed individual,

correlation along time is allowed. Other time-series structures can also be

considered; see, e.g., Cai and Li (2008) or Cai et al. (2009). Also, for the

estimation of the fully nonlinear part in the one-step backfitting algorithm

some further assumptions about the density functions than the usual Lip-

schitz continuity are needed. The smoothness and boundedness conditions

established in Assumptions S2.3-S2.7 for the kernel function, conditional

moments, and densities are standard in the literature of local linear regres-

sion estimates; see Ruppert and Wand (1994). Also, they allow us to claim

the uniform convergence results established in Hansen (2008, Theorems 8

and 10). Assumption S2.8 contains bandwidth conditions. They are re-

quired to show consistency of the different estimators. For example, the

condition tr (H1) = op (tr (H2)) is needed to ensure that m̂β̃(z;H2) is not

sensitive to the choice of H1. Assumption S2.9 is the sufficient condition

for the model identification. Assumption S2.10 is required to show that

the Lyapunov condition holds.



Juan M. Rodriguez-Póo and Alexandra Soberón

Assumption S2.11. The bandwidth matrix H3 is symmetric and strictly

positive-definite. Also, each entry of the matrix tends to zero as N tends to

infinity in such a way that N |H3| → ∞. As N →∞, |H3|logN(N |H2|2)−1 →

c ∈ [0,∞), tr(H3)(N |H3|)1/2 → c ∈ [c,∞), and tr(H2) = op(tr(H3)).

Assumption S2.12. Let

BWXWX
(z) = E[WXitW

>
Xit
|Zit = z]fZit(z),

BWX−1
WX−1

(z) = E[WXi(t−1)
W>
Xi(t−1)

|Zi(t−1) = z]fZi(t−1)
(z).

The matrices BWXWX
(z) and BWX−1

WX−1
(z) are positive-definite at any inte-

rior point, z1 and z2, in the support of fZit(z1) and fZi(t−1)
(z2), respectively.

To prove Theorems 3.1-4.2, the following lemmas are needed. For the

sake of simplicity, let us denote

Kit = |H2|−1/2K(H
−1/2
2 (Zit − z)) , Ki(t−1) = |H2|−1/2K(H

−1/2
2 (Zi(t−1) − z)),

and Γ̂n = n−1
∑

itKitKi(t−1)∆ŴXit∆Ŵ
>
Xit

.

S3 Lemmas

Lemma S3.1. Suppose that Assumptions S2.1–S2.10 hold. Because N →

∞, we have

Γ̂n = B∆WX∆WX
(z, z)(1 +Op(a2N)),
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holds uniformly for z ∈ A, where a2N = (N |H2|)−1/2 + tr(H2) and

B∆WX∆WX
(z, z) = E[∆WXit∆W

>
Xit
|Zit = z, Zi(t−1) = z]fZit,Zi(t−1)

(z, z).

Proof of Lemma S3.1: Following the same arguments as in the proof

of Theorem 8 in (Hansen (2008))

∆ŴXit = ∆WXit +Op(δ
−1
N a∗1N), (S3.5)

where a∗1N =
(

logN
N |H1|`

)1/2

+ tr(H1) and δN = inf
|L1,L2|≤cN

f(L1,L2) > 0 with

cN = ((lnN)1/`N1/2r), for some r > 0.

Then, it is possible to write

Γ̂n = Γn +Op(δ
−1
N a∗1N), (S3.6)

where Γn = n−1∆W>
XK(z;H2)∆WX .

To prove this lemma, we first show that, as N →∞,

Γn = B∆WX∆WX
(z, z)(1 +Op(a2N)). (S3.7)

To this end, we follow the usual Taylor expansion, i.e.,

f(z +H
1/2
2 u) = f(z) +Df (z)H

1/2
2 u+Op(tr(H2)), as H2 → 0,

where D>f (z) = ∂f(z)/∂z is a q-dimensional vector which contains the first-

order derivative vector of f(·).

By Assumption S2.1 Zit is i.i.d. across i and strict stationary in t.
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Then, by the law of iterated expectations we get that

E(Γn) = =
1

n

∑
it

∆WXit∆W
>
Xit
KitKi(t−1)

=

∫ ∫
E[∆WXit∆W

>
Xit
|Zit = z +H

1/2
2 u, Zi(t−1) = z +H

1/2
2 v]

× fZit,Zi(t−1)
(Zit = z +H

1/2
2 u, Zi(t−1) = z +H

1/2
2 v)K(u)K(v)dudv

= B∆WX∆WX
(z, z) +Op(tr(H2)). (S3.8)

Also, under Assumption S2.1,

V ar(Γn) = n−1V ar(KitKi(t−1)∆WXit∆W
>
Xit

)

+ n−1

T−2∑
κ=1

(T − κ)Cov(Ki2Ki1∆WXi2∆W>
Xi2
, Ki(2+κ)Ki(1+κ)∆WXi(2+κ)

∆W>
Xi(2+κ)

),

for κ = |t − s|, where κ ∈ {2, . . . , (T − 2)}. Under conditions S2.8–S2.9,

it holds

n−1V ar(KitKi(t−1)∆WXit∆W
>
Xit

) = Op

(
1

N |H2|

)
and

n−1Cov(Ki2Ki1∆WXi2∆W>
Xi2
, Ki(2+κ)Ki(1+κ)∆WXi(2+κ)

∆W>
Xi(2+κ)

) = Op

(
1

N |H2|

)
.

