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EFFICIENT NONPARAMETRIC THREE-STAGE

ESTIMATION OF FIXED EFFECTS VARYING

COEFFICIENT PANEL DATA MODELS

Juan M. Rodriguez-Póo and Alexandra Soberón

Universidad de Cantabria

Abstract: This study estimates a fixed effects panel data model that adopts a par-

tially linear form: the coefficients of some variables are restricted to be constant,

but the coefficients of other variables are assumed to vary depending on some ex-

ogenous continuous variables. Moreover, we allow for endogeneity in the structural

equation. Conditional moment restrictions are imposed on the first-differences to

identify the structural equation. Based on these restrictions, we propose a three-

stage estimation procedure, and establish the asymptotic properties of these pro-

posed estimators. Moreover, from the first-differences transformation, we obtain

two alternative backfitting estimators to estimate the unknown varying coefficient

functions. As a novel contribution, we propose a minimum distance estimator that

combines both estimators and, thus, is more efficient and achieves the optimal rate

of convergence. The feasibility and benefits of this new procedure are shown by es-

timating a life-cycle hypothesis panel data model and implementing a Monte Carlo

study.

Key words and phrases: Endogeneity, fixed effects, functional-coefficient models,

generalized F-test, instrumental variables, panel data.

1. Introduction

Two of the most important issues faced by econometricians when modeling

individual choice in demand systems or a market equilibrium are the presence of

endogenous variables and individual heterogeneity (see Heckman (2008)). Tradi-

tionally, instrumental variable (IV) models have been used to account for endo-

geneity, whereas heterogeneity is often handled using panel data techniques (e.g.,

see Arellano (2003)). IV models are also popular when dealing with both issues

at the same time in a panel data analysis (e.g., see Hsiao (2003, Chap. 5)). In

many situations, economic theory does not imply tight functional form specifi-

cations for IV models, in which case, it is useful to consider nonparametric and
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semiparametric extensions. Unfortunately, including such flexible specifications

introduces the curse of dimensionality (see Härdle (1990)). Varying coefficient

models offer one solution to this problem. These models are clearly motivated by

economic theory (see Chamberlain (1992)), encompass many alternative models

(e.g., fully nonparametric models and partially linear models); and avoid the so-

called ill-posed inverse problem in general nonparametric IV models (see Newey

and Powell (2003)).

This study estimates a fixed effects panel data model that adopts a partially

linear form. That is, the coefficients of some variables are restricted to be con-

stant, but others are assumed to vary depending on some exogenous continuous

variables. Moreover, we allow for endogeneity in the structural equation. This

structure leads naturally to a semiparametric three-stage estimation procedure

based on a transformed (first-order differenced) structural model. In the first

stage, endogenous variables are projected onto a set of IVs. In the second stage,

constant coefficients are estimated using a profile least squares approach. Finally,

in the third step, nonparametric techniques are used to estimate the varying coef-

ficients. Unfortunately, the estimators obtained in this last stage achieve a rather

slow rate of convergence. Following Fan and Zhang (1999), we improve this rate

using a one-step backfitting procedure. The resulting estimator is oracle efficient

and exhibits an optimal rate of convergence. However, as a result of the first dif-

ferences transformation we obtain two alternative backfitting estimators for the

same unknown function of the varying parameters. To improve the efficiency,

we combine the estimators using a minimum distance estimation technique. To

the best of our knowledge, this approach and the minimum distance estimation

technique applied to this problem are new in the literature.

To avoid the ill-posed inverse problem (see Newey and Powell (2003)), while

maintaining some model specification flexibility, we impose conditional moment

restrictions on the first-differences to identify the structural equation (see Ai

and Chen (2003), Hall and Horowitz (2005) and Newey (2013), among others,

for a similar approach). Other procedures are available, such as the so-called

control function approach of Heckman and Robb (1985), Blundell, Kristensen

and Matzkin (2013), Darolles, Fan and Florens (2004), Gao and Phillips (2013),

and Su and Ullah (2008), among others, but these require other identification

assumptions. To the best of our knowledge, Cai et al. (2006), Cai and Xiong

(2012), and Cai et al. (2017) are the most relevant references for varying coeffi-

cients with endogenous covariates; however, they do not consider the panel data

case. Several works (see Rodriguez-Póo and Soberón (2017) for a survey) analyze
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varying-coefficient panel data models, but the resulting estimators are not robust

to the presence of endogeneity. Recently, Fève and Florens (2014) consider es-

timations of nonparametric panel data models using an IV condition. However,

their results do not apply straightforwardly to the varying-coefficient model. Fi-

nally, IV methods have been proposed in the context of varying-coefficient panel

data models with random effects. Cai and Li (2008) propose estimating the

unknown functions of interest using the nonparametric generalized method of

moments. However, this method does not control for heterogeneity when it is

correlated with some explanatory variables, and hence generates asymptotically

biased estimators when fixed effects are present. The semiparametric partially

linear varying-coefficient model encompasses several alternative specifications of

interest to econometricians (e.g., partially linear model, fully linear parametric

model). Therefore, we propose a Wald-type statistic based on Cai et al. (2017),

and the references therein. Furthermore, we provide a technique to compute the

confidence bands for the varying coefficients. To show the feasibility and advan-

tages of the proposed procedure, we apply it to extend the life cycle hypothesis

(LCH) of Chou, Liu and Huang (2004) to include panel data.