Since N |H2| → ∞, this variance term tends to zero so (S3.7) is proved.

Then, replacing (S3.7) in (S3.6) and using the bandwidth conditions of

Assumption S2.8, it is easy to prove that

Γ̂n = B∆WX∆WX
(z, z) + op(δ

−1
N a2N) +Op(a2N). (S3.9)
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Lemma S3.2. Suppose that Assumptions S2.1–S2.10 hold. Because N →

∞, we have

1

n
∆Ŵ>

U (In − Ŝ)>(In − S̃)∆U
p−−→ Σ,

where Σ = E(ΥitΥ
>
it) with Υit = ∆WUit−B∆WX∆WU

(z, z)>B−1
∆WX∆WX

(z, z)∆WXit.

Proof of Lemma S3.2: Note that

n−1∆Ŵ>
U (In − Ŝ)>(In − S̃)∆U = n−1(∆ŴU − Ŝ∆ŴU)>(∆U − S̃∆U). (S3.10)

Then, we analyze Ŝ∆ŴU and S̃∆U separately. To this end, let

Ŝ∆ŴU =


Ŵ>X12

Γ̂−1
12 ∆Ŵ>XK(z12;H2)∆ŴU − Ŵ>X11

Γ̂−1
11 ∆Ŵ>XK(z11;H2)∆ŴU

...

Ŵ>XNT
Γ̂−1
NT∆Ŵ>XK(zNT ;H2)∆ŴU − Ŵ>XN(T−1)

Γ̂−1
N(T−1)

∆Ŵ>XK(zN(T−1);H2)∆ŴU

 .

(S3.11)

By Lemma S3.1 we know that, uniformly in z ∈ A,

∆Ŵ>
XK(z;H2)∆ŴX = nB∆WX∆WX

(z, z)(1 +Op(a2N)). (S3.12)

Following the same arguments as in the proof of Theorem 8 in (Hansen

(2008)), as N →∞,

∆ŴUit = ∆WUit +Op(δ
−1
N a∗1N). (S3.13)

Then, under the same reasoning as in (S3.12) it can be shown that,
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uniformly in z ∈ A,

∆Ŵ>
XK(z;H2)∆ŴU =

∑
it

∆WXit∆W
>
Uit
KitKi(t−1) +Op(δ

−1
N a∗1N)

= nB∆WX∆WU
(z, z)(1 +Op(a2N)), (S3.14)

where

B∆WX∆WU
(z, z) = E[∆WXit∆W

>
Uit
|Zit = z, Zi(t−1) = z]fZit,Zi(t−1)

(z, z).

Replacing (S3.12)–(S3.14) into (S3.11) and rearranging terms, we get

that, uniformly in z ∈ A,

Ŝ∆ŴU =


∆W>

X12
B−1

∆WX∆WX
(z, z)B∆WX∆WU

(z, z)

...

∆W>
XNT
B−1

∆WX∆WX
(z, z)B∆WX∆WU

(z, z)

 (1 +Op(a2N)). (S3.15)

Similarly, it is straightforward to show that

S̃∆U =


∆X>12B−1

∆WX∆WX
(z, z)B∆WX∆WU

(z, z)

...

∆X>NTB−1
∆WX∆WX

(z, z)B∆WX∆WU
(z, z)

 (1 +Op(a2N)). (S3.16)

Using (S3.15) and (S3.16) into (S3.10) and some algebra, we obtain
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that, uniformly in z ∈ A,

n−1∆Ŵ>
U (In − Ŝ)>(In − S̃)∆U =

1

n

∑
it

[∆WUit −∆W>
Xit
B−1

∆WX∆WX
(z, z)B∆WX∆WU

(z, z)]

× [∆Uit −∆U>it B−1
∆WX∆WX

(z, z)B∆WX∆WU
(z, z)]

+ op(δ
−1
N a2N) +Op(a2N)

→ E(ΥitΥ
>
it),

where the law of iterated expectations has been used and we denote

Υit = ∆WUit −∆W>
Xit
B−1

∆WX∆WX
(z, z)B∆WX∆WU

(z, z).

Then, the proof is done.

Lemma S3.3. Suppose that Assumptions S2.1–S2.10 hold. Because N →

∞, we have

1

n
∆Ŵ>

U (In − Ŝ)>(In − S̃)M = Op(a
2
2N),

where M = [M>
12, . . . ,M

>
NT ]> is a n-dimensional vector whose it th element

is Mit = X>itm(Zit)−X>i(t−1)m(Zi(t−1)).

Proof of Lemma S3.3: Note that

1

n
∆Ŵ>

U (In − Ŝ)>(In − S̃)M =
1

n
(∆ŴU − Ŝ∆ŴU)>(M − S̃M), (S3.17)
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where

S̃M =


X>12Γ̂>12∆Ŵ>XK(z12;H2)M −X>11Γ̂>11∆Ŵ>XK(z11;H2)M

...

X>NT Γ̂>NT∆Ŵ>XK(zNT ;H2)M −X>N(T−1)Γ̂
>
N(T−1)∆Ŵ

>
XK(zN(T−1);H2)M



Following a similar procedure as in the proof of Lemma S3.1 and using

(S3.13) and Assumption S2.8, we obtain that, uniformly in z ∈ A,

1

n
∆Ŵ>

XK(z;H2)M =
1

n

∑
it

KitKi(t−1)∆WXit(X
>
itm(Zit)−X>i(t−1)m(Zi(t−1)))

+ Op(δ
−1
N a∗1N)

= B∆WX∆WX
(z, z)m(z)(1 +Op(a2N)) (S3.18)

Using Lemma S3.1, the equation (S3.18), and the usual Taylor expan-

sion, we can show that, uniformly in z ∈ A,

S̃M =
[
(∆X>12m(z))>, . . . , (∆X>NTm(z))>

]>
(1 +Op(a2N)). (S3.19)

By (S3.11) and (S3.12), we have

1

n
(∆ŴU − Ŝ∆ŴU) = (∆WU −∆WXB−1

∆WX∆WX
(z, z)B∆WX∆WU

(z, z))

× (1 +Op(a2N)), (S3.20)

where ∆WU = (∆W>
U12
, . . . ,∆W>

UNT
)> and ∆WX = (∆W>

X12
, . . . ,∆W>

XNT
)>

are matrices of (n× (k1 + k2)) and (n× (d1 + d2)) dimension, respectively.

Replacing (S3.19)–(S3.20) into (S3.17) and using the bandwidth condi-
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tions in Assumption S2.8, we get

1

n
∆Ŵ>

U (In − Ŝ)>(In − S̃)M

=
1

n

∑
it

(∆WUit − B∆WX∆WU
(z, z)>B−1

∆WX∆WX
(z, z)∆WXit)∆X

>
itm(z)

×(1 +Op(a2N))Op(a2N)

= Op(a
2
2N). (S3.21)

Lemma S3.4. Under conditions S2.1–S2.6, and S2.8. For some r > 0,

we define cN = O((lnN)1/qN1/2r). For all z such that ‖z‖ ≤ cN , where

‖z‖ = max(|z1|, . . . , |zq|), as N →∞ and T is fixed,

sup
‖z‖≤cN

∣∣∣m̂β̂(z;H2)− m̃β(z;H2)
∣∣∣ = op(δ

−1
N a2N).

Proof of Lemma S3.4. Note that

m̂β̃(z;H2)− m̃β(z;H2) = Γ̂−1
n T̂n − Γ−1

n Tn, (S3.22)

where

T̂n = n−1
∑
it

KitKi(t−1)∆ŴXit(∆Yit −∆ŴUit β̃),

Tn = n−1
∑
it

KitKi(t−1)∆WXit(∆Yit −∆WUitβ).

Using Lemma S3.1 and equation (S3.7). By the Slutsky theorem, we

get

m̂β̃(z;H2)− m̃β(z;H2) = B−1
∆WX∆WX

(z, z)(T̂n − Tn)(1 +Op(a2N)). (S3.23)
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Let us consider now

T̂n − Tn = n−1
∑
it

KitKi(t−1)∆ŴXit(∆Yit −∆Ŵ>
Uit
β̃)

− n−1
∑
it

KitKi(t−1)∆WXit(∆Yit −∆W>
Uit
β)

= n−1
∑
it

KitKi(t−1)(∆ŴXit −∆WXit)∆Yit

− II(1)
n − II(2)

n − II(3)
n − II(4)

n − II(5)
n − II(6)

n − II(7)
n ,

where

II(1)
n = n−1

∑
it

KitKi(t−1)(∆ŴXit −∆WXit)(∆ŴUit −∆WUit)
>(β̃ − β),

II(2)
n = n−1

∑
it

KitKi(t−1)(∆ŴXit −∆WXit)(∆ŴUit −∆WUit)
>β,

II(3)
n = n−1

∑
it

KitKi(t−1)(∆ŴXit −∆WXit)∆W
>
Uit

(β̃ − β),

II(4)
n = n−1

∑
it

KitKi(t−1)(∆ŴXit −∆WXit)∆W
>
Uit
β,

II(5)
n = n−1

∑
it

KitKi(t−1)∆WXit(∆X̂Uit −∆WUit)
>(β̃ − β),

II(6)
n = n−1

∑
it

KitKi(t−1)∆WXit(∆X̂Uit −∆WUit)
>β,

II(7)
n = n−1

∑
it

KitKi(t−1)∆WXit∆W
>
Uit

(β̃ − β).

Following the same lines as in Lemma S3.1 and the
√
n-consistency of

β̃, we claim that

T̂n − Tn = op(δ
−1
N a∗1N). (S3.24)

More precisely, using (S3.5) we get

n−1
∑
it

KitKi(t−1)(∆ŴXit −∆WXit)∆Yit = Op(δ
−1
N a∗1N)
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since it is straightforward to show that n−1
∑

itKitKi(t−1)∆Yit = Op(1).

Similarly, it is straightforward to show that II
(1)
n = op(δ

−2
N a∗1Na

∗
1N), II

(2)
n =

Op(δ
−2
N a∗1Na

∗
1N), II

(3)
n = II

(5)
n = op(δ

−1
N a∗1N), II

(4)
n = II

(6)
n = Op(δ

−1
N a∗1N), and

II
(7)
n = op(1).