The remainder of the paper is structured as follows. In Section 2, we set

up the econometric model and describe the three-step estimation procedure. In

Section 3, we discuss the asymptotic properties of the model and the procedure.

In Section 4, we provide estimators that are more efficient, such as the one-

step backfitting and minimum distance estimators. Section 5 develops a Wald-

type test for the constant coefficients and the pointwise confidence bands for

the functional coefficients. In Section 6, a Monte Carlo study is presented to

investigate the finite-sample performance of the proposed estimators and the

test statistic. Section 7 applies our methods to estimate the LCH model. Finally,

Section 8 concludes the paper. All assumptions and proofs of the main results

are relegated to the online Supplementary Material.

2. Model and Estimation Procedures

A partially varying-coefficient panel data model assumes the following form:

Yit = X>1itm1(Zit) +X>2itm2(Zit) + U>1itβ1 + U>2itβ2 + µi + εit,

i = 1, . . . , N ; t = 1, . . . , T, (2.1)

where Yit is an observed scalar random variable, X1it and U1it are (d1 × 1) and

(k1 × 1) vectors, respectively, of endogenous random variables, X2it and U2it
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are vectors of exogenous random variables of dimension (d2 × 1) and (k2 × 1),

respectively, εit is the random error, and µi denotes the unobserved individual

heterogeneity. In addition, the structural equation (2.1) includes unknown func-

tions (i.e., m1(·) and m2(·)) of a (q × 1) vector of exogenous continuous random

variables, Zit, and constant coefficients (i.e., β1 and β2) that need to be estimated.

Furthermore, denote Lit as an (` × 1) vector of all exogenous variables (i.e., Z,

X2, and U2) and an M -dimensional vector of other IVs, where ` = q+d2 +k2 +M

and ` ≥ d1 + k1, which is the identification condition that the number of instru-

ments is larger than the number of endogenous variables. A similar definition is

given for Li(t−1). We assume the following moment condition:

E(∆εit|Lit,Li(t−1)) = 0, i = 1, . . . , N ; t = 1, . . . , T. (2.2)

The above model is general enough to include relevant empirical examples in the

economics literature. For example, based on the LCH theory, Gourinchas and

Parker (2002) and Kuan and Chen (2013) show that the elasticity of preventive

savings to changes in net wealth and/or medical expenses varies according to

certain household features, such as the age of the household head.

Furthermore, the above model allows for two sources of endogeneity. First,

there exists a subset of endogenous explanatory variables (i.e., X1 and U1). Sec-

ond, the heterogeneity term, µi, can be arbitrarily correlated with Z,X, and/or

U (i.e., fixed effects). It is well known that, ignoring these sources of endo-

geneity in a direct estimation of the functions of interest leads to asymptotically

biased estimators. The second source of endogeneity can be handled by taking a

first-difference transformation in (2.1), obtaining

∆Yit = X>itm(Zit)−X>i(t−1)m(Zi(t−1)) + ∆U>it β + ∆εit, (2.3)

i = 1, . . . , N ; t = 1, . . . , T,

where Xit = (X>1it, X
>
2it)
> and m(Zit) = (m1(Zit)

>,m2(Zit)
>)> are (d × 1) vec-

tors, and ∆Uit = (∆U>1it,∆U
>
2it)
> and β = (β>1 , β

>
2 )> are (k × 1) vectors, with

d = d1 +d2 and k = k1 +k2. The respective definitions for Xi(t−1) and m(Zi(t−1))

are similar.

For any given β and ∆Y ∗it = ∆Yit − ∆U>it β, Rodriguez-Póo and Soberón

(2014) propose estimating the quantities of interest, m (·), for a given point z ∈ A,

where A is a compact subset in a nonempty interior of IR, by minimizing the
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criterion function

N∑
i=1

T∑
t=2

(
∆Y ∗it −∆X>it γ

)2
KH(Zit − z)KH(Zi(t−1) − z) (2.4)

with respect to γ, where γ = m(z). In addition, H is a q× q symmetric positive-

definite bandwidth matrix, and K is a q-variate, such that

KH(u) =
1

|H|1/2
K(H−1/2u).

Note that the kernel weights in (2.4) are related to both Zit and Zi(t−1). This is

significant because it enables us to overcome the non-negligible asymptotic bias

of the differencing nonparametric estimators. If we consider kernels around Zit
only, the remainder term in the Taylor approximation is not negligible because

the distance between Zis (s 6= t) and z does not vanish asymptotically. This

phenomena was noted in Mundra (2005) and Lee and Mukherjee (2015), and

solved in Rodriguez-Póo and Soberón (2014, 2015) for a local linear regression.