Then, replacing (S3.24) in (S3.23), following some straightforward cal-

culations, and Assumption (S2.8),

m̂β̃(z;H2)− m̃β(z;H2) = op(δ
−1
N a2N),

so Lemma S3.4 is proved.

Lemma S3.5. Assume conditions S2.1–S2.12 hold. For some r > 0, we

define cN = O((lnN)1/qN1/2r). For all z such that ‖z‖ ≤ cN , where ‖z‖ =

max(|z1|, . . . , |zq|), as N →∞ and T is fixed,

sup
‖z‖≤aN

∣∣∣m̂(1)

β̂
(z;H3)− m̃(1)

β (z;H3)
∣∣∣ = op(δ

−1
N a3N),

where a3N = (N |H3|1/2)−1/2 + tr(H3).

To proof this lemma we follow the same line as in the proof of Lemma

S3.4 and is therefore omitted.
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S4 Proof of Theorem 3.1

The estimator β̃ can be written as

√
n
(
β̃ − β

)
=
√
n
(

∆Ŵ>
U (In − Ŝ)>(In − S̃)∆U

)−1

×
[
∆Ŵ>

U (In − Ŝ)>(In − S̃)M + ∆Ŵ>
U (In − Ŝ)>(In − S̃)∆ε

]
, (S4.25)

By Lemmas S3.2–S3.3, the bias term is

√
n
(

∆Ŵ>
U (In − Ŝ)>(In − S̃)∆U

)−1

∆Ŵ>
U (In − Ŝ)>(In − S̃)M

= Op(
√
na∗2N). (S4.26)

Consider now the second term of the right-hand side of (S4.25), we

write

∆Ŵ>
U (In − Ŝ)>(In − S̃)∆ε = ∆Ŵ>

U (In − Ŝ)>(∆ε− S̃∆ε).

Following a similar reasoning as in (S3.18) we obtain that, uniformly in

z ∈ A, S̃∆ε = [∆X12, . . . ,∆XNT ]>Op(a2N). Using this result and (S3.20),

1

n
(∆ŴU − Ŝ∆ŴU)>S̃∆ε

=
1

n

∑
it

(∆WUit − B∆WX∆WU
(z, z)>B−1

∆WX∆WX
(z, z)∆WXit)

×∆X>it (1 +Op(a2N))Op(a2N). (S4.27)

Using (S4.27) and given that E(∆εit|Zit, Zi(t−1)) = 0, it is straightfor-
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ward to show

1√
n

∆Ŵ>
U (In − Ŝ)>(In − S̃)∆ε =

1√
n

∑
it

Υit∆εit + op(δ
−1
N a2N) +Op(a2N)

d−−→ N (0,Σ∗), (S4.28)

where Σ∗ = 2σ2
εE(ΥitΥ

>
it)− σ2

εE(ΥitΥ
>
i(t+1)).

Finally, by the Slutsky theorem and the central limit theorem, we get

√
n(β̃ − β)

d−−→ N (0,Σ−1Σ∗Σ−1).

S5 Proof of Theorem 3.2

In order to obtain the main asymptotic properties of the three-stage non-

parametric estimator we can write

√
n|H2|

(
m̂β̃(z;H2)−m(z)

)
=

√
n|H2|

(
m̂β̃(z;H2)− m̃β(z;H2)

)
+

√
n|H2| (m̃β(z;H2)−m(z)) . (S5.29)

In Lemma S3.4 it is shown the asymptotic equivalence between m̂β̃(z;H2)

and m̃β(z;H2). Hence, the first element of the right-hand side of (S5.29)

is asymptotically negligible. In the following, we consider the asymptotic

distribution of the two-step feasible estimator, i.e., m̂β̃(z,H2).
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With this aim, we first focus on the asymptotic bias of this estimator.

The Taylor’s approximation of the smooth functions implies

∆Yit ' ∆X>itm(z) +
[
Xit ⊗ (Zit − z)−Xi(t−1) ⊗ (Zi(t−1) − z)

]>
Dm(z)

+
1

2

[
X>it ⊗ (Zit − z)>Hm(z)(Zit − z)−X>i(t−1)

⊗(Zi(t−1) − z)>Hm(z)(Zi(t−1) − z)
]

+ ∆U>it β + ∆εit +Rm(z), (S5.30)

where Dm(z) and Hm(z) are the first-order derivatives vector and the Hes-

sian matrix of (dq × 1) and (dq × q) dimension, respectively, for Dm(z) =

vec(∂m(z)/∂z>) and Hm(z) = ∂2m(z)/∂zz>. Also, Rm(z) is a vector of

Taylor series remainder terms and we denote

X>it ⊗ (Zit − z)>Dm(z) =
[
X>1it ⊗ (Zit − z)>Dm1(z), X>2it ⊗ (Zit − z)>Dm2(z)

]
,

X>it ⊗ (Zit − z)>Hm(z) (Zit − z) =
[
X>1it ⊗ (Zit − z)>Hm1(z) (Zit − z) ,

X>2it ⊗ (Zit − z)>Hm2(z) (Zit − z)
]
.

Similar definitions for X>i(t−1)⊗ (Zi(t−1)− z)>Dm(z) and X>i(t−1)⊗ (Zi(t−1)−

z)>Hm(z)(Zi(t−1) − z).

Using (S5.30) and subtracting ∆W>
Xit
m(z) from both sides of m̃β(z,H2),

this estimator can be rewritten as

m̃β(z;H2)−m(z) =

(∑
it

KitKi(t−1)∆WXit∆W
>
Xit

)−1

×
∑
it

KitKi(t−1)∆WXit (Git + ∆εit) , (S5.31)
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where

Git = (∆Xit −∆WXit)
>m(z) +

[
Xit ⊗ (Zit − z)−Xi(t−1) ⊗ (Zi(t−1) − z)

]>
Dm(z)

+
1

2

[
X>it ⊗ (Zit − z)>Hm(z)(Zit − z)−X>i(t−1) ⊗ (Zi(t−1) − z)>Hm(z)(Zi(t−1) − z)

]
+ Rm(z).

For the sake of simplicity, let us denote

m̃β(z;H2)−m(z) = Γ−1
n (Bn + Ψn) , (S5.32)

where

Bn = n−1
∑
it

KitKi(t−1)∆WXitGit

Ψn = n−1
∑
it

KitKi(t−1)∆WXit∆εit.

Thus, to complete the proof of Theorem 3.2 it is enough to show

(m̃β(z;H2)−m(z))− Γ−1
n Bn = Γ−1

n Ψn, (S5.33)

where we will demonstrate that Γ−1
n Bn contributes to the asymptotic bias,

whereas the term of the right-hand side of (S5.33) is asymptotically normal.

Considering now the behavior of Bn, it can be decomposed into five

different terms, each one has to be analyzed separately,

Bn = B(1)
n +B(2)

n +B(3)
n +B(4)

n +B(5)
n , (S5.34)



Juan M. Rodriguez-Póo and Alexandra Soberón

where

B(1)
n = n−1

∑
it

KitKi(t−1)∆WXit(∆Xit −∆WXit)
>m(z),

B(2)
n = n−1

∑
it

KitKi(t−1)∆WXit(∆Uit −∆WUit)
>β,

B(3)
n = n−1

∑
it

KitKi(t−1)∆WXit

[
Xit ⊗ (Zit − z)−Xi(t−1) ⊗

(
Zi(t−1) − z

)]>
Dm(z),

B(4)
n = (2n)−1

∑
it

KitKi(t−1)∆WXit

[
X>it ⊗ (Zit − z)>Hm(z) (Zit − z)

−X>i(t−1) ⊗
(
Zi(t−1) − z

)>Hm(z)
(
Zi(t−1) − z

)]
,

B(5)
n = n−1

∑
it

KitKi(t−1)∆WXitRm(z).

By the law of iterated expectations and the stationarity condition, it is

easy to show that E(B
(1)
n ) and E(B

(2)
n ) are op(1). Similarly,

E(B(3)
n ) =

∫ (
E(∆WXitX

>
it |Zit = z, Zi(t−1) = z)Df (z)(H

1/2
2 u)

)
⊗(H

1/2
2 u)>Dm(z)K(u)K(v)dudv

−
∫ (

E(∆WXitX
>
i(t−1)|Zit = z, Zi(t−1) = z)Df (z)(H

1/2
2 v)

)
⊗(H

1/2
2 v)>Dm(z)K(u)K(v)dudv

= µ2(K)B∆WX∆WX
(z, z)diagd(Df (z)H2Dmκ(z))ıdf

−1
Zit,Zi(t−1)

(z, z)

+ op(tr(H2)). (S5.35)

Following a similar procedure as above,

E(B(4)
n ) =

1

2
E
[
KitKi(t−1)

(
E(∆WXitX

>
it |Zit, Zi(t−1))⊗ (Zit − z)>Hm(z)(Zit − z)

− E(∆WXitX
>
i(t−1)|Zit, Zi(t−1))⊗ (Zi(t−1) − z)>Hm(z)(Zit − z)

)]
=

1

2
B∆WX∆WX

(z, z)diagd(tr(Hmκ(z)H2))ıdµ2(K) + op(tr(H2)). (S5.36)
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On its part, as it is shown in Rodriguez-Poo and Soberon (2014), E(B
(5)
n ) =

op(tr(H2)).

Following a similar procedure as in the proof of (S3.7) and assuming

H2 → 0 and N |H2| → ∞, it is easy to prove that any component of the

variance of Bn converges to zero. Then, replacing (S5.35)-(S5.36) in Bn,

using (S3.7), and applying the Slutsky theorem we have that

Γ−1
n Bn = µ2(K)B∆WX∆WX

(z, z)−1B∆WX∆WX
(z, z) [diagd(Df (z)H2Dmκ(z))

×ıdf−1
Zit,Zi(t−1)

(z, z) +
1

2
diagd(tr(Hmκ(z)H2))ıd

]
+ op(tr(H2)), (S5.37)

where κ = 1, . . . , d. Then, the first part of the proof is done.

To finish the proof of the theorem, all we have to do is to prove the

convergence in distribution of
√
N |H2|Γ−1

n Ψn. In order to do so, we first

calculate the asymptotic variance of Γ−1
n Ψn and then we will check the

Lyapunov condition. With this aim, let us denote ∆ε = (∆ε1, . . . ,∆εN) as

the (n× 1) vector with ∆εi = (∆εi2, . . . ,∆εiT )>,

E(∆εi∆ε
>
i |Lit,Li(t−1)) =


2σ2

ε , for i = i′, t = t′,

−σ2
ε , for i = i′, |t− t′| < 2,

0, for i = i′, |t− t′| ≥ 2.