Unfortunately, although the resulting estimator for γ is robust to fixed ef-

fects, it is still subject to the first endogeneity problem (i.e., the endogeneity of

X1 and U1). Taking the expectation on both sides of the structural equation

(2.3), conditioning on Lit and Li(t−1) and using condition (2.2), we can obtain

the following:

E[∆Yit|Lit,Li(t−1)] = W>Xitm(Zit)−W>Xi(t−1)
m(Zi(t−1)) + ∆W>Uitβ, (2.5)

whereWXit = (E(X>1it|Lit,Li(t−1)), X
>
2it)
> is a d-dimensional vector, and ∆WUit =

(E(∆U>1it|Lit,Li(t−1)),∆U
>
2it)
> is a (k×1) vector. A similar definition is used for

WXi(t−1)
.

Then, taking into account (2.5) and proceeding as above, the coefficient

functions m(·) can be estimated by minimizing the criterion function

N∑
i=1

T∑
t=2

(
∆Y ∗it −∆W>Xitγ

)2
KH2

(Zit − z)KH2
(Zi(t−1) − z) (2.6)

with respect to γ, for γ = m(z), where ∆WXit = (E(∆X>1it|Lit,Li(t−1)),∆X
>
2it)
>.

Assuming that
∑

itKH2
(Zit − z)KH2

(Zi(t−1) − z)∆WXit∆W
>
Xit

is positive



986 RODRIGUEZ-PÓO AND SOBERÓN

definite, the solution to this problem is

m̃β(z;H2) =

(
N∑
i=1

T∑
t=2

KH2
(Zit − z)KH2

(Zi(t−1) − z)∆WXit∆W
>
Xit

)−1

(2.7)

×
N∑
i=1

T∑
t=2

KH2
(Zit − z)KH2

(Zi(t−1) − z)∆WXit(∆Yit −∆W>Uitβ).

Unfortunately, m̃β(z;H2) is an infeasible estimator because the vector of pa-

rameters, β, and the nonparametric functions E(∆X>1it|Lit,Li(t−1)) and E(∆U>1it|
Lit,Li(t−1)) are unknown and need to be estimated. The first stage of our proce-

dure estimates the nonparametric functions. Denote by Ê(∆X>1it|Lit,Li(t−1);H1)

and Ê(∆U>1it|Lit,Li(t−1);H1) the nonparametric estimators of E(∆X>1it|Lit,
Li(t−1)) and E(∆U>1it|Lit,Li(t−1)), respectively, with bandwidth H1. For exam-

ple, these might be local linear or constant estimators.

The second stage is to estimate β. Denote n = N(T − 1), we propose a

conventional profile least squares estimator (see Fan and Huang (2005)),

β̂ = [∆Ŵ>U (In − Ŝ)>(In − Ŝ)∆ŴU ]−1∆Ŵ>U (In − Ŝ)>(In − Ŝ)∆Y, (2.8)

where ∆Y = [∆Y12, . . . ,∆YNT ]>, ∆ŴU = [∆ŴU12
, . . . ,∆ŴUNT ]>, ∆ŴUit is the

vector ∆WUit in which the unknown functions have been replaced by consistent

estimators, and Ŝ is a smoothing matrix; that is,

Ŝ =


Ŵ>X12

Γ̂−1
12 ∆Ŵ>XK(Z12;H2)− Ŵ>X11

Γ̂−1
11 ∆Ŵ>XK(Z11;H2)

...

Ŵ>XNT Γ̂−1
NT∆Ŵ>XK(ZNT ;H2)− Ŵ>XN(T−1)

Γ̂−1
N(T−1)∆Ŵ

>
XK(ZN(T−1);H2)

,
where Γ̂it = ∆Ŵ>XK(Zit, H2)∆ŴX , ∆ŴX = [∆ŴX12

, . . . ,∆ŴXNT ]> and ∆ŴXit ,

and ŴXit are the vectors ∆WXit and WXit , respectively, where the unknown

functions have been replaced by consistent estimators. Finally, K(z;H2) is an

n× n diagonal matrix of the form

K(z;H2) = diag(KH2
(Z12−z)KH2

(Z11−z), . . . ,KH2
(ZNT−z)KH2

(ZN(T−1)−z)).

Note that β̂ can be considerably affected by the residuals from the first stage.

To overcome this problem, following Cai et al. (2017), we propose a modified
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estimator of the form

β̃ = [∆Ŵ>U (In − Ŝ)>(In − S̃)∆U ]−1∆Ŵ>U (In − Ŝ)>(In − S̃)∆Y, (2.9)

where S̃ is a smoothing matrix of the form

S̃ =


X>12Γ̂−1

12 ∆Ŵ>XK(z12;H2)−X>11Γ̂−1
11 ∆Ŵ>XK(z11;H2)

...

X>NT Γ̂−1
NT∆Ŵ>XK(zNT ;H2)−X>N(T−1)Γ̂

−1
N(T−1)∆Ŵ

>
XK(zN(T−1);H2)

 .