(S5.38)

When Ψn is analyzed we claim that by the law of iterated expectations,
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condition (2.2), and Assumptions S2.1, S2.3 and S2.5–S2.9, we have that

n|H2|V ar(Ψn) = |H2|n−1
∑
ii′

∑
tt′

E
[
∆WXit∆εit∆εi′t′∆W

>
Xi′t′

KitKi(t−1)Ki′t′Ki′(t′−1)

]
= 2σ2

εR
2(K)B∆WX∆WX (z, z)(1 + op(1)). (S5.39)

To show this result note that the covariance between different individu-

als are clearly zero by the independence condition. Therefore, for i = i′ we

consider two different cases: t = t′ and t 6= t′. For t = t′ and Assumptions

S2.1, S2.3 and S2.5–S2.9, by standard kernel methods we obtain

|H2|(T − 1)−1

T∑
t=2

E
[
∆WXitE(∆ε2it|Lit,Li(t−1))∆W

>
Xit
K2
itK

2
i(t−1)

]
= 2σ2

ε |H2|E
[
E(∆WXit∆W

>
Xit
|Zit, Zi(t−1))K

2
itK

2
i(t−1)

]
= 2σ2

εR
2(K)B∆WX∆WX

(z, z)(1 + op(1)).

Meanwhile, for t 6= t′, and proceeding in the same way as in the previous

equation, if we consider again the stationary assumption

2|H2|E
[
∆WXi2E(∆εi2∆εi3|Li1,Li2,Li3)∆W>

Xi3
K2
i2Ki1Ki3

]
= −σ2

ε |H2|1/2R(Ku)E[∆WXit∆W
>
Xit
|Zi1 = z, Zi2 = z, Zi3 = z]

×fZi1,Zi2,Zi3(z, z, z)(1 + op(1)).

Note that only those terms of the variance-covariance matrix in which |T −

κ| < 2 holds are nonzero. The remaining terms of this matrix are zero by

the structure of the error term in first differences established in (S5.38).
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Then, applying the Slutsky theorem and using (S3.8) and (S5.39), as

N |H2| → ∞,

n|H2|V ar
(
Γ−1
n Ψn

)
= 2σ2

εR
2(K)B−1

∆WX∆WX
(z, z)(1 + op(1))

Finally, in order to obtain the asymptotic distribution of m̃β(z;H2), it

is suffices to check the Lyapunov condition. Let

λ∗n,i = T−1/2
∑
it

λit,

where

λit = KitKi(t−1)∆WXit∆εit|H2|1/2, i = 1, . . . , N ; t = 2, . . . , T.

By Minkowski’s inequality,

E|λ∗n,i|2+ξ ≤ CT (2+ξ)/2E|λit|2+ξ,

where using similar derivations to those used in the proof of Theorem 3.2

it is obtained

E|λit|2+ξ ≤ |H2|(2+ξ)/2E|KitKi(t−1)∆WXit∆εit|2+ξ

= |H2|−ξ/2
∫
E
(
|∆WXit∆εit|2+ξ|Zit = z +H

1/2
2 u, Zi(t−1) = z +H

1/2
2 v

)
× fZit,Zi(t−1)

(z +H
1/2
2 u, z +H

1/2
2 v)K2+ξ(u)K2+ξ(v)dudv

= |H2|−ξ/2E
(
|∆WXit∆εit|2+ξ|Zit = z, Zi(t−1) = z

)
fZit,Zi(t−1)

(z, z)

×
∫
K2+ξ(u)K2+ξ(v)dudv + op(|H2|−ξ/2).
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Then, it is proved that

E|λ∗n,i|2+ξ ≤ CT (2+ξ)/2|H2|−ξ/2.

Therefore, N−(2+ξ)/2
∑N

i=1 E|λ∗n,i|(2+ξ) ≤ C(N |H2|)−ξ/2 → 0 given that,

as N tends to infinity, N |H2| → ∞. Thus, it is shown that the Lyapunov

condition holds. Using this result and Lemma S3.4, we obtain

√
n|H2|

(
m̂β̂(z;H2)−m(z)−B(z,H2)(1 + op(1))

)
d−−→ N

(
0, 2σ2

εR
2(K)B−1

∆WX∆WX
(z, z)

)
so the proof of Theorem 3.2 is done.

S6 Proof of Theorem 4.1

In order to prove Theorem 4.1, let us denote

m̃
(1)
β (z;H3) =

(
N∑
i=1

T∑
t=2

KitWXitW
>
Xit

)> N∑
i=1

T∑
t=2

KitWXit(∆Ŷ1it −∆W>
Uit
β), (S6.40)

where now

Kit =
1

|H3|1/2
K
(
H
−1/2
3 (Zit − z)

)
.

Then, the one-step backfitting estimator can be written as

m̂
(1)

β̂
(z;H3)−m(z) =

(
m̂

(1)

β̂
(z;H3)− m̃(1)

β (z;H3)
)

+
(
m̃

(1)
β (z;H3)−m(z)

)
. (S6.41)
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Using Lemma S3.5, it can be shown that the first element of the right-

hand side of (S6.41) is asymptotically negligible. Then, to show the results

in Theorem 4.1, the asymptotic behavior of the latter term of (S6.41) needs

to be proved. To do it, we first focus on the asymptotic bias of the one-step

backfitting estimator and later on the corresponding variance.