Finally, having obtained the estimator for β, and after replacing the unknown

quantities with their estimated objects, the resulting three-stage estimator for

m (·), at any given value of z, is

m̂
β̃
(z;H2) = (∆Ŵ>XK(z;H2)∆ŴX)−1∆Ŵ>XK(z;H2)(∆Y −∆ŴU β̃). (2.10)

Note that the criterion function (2.7) represents the local constant approximation

to m (.). A straightforward extension would be to extend our results to the

local linear case. In Section 1 of the Supplementary Material, we provide all

expressions of the three-stage estimators for this case.

3. Statistical Properties

In this section, we investigate the asymptotic properties of the estimators

proposed in the previous section. Under some technical assumptions, provided

in Section 2 of the Supplementary Material, we present their asymptotic behav-

ior. Detailed proofs of the following results are given in Sections 3 to 5 of the

Supplementary Material.

Theorem 1. Suppose that Assumptions S2.1–S2.10 hold. When Ntr(H2)2 → 0,

because N tends to infinity and T is fixed, we have

√
n
(
β̃ − β

)
d−−−→ N

(
0,Σ−1Σ∗Σ−1

)
,

where Σ = E(ΥitΥ
>
it) and Σ∗ = 2σ2

εE(ΥitΥ
>
it)− σ2

εE(ΥitΥ
>
i(t+1)), with

Υit = ∆WUit − B∆WX∆WU
(z, z)>B−1

∆WX∆WX
(z, z)∆WXit .

In addition, the asymptotic normality of the three-stage estimator m̂
β̃
(z;H2)

can be established as follows.
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Theorem 2. Suppose that Assumptions S2.1–S2.10 hold. Because N tends to

infinity and T is fixed, we have√
n|H2|

(
m̂
β̃
(z;H2)−m(z)−B(z;H2)(1 + op(1))

)
d−−−→ N (0, V (z;H2)) ,

where

B(z;H2) = µ2(K)
[
diagd(Df (z)H2Dmκ

(z))ıdf
−1
Zit,Zi(t−1)

(z, z)

+
1

2
diagd (tr (Hmκ

(z)H2)) ıd

]
,

V (z;H2) = 2σ2
εR

2(K)B−1
∆WX∆WX

(z, z) .

Moreover, Dmκ
(z) is the first-order derivative vector of the κth component of

m(·), Hmκ
(z) is its Hessian matrix, and Df (z) is the first-order derivative vector

of the density function, for κ = 1, . . . , d. In addition, diagd (tr(Hmκ
(z)H2))

and diagd(Df (z)H2Dmκ
(z)) denote (d × d) diagonal matrices of elements of

tr(Hmκ
(z)H2) and Df (z)H2Dmκ

(z), respectively, where ıd is a (d × 1) unitary

vector.

Under the previous assumptions, the asymptotic normality of the local linear

version of the three-stage estimators is collected in Corollaries S1.1 and S1.2 that

appear in Section 1 of the Supplementary Material.

Comparing the results of Theorem 2 and Corollary S1.2, as expected, we

find the best behavior, in terms of bias, of the local linear three-stage estimator

against the Naradaya-Watson (NW) version. For other advantages, see Fan and

Gijbels (1996). Nevertheless, in this framework with endogenous regressors we

need to consider that the local linear estimator requires the use of three different

nonparametric estimators as IVs, along with their corresponding bandwidths,

whereas the NW version needs only one. Therefore, better performance by the

NW estimator in finite samples is expected, as shown in the Monte Carlo exper-

iments. That is why we focus on the NW estimators throughout, although all

results can be extended to the local polynomial case.

Furthermore, note that the results from Theorem 2 show a bias term that de-

pends asymptotically only on the smoothness of m(·) and E(∆X1it|Lit,Li(t−1)).

The dependence on β̂ and Ê(∆X1it|Lit,Li(t−1);H1) is negligible because β̂ is√
NT -consistent and, under the assumptions established in Section 2 of the Sup-

plementary Material, Ê(∆X1it|Lit,Li(t−1);H1) converges uniformly to E(∆X1it|
Lit,Li(t−1)). Finally, the dependence on E(∆X1it|Lit,Li(t−1)) vanishes, owing
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to condition tr(H1) = op(tr(H2)). Note too that Theorem 2 includes a vari-

ance term with a suboptimal rate of convergence. In this smoothness class, the

lower rate of convergence for this type of estimator is n|H2|1/2 (see Härdle (1990)

for details). Therefore, in the next section, following Rodriguez-Póo and Soberón

(2014) and Rodriguez-Póo and Soberón (2015), we propose a one-step backfitting

algorithm that makes the rate of convergence of our estimators optimal.

4. Efficient Estimators

4.1. One-step backfitting and minimum distance estimators

In this section, we first propose a one-step backfitting algorithm that achieves

optimal nonparametric rates of convergence of the estimators for m(·). In addi-

tion, as shown later, because of the additive structure of the regression model,

the backfitting procedure generates two alternative estimators for m(·). Never-

theless, by combining the two estimators using a minimum distance estimation

technique, it is possible to obtain a more efficient estimator for m (·).
Applying the well-known one-step backfitting procedure, we propose the

following three-stage estimator. Assuming that
∑

itKH3
(Zit − z)ŴXitŴ

>
Xit

is

positive-definite,

m̂
(1)

β̂
(z;H3) =

(
N∑
i=1

T∑
t=2

KH3
(Zit − z)ŴXitŴ

>
Xit

)−1

×
N∑
i=1

T∑
t=2

KH3
(Zit − z)ŴXit(∆Ŷ1it −∆Ŵ>Uit β̂), (4.1)

where ∆Ŷ1it = ∆Yit + X>i(t−1)m̂β̂
(Zi(t−1), H2), and m̂

β̂
(·, H2) is the estimator

defined in (2.10). Note that in this case, we use β̂ instead of β̃. In terms of

asymptotics, the results are the same, because in both cases, the rate of cover-

gence is
√
n.

The main reason for applying the backfitting algorithm here is to sum X>i(t−1)

m̂
β̂
(Zi(t−1), H2) in both terms of the first-differenced structural equation in (2.3).

By doing so, the structural model is transformed into a very simple expression,

∆Ŷ1it = X>itm(Zit) + ∆ε̂1it, (4.2)
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and

∆ε̂1it = ∆εit + ∆U>it β +X>i(t−1)

(
m̂
β̂
(Zi(t−1);H2)−m(Zi(t−1))

)
.

Then, the unknown function m(·) in (4.2) can be estimated following the

same steps as in (2.6)–(2.9) obtaining (4.1).

Given the additive structure of (2.3), a second estimator for m (·) can be ob-

tained. Assuming that
∑

itKH3
(Zi(t−1)− z)ŴXi(t−1)

Ŵ>Xi(t−1)
is a positive-definite

matrix, then an alternative backfitting estimator for m (·) is

m̂
(2)

β̂
(z;H3) =

(
N∑
i=1

T∑
t=2

KH3
(Zi(t−1) − z)ŴXi(t−1)

Ŵ>Xi(t−1)

)−1

×
N∑
i=1

T∑
t=2

KH3
(Zi(t−1) − z)ŴXi(t−1)

(∆Ŷ2it −∆Ŵ>Uit β̂), (4.3)

where ŴXi(t−1)
= (Ê(X>1i(t−1)|Lit,Li(t−1)), X

>
2i(t−1))

>, ∆Ŷ2it = X>it m̂β̂
(Zit;H2)−

∆Yit, and again m̂
β̂
(·, H2) is the estimator defined in (2.10). Substracting X>it

m̂
β̂
(Zit, H2) in both terms of (2.3) and proceeding as above, we obtain (4.3).

Therefore, this technique provides two different estimators, m̂
(1)

β̂
(z;H3) and

m̂
(2)

β̂
(z;H3), for the same m(z). We can combine both in an efficient way by

minimizing the following criterion function: m̂
(1)

β̂
(z;H3)−m(z)

m̂
(2)

β̂
(z;H3)−m(z)

>W−1
m (z)

 m̂
(1)

β̂
(z;H3)−m(z)

m̂
(2)

β̂
(z;H3)−m(z)

 . (4.4)

We propose calculating the estimators m̂
(1)

β̂
(z;H3) and m̂

(2)

β̂
(z;H3) using sub-

samples of size N1T and N2T respectively, such that N1 +N2 = N and, because

N → ∞, Nj/N → cj , for cj > 0, j = 1, 2, and c1 + c2 = 1. These subsamples

need to be chosen randomly across individuals (see Politis, Romano and Wolf

(1999) for details). For a given value of z, the value of m(z), m̂
(mde)

β̂
(z;H3), that

minimizes (4.4) is

m̂
(mde)

β̂
(z;H3) = G−1

m (z)
{
J1m(z)m̂

(1)

β̂
(z;H3) + J2m(z)m̂

(2)

β̂
(z;H3)

}
, (4.5)

where

Gm(z) =W11
m (z) + 2W12

m (z) +W22
m (z) , (4.6)
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J1m(z) =W11
m (z) +W12

m (z) , (4.7)

J2m(z) =W22
m (z) +W12

m (z) , (4.8)

and the (d× d) matrix W ij
m (z) is the (i, j)th component of the block partitioned

matrix W−1
m (z), for i, j = 1, 2. This estimator belongs to the class of the so-

called minimum distance estimators. There are many ways in which to select

the weighting matrix, Wm (z). We choose the matrix W∗m (z) that minimizes the

asymptotic variance-covariance matrix of m̂
(mde)

β̂
(z;H3). Indeed, Hansen (1982)

shows that W∗m (z) = V (1+2) (z), where V (1+2) (z) stands for the asymptotic

variance-covariance matrix of((
m̂

(1)

β̂
(z3;H3)−m(z)

)>
,
(
m̂

(2)

β̂
(z3;H3)−m(z)

)>)>
.