Taylor’s approximation of the smooth functions implies

∆Ŷ1it = X>itm(z) +X>it ⊗ (Zit − z)>Dm(z) +
1

2
X>it ⊗ (Zit − z)>Hm(z)(Zit − z)

+ X>i(t−1)

[
m̂β̂(Zi(t−1);H2)−m(Zi(t−1))

]
+ ∆U>it β + ∆εit +Rm(z),(S6.42)

where X>it ⊗ (Zit − z)>Dm(z) and X>it ⊗ (Zit − z)>Hm(z)(Zit − z), Dm(z),

Hm(z), Rm(z) are defined in (S5.30).

Replacing (S6.42) in (S6.40) and subtracting W>
Xit
m(z) from both sides

of (S6.40), m̃
(1)
β (z;H3) can be rewritten as

m̃
(1)
β (z;H3)−m(z) =

(
N∑
i=1

T∑
t=2

KitWXitW
>
Xit

)−1

×
N∑
i=1

T∑
t=2

KitWXit

(
G

(1)
it +Qit + ∆εit

)
(S6.43)

where

G
(1)
it = (Xit −WXit)

>m(z) +X>it ⊗ (Zit − z)>Dm(z)

+
1

2
X>it ⊗ (Zit − z)>Hm(z)(Zit − z) +Rm(z),

Qit = X>i(t−1)

[
m̂β̂(Zi(t−1);H2)−m(Zi(t−1))

]
.
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For the sake of simplicity, let us denote

m̃
(1)
β (z;H3)−m(z) = Γ̃−1

n1
(B̃n1 + M̃n1 + Ũn1), (S6.44)

where

B̃n1 = n−1
∑

itKitWXitG
(1)
it , M̃n1 = n−1

∑
itKitWXitQit,

Ũn1 = n−1
∑

itKitWXit∆vit, Γ̃n1 = n−1
∑

itKitWXitW
>
Xit
.

Therefore, to complete the proof of this lemma it is necessary to show

√
n|H3|1/2(m̃

(1)
β (z;H3)−m(z))−

√
n|H3|1/2Γ̃−1

n1
(B̃n1 + M̃n1)

=
√
n|H3|1/2Γ̃−1

n1
Ũn1 . (S6.45)

To obtain the bias term we first focus on the inverse term of (S6.45)

and later analyze the behavior of B̃n1 and M̃n1 . Then, following the same

reasoning as in (S3.7), it can be shown that, as N tends to infinity,

Γ̃−1
n1

= B−1
WXWX

(z) + op(1), (S6.46)

given that

Γ̃n1 = n−1
∑
it

E[KitWXitW
>
Xit

] = BWXWX
(z) + op(1),

where

BWXWX
(z) = E[WXitW

>
Xit
|Zit = z]fZit(z).

Focus now on the behavior of B̃n, it can be splitted up into five terms,
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i.e.

B̃n1 = n−1
∑
it

KitWitG
(1)
it = B̃(1)

n1
+ B̃(2)

n1
+ B̃(3)

n1
+ B̃(4)

n1
+ B̃(5)

n1
, (S6.47)

where

B̃(1)
n1

= n−1
∑
it

KitWXit(Xit −WXit)
>m(z),

B̃(2)
n1

= n−1
∑
it

KitWXit(∆Uit −∆WUit)
>β,

B̃(3)
n1

= n−1
∑
it

KitWXit(Xit ⊗ (Zit − z))>Dm(z),

B̃(4)
n1

= (2n)−1
∑
it

KitWXit(Xit ⊗ (Zit − z))>Hm(z)(Zit − z),

B̃(5)
n1

= (2n)−1
∑
it

KitWXitRm(z).

Analyzing each of these terms separately and using the law of iterated

expectations it can be proved that, as N → ∞, E(B̃
(1)
n1 ) and E(B̃

(2)
n1 ) are

op(1). Further,

E(B̃(3)
n1

) = E
[
KitE(WXitX

>
it |Zit)⊗ (Zit − z)>Dm(z)

]
= µ2(K)BWXWX

(z)diagd (Df (z)H3Dmκ(z)) ıdf
−1
Zit

(z) + op(tr(H3)),

(S6.48)

E(B̃(4)
n1

) =
1

2
E
[
KitE(WXitX

>
it |Zit)⊗ (Zit − z)>Hmr(z)(Zit − z)

]
=

1

2
µ2(K)BWXWX

(z)diagd (tr(Hmκ(z)H3)) ıd + op(tr(H3)), (S6.49)

and E(B̃
(5)
n1 ) = op(tr(H3)). Also, assuming H3 → 0 and N |H3|1/2 → ∞,

it is easy to prove that any component of the variance of B̃n1 converges to
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zero.

To complete the proof of the asymptotic bias we have to analyze M̃n1 .