We now analyze the asymptotic properties of both the backfitting and the mini-

mum distance estimator.

4.2. Asymptotic properties

The following theorems present the limiting distribution of the backfitting

estimators. Note that it achieves the optimal rate of convergence for this smooth-

ness class.

Theorem 3. Suppose that Assumptions S2.1–S2.12 hold. Because N →∞ and

T is fixed, we have√
N |H3|1/2

(
m̂

(j)

β̂
(z;H3)−m(z)−B(z;H3)(1 + op(1))

)
d−−−→ N

(
0, V (j)(z;H3)

)
,

where

B(z;H3) = µ2(K)

(
diagd (Df (z)H3Dmκ

(z)) ıdf
−1
Zit

(z)

+
1

2
diagd (tr (Hmκ

(z)H3)) ıd

)
,

for j = 1 and j = 2,

V (1)(z;H3) = 2σ2
εR(K)B−1

WXWX
(z),

V (2)(z;H3) = 2σ2
εR(K)B−1

WX−1
WX−1

(z).

The proof of this result is provided in the Supplementary Material.
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We focus now on the asymptotic properties of the minimum distance esti-

mator, m̂
(mde)

β̂
(z;H3), obtaining the following result.

Theorem 4. Suppose that Assumptions S2.1–S2.12 hold. Because N →∞ and

T is fixed, we have√
N |H3|1/2

(
m̂

(mde)

β̂
(z;H3)−m(z)−B(z;H3)(1 + op(1))

)
d−−−→ N (0,Vm(z)) ,

where

Vm(z) = σ2
εR(K)

(
BWXWX

(z) + BWX−1
WX−1

(z)
)−1

. (4.9)

The proof of this result is relegated to the Supplementary Material. In

Theorem 4, the asymptotic bias of the minimum distance estimator is the same

as that in Theorem 3. Moreover, the asymptotic variance exhibits the optimal

rate of convergence for this type of problem. Finally, note that it is easy to show

that for any vector b 6= 0, b>Vm(z)b ≤ b>V (j)(z)b, for j = 1, 2. Therefore, it

is proved that this technique enables us to obtain efficient estimators for m(·),
while achieving optimality.

5. Inference

The statistical model given in (2.1) and (2.2), includes several models of

interest in econometrics and statistics. For example, it is natural to investigate

whether certain variables in this component are statistically significant after fit-

ting the model. More generally, one might consider the set of linear hypotheses

H0 : Fβ = C versus H1 : Fβ 6= C,

where F is a (Q× k) full-rank matrix with Q ≤ k, C is a (Q× 1) vector, and Q

is the number of hypotheses on the null. Indeed, using Theorem 1, this testing

problem can be handled by using the following Wald-type test statistic:

Wn(F,C) = (F β̃ − C)>[F Σ̂−1Σ̂∗Σ̂−1F>]−1(Fβ̃ − C).

Following (2.9) and Lemma S3.2, it is easy to show that

Σ̂ =
1

n
∆Ŵ>U (In − Ŝ)>(In − S̃)∆U,

Σ̂∗ =
1

n
∆Ŵ>U (In − Ŝ)>(In − S̃)V̂ (In − S̃)>(In − Ŝ)∆ŴU ,
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are consistent estimators of Σ and Σ∗, respectively. For V̂ , we propose

V̂ = σ̂2
ε


−1 2 −1 0 · · · · · ·
0 −1 2 −1 0 · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · 0 −1 2 −1

 ,

where σ̂2
ε = 1/NT

∑
it ∆ε̂2it, with

∆ε̂it = ∆Yit −∆Ŵ>Uit β̃ − Ŵ
>
Xitm̂β̃

(Zit;H2) + Ŵ>Xi(t−1)
m̂
β̃

(
Zi(t−1);H2

)
.

This is because of Assumption S2.2 and the first-difference structure of the

model. The level of the test is given by the following result; the proof is provided

in the Supplementary Material.

Corollary 1. Suppose that Assumptions S2.1–S2.10 hold. When Ntr(H2)2 → 0,

because N →∞ and T is fixed, under the null hypothesis, we have

Wn(F,C)
d−−−→ χ2

Q,

where χ2
Q denotes a chi-square distribution with degrees of freedom Q.

From a nonparametric point of view, we may need to construct a pointwise

confidence interval for m(·), for each given point z. In Section 1 of the Sup-

plementary Material, we provide confidence bands for all three-stage estimators,

based on the local linear version.