Specifically, using the results in Lemma S3.4 it can be shown that, as N

tends to infinity,

E(M̃n1) = E
[
KitWXitX

>
i(t−1)(m̂β̂(z;H2)−m(z;H2))

]
= E

[
KitWXitW

>
Xi(t−1)

(m̂β̂(z;H2)−m(z;H2))
]

= op(δ
−1
N a2N), (S6.50)

since it can be proved that n−1
∑

it |KitWXitW
>
Xi(t−1)

| = Op(1).

Using the fact that tr(H2) → 0 and tr(H3) → 0 in the sense that

N |H2| → ∞ and N |H3| → ∞, it is proved that M̃n1 is asymptotically

negligible. Then, if we substitute the asymptotic results of (S6.46) and

(S6.47)–(S6.49) into (S6.44) by the Slutsky theorem, we obtain

Γ̃−1
n1

(B̃n1 + M̃n1) = µ2(K)
(
diagd (Df (z)H3Dmκ(z)) ıdf

−1
Zit

(z)

+
1

2
diagd (tr(Hmκ(z)H3)) ıd

)
+ op(tr(H3)). (S6.51)

Therefore, it is proved that the bias rate of the one-step backfitting estima-

tor in (4.11) is the same as the corresponding of the three-stage nonpara-

metric estimator in (2.10), as we expected.

Focus now on the asymptotic variance, under assumptions of Theorem
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3.1 and by the law of iterated expectations, it is obtained

n|H3|1/2V ar(Ũn1) = |H3|1/2n−1
∑
ii′

∑
tt′

E
[
WXitW

>
Xi′t′

∆εit∆εi′t′KitKi′t′

]
= 2σ2

εR(K)BWXWX
(z)(1 + op(1)). (S6.52)

Using (S6.45) and (S6.51) and by the Slutsky theorem,

n|H3|V ar(Γ̃−1
n1
Ũn1) = 2σ2

εR(K)B−1
WXWX

(z)(1 + op(1)). (S6.53)

Finally, following similar derivations as in the proof of Theorem 3.2 it

is straightforward to show that the Lyapunov condition holds. Therefore,

under the assumptions of Theorem 4.1 we obtain√
n|H3|1/2

(
m̂

(1)

β̂
(z;H3)−m(z)−B(z,H3)(1 + op(1))

)
d−−→ N

(
0, 2σ2

εR(K)B−1
WXWX

(z)
)

and the proof is done.

S7 Proof of Theorem 4.2

By subtracting in both terms of (4.18) the quantity m (z) and noting that

G−1
m (z) (J1m(z) + J2m(z)) = I we obtain

m̂
(mde)

β̂
(z;H3)−m (z) = G−1

m (z)J1m(z)
(
m̂

(1)

β̂
(z;H3)−m (z)

)
+ G−1

m (z)J2m(z)
(
m̂

(2)

β̂
(z;H3)−m (z)

)
.
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Note that the asymptotic variances of the backfitting estimators have been

already obtained in Theorem 4.1. Then, in order to proof this result

first we need to obtain the asymptotic covariance between m̂
(1)

β̂
(z;H3) and

m̂
(2)

β̂
(z;H3). Let

Cov
(
m̂

(1)

β̂
(z;H3), m̂

(2)

β̂
(z;H3)

)
= E

((
m̂

(1)

β̂
(z;H3)−m (z)

)(
m̂

(2)

β̂
(z;H3)−m (z)

)>)
.

In order to obtain the asymptotic covariance term, using (S6.44) for m̂
(1)

β̂
(z;H3)

and the corresponding expression for m̂
(2)

β̂
(z;H3) we have

Cov
(
m̂

(1)

β̂
(z;H3), m̂

(2)

β̂
(z;H3)

)
= Cov

(
Γ̃−1
n1
Ũn1 , Γ̃

−1
n2
Ũn2

)
, (S7.54)

where for

Kit = |H3|−1/2K(H
−1/2
3 (Zit − z)),

Ki(t−1) = |H3|−1/2K(H
−1/2
3 (Zi(t−1) − z)),

we have

Γ̃n2 = (N2T )−1
∑
it

Ki(t−1)WXi(t−1)
W>
Xi(t−1)

,

Ũn2 = −(N2T )−1
∑
it

Ki(t−1)WXi(t−1)
∆εit.

Focus on the middle term of (S7.54), and under assumptions of Theorem

4.1, it can be proved that by the law of iterated expectations, the strict
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stationarity in t and that E [∆εit∆εi′t′ ] = 0, for i 6= i′.

n|H3|1/2Cov(Ũn1 , Ũn2) = − |H3|1/2 n−1
∑
ii′tt′

E
[
KitKi(t′−1)WXit∆εit∆εi′t′W

>
Xi(t′−1)

]
= 0. (S7.55)

In addition, under the same reasoning as in (S3.7)

Γ̃−1
n2

= B−1
WX−1

WX−1
(z)(1 + op(1)), (S7.56)

where

BWX−1
WX−1

(z) = E[WXi(t−1)
W>
Xi(t−1)

|Zi(t−1) = z]fZi(t−1)
(z).

If we substitute (S6.46) and (S7.55)–(S7.56) into (S7.54) and by the Crámer-

Wold device, as N →∞,

n|H3|1/2Cov
(
m̂

(1)

β̂
(z;H3), m̂

(2)

β̂
(z;H3)

)
= op(1). (S7.57)

Now, apply Theorem A from (Serfling (1980), p. 122) and the proof is done.
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