6. Monte Carlo Experiment

Monte Carlo simulations are used to assess the finite-sample properties of

the different estimators and statistical tests proposed in this paper. To this end,

we consider the following data-generating process (DGP):

Yit = X1itm1(Zit) + U1itβ1 + U2itβ2 + µi + vit, (6.1)

i = 1, . . . , N ; t = 1, . . . , T,

where the coefficients m1(Zit) = (1.6 + 0.6Zit)exp(−0.4(Zit− 3)2), β1 = −1, and

β2 = 1. The smoothing variable Zit follows a uniform [2, 6] distribution, U2it

is exogenous following a N (0, 1) distribution, and X1it and U1it are endogenous

variables following the reduced-form equations:
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X1it = (0.5 + sin2(Zit))V1it + ζ1it, and U1it = (0.5 + cos2(Zit))V2it + ζ2it,

respectively. Here, V1it and V2it are IVs generated independently from a uniform

[0, 4] distribution, and the noise follows εit
ζ1it

ζ2it

 ∼ N

0

0

0

 ,

 1 ρσε ρσε
ρσε σ2

ε 0

ρσε 0 σ2
ε


 .

Here, ρ controls the correlation between the residues in the structural equa-

tion and in the reduced-form equation, and σε controls the variation of the

residues in the reduced-form equation. Furthermore, to allow for heterogeneity in

the form of fixed effects, we generate µi = 0.5Zi + ζi independent and identically

distributed (i.i.d.), where ζi is aN (0, 1) random variable, and Zi = T−1
∑T

t=1 Zit.

To evaluate the performance of the proposed estimators, we set ρ = 0.7 and

σ2
ε = 1, and conduct simulations in which the number of periods T is equal to

four, and we use cross-sectionsN equal to 100, 200, and 400. For each sample size,

we replicate the experiment 1,000 times. For K(u), we choose the Epanechnikov

kernel function K(u) = 0.75(1 − u2)I(|u| ≤ 1). To meet the requirement that

Ntr(H2)2 → 0, we assume H2 = h2Iq, and fix the bandwidth for estimating

β at three values: h2 = 1.25N−1/3, 2.5N−1/3 and 5N−1/3. Because we need

to use undersmoothing in the first-stage for asymptotic reasons, required by

Assumption S2.8, we set the first-stage bandwidth H1 to be 0.8 times that of the

second-stage H2, (i.e., H1 = 0.8H2). For the sake of comparison, we analyze the

finite-sample behavior of the following estimators: β̂E is the estimator proposed

in (2.8), with ∆U instead of ∆ŴU (i.e., when the endogeneity problem has not

been solved); β̂NF is the β̂ estimator, with ∆WU instead of ∆ŴU (i.e., the

nonfeasible estimator); β̂F is the estimator proposed in (2.8); and β̃F is the

estimator proposed in (2.9).

In Table 1, we report the mean, standard deviation, and root mean squared

error (RMSE) of the estimated 1,000 values for β under different settings. The

results show that the performance of these estimators is not sensitive to the choice

of bandwidth. All estimators give a similar asymptotically unbiased estimation

for β2, because there is no endogeneity involved in this parameter. As the sample

size increases, all of them converge. However, we have different results for β1

(i.e., the parameter related to the endogenous variable X1). As expected, β̂NF
presents the best results, but β̂F and β̃F both perform quite well in terms of
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Table 1. Mean, standard deviation, and RMSE’s of the estimators for β1 and β2.

H2 β̂E1 β̂NF1 β̂F1 β̃F1 β̂E2 β̂NF2 β̂F2 β̃F2

N=100 Mean 1.25N−1/3 -0.6113 -0.8045 -0.7150 -0.6472 1.0232 1.0323 1.0271 1.0242

2.5N−1/3 -0.5923 -0.7826 -0.8112 -0.6660 0.9963 1.0018 1.0017 0.9997

5.0N−1/3 -0.5668 -0.7785 -1.0820 -0.7235 0.9837 0.9739 0.9922 0.9843

SD 1.25N−1/3 0.0821 0.2023 0.0971 0.0920 0.0821 0.2024 0.0971 0.0920

2.5N−1/3 0.0890 0.1911 0.1309 0.1308 0.1911 0.1309 0.1308 0.1140

5.0N−1/3 0.0880 0.1879 0.1855 0.1297 0.0880 0.1879 0.1855 0.1297

RMSE 1.25N−1/3 0.3973 0.2814 0.3010 0.3646 0.1466 0.2814 0.1503 0.3642

2.5N−1/3 0.4173 0.2894 0.2297 0.3529 0.1333 0.2894 0.1496 0.3528

5.0N−1/3 0.4420 0.2905 0.2028 0.3054 0.1396 0.2905 0.1617 0.3054

N=200 Mean 1.25N−1/3 -0.6049 -0.7829 -0.7539 -0.6560 0.9829 0.9660 0.9797 0.9815

2.5N−1/3 -0.6034 -0.8011 -0.8620 -0.6867 0.9988 1.0010 1.0010 0.9971

5.0N−1/3 -0.5815 -0.7871 -1.0809 -0.7386 0.9968 0.9928 0.9897 0.9866

SD 1.25N−1/3 0.0534 0.1473 0.0676 0.0614 0.0534 0.1473 0.0676 0.0904

2.5N−1/3 0.0572 0.1482 0.0898 0.0898 0.1482 0.0898 0.0898 0.1103

5.0N−1/3 0.0636 0.1425 0.1426 0.0969 0.0636 0.1424 0.1426 0.1144

RMSE 1.25N−1/3 0.3987 0.2623 0.2552 0.3494 0.1058 0.2083 0.1073 0.1110

2.5N−1/3 0.4006 0.2480 0.1646 0.3218 0.1060 0.1958 0.1153 0.1163

5.0N−1/3 0.4234 0.2562 0.1639 0.2787 0.1018 0.1746 0.1207 0.1152

N=400 Mean 1.25N−1/3 -0.6203 -0.8089 -0.8242 -0.6901 0.9977 0.9827 0.9943 0.9959

2.5N−1/3 -0.6097 -0.7963 -0.9292 -0.7174 0.9978 0.9969 0.9968 0.9919

5.0N−1/3 -0.5912 -0.7748 -1.1138 -0.7646 0.9960 1.0006 0.9937 0.9973

SD 1.25N−1/3 0.0405 0.1068 0.0591 0.0534 0.0525 0.1151 0.0686 0.0523

2.5N−1/3 0.0350 0.1171 0.0606 0.0491 0.1012 0.0607 0.0820 0.0492

5.0N−1/3 0.0369 0.0881 0.0835 0.0577 0.0753 0.1198 0.0882 0.0577

RMSE 1.25N−1/3 0.3818 0.2189 0.1854 0.3143 0.0585 0.1164 0.0689 0.0698

2.5N−1/3 0.3919 0.2275 0.0932 0.2868 0.0684 0.1179 0.0821 0.0795

5.0N−1/3 0.4104 0.2419 0.1411 0.2423 0.0754 0.1198 0.0884 0.0827

dealing with the endogeneity problem. Although both methods have similar

standard deviations, β̃F has a large bias, and β̂F exhibits the lower RMSE.

In order to verify the aforementioned asymptotic results for the functional

coefficient, we compare the finite-sample behavior of different nonparametric es-

timators, where β̂ is used as a
√
n-consistent estimator of β, and the bandwidth

in this stage H3 = h3Iq is chosen using the Silverman’s rule-of-thumb; that is,

h3 = 1.06σ̂ZN
−1/5, where σ̂Z is the sample standard deviation of Zit. In addi-

tion, to meet the requirement that H1 and H2 have to be chosen undersmoothed
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for asymptotic reasons, we set h2 = 1.75σ̂ZN
−1/3 and h1 = 1.25σ̂ZN

−1/3. As a

measure of accuracy, we use the following RMSE:

RMSE (m̂ (z;H)) =

 1

R

R∑
ϕ=1

1

n

N∑
i=1

T∑
t=2

(m̂(z;H)−m(z))2


1/2

,

where ϕ is the ϕ th replication, and R is the number of replications.

For the sake of comparison, Figure 1 depicts box plots of the 1,000 RMSE

values of the functional coefficient estimators using the proposed estimators. To

show the effect of the generated regressors in constructing the feasible estimators,

Figure 1(a) collects the results for the NW estimator without the adjustment for

endogeneity, and Figure 1(b) collects the results for the nonfeasible NW estimator

with ∆WX instead of ∆ŴX . As expected, in Figure 1(b), all RMSE values of

the nonfeasible NW estimator converge toward zero. However, this is not true

for the NW estimator with endogeneity, presented in Figure 1(a). In addition, to

compare the NW and the local linear estimator, Figure 1(c) reflects the results

for m̂
β̂
(z;H2), and Figure 1(d) displays the results for the m̂

β̂,LL
(z,H2). As the

sample size increases, the RMSEs of both estimators shrink to zero. However, as

noted in the theoretical results, the NW estimator performs slightly better than

the local linear estimator because only one generated regressor is necessary.

In order to check the efficiency improvement of the backfitting estimators,

Figure 2 reports the RMSE of the backfitting estimators relative to that of the

NW estimator. Specifically, Figure 2(a) collects the results for m̂
(1)

β̂
(z;H3), while

Figure 2(b) depicts the results for m̂
(2)

β̂
(z;H3). In addition, Figure 3 collects the

RMSE of the minimum distance estimator relative to that of the NW estimator.

The results show that all figures corroborate the efficiency improvement because

their relative RMSEs shrink toward zero. Therefore, the simulation findings

confirm the theoretical results.

Finally, we study the size and power performance when testing H0 : β1 =

−1, β2 = 1 against the alternative hypothesisH1 : β1 = −1+φ1, β2 = 1, where the

power is indexed by φ1. To this end, we use the Wald test proposed previously for

the sample size T = 4 and N = 200, and conduct 1,000 Monte Carlo simulations.

The bandwidths used here were h2 = 2.5N−1/3 and h1 = 0.8 ∗ h2. Figure 4 plots

the power curves for the three significance levels.

Figure 4, shows that when φ1 = 0, the power collapses to the test size.

More precisely, the simulated sizes of the proposed test are 9%, 3%, and 2%,

corresponding to the significance levels 1% (dotted line), 5% (dashed line), and



THREE-STAGE ESTIMATION OF VARYING COEFFICIENT MODELS 997

(a) (b)

100                   200                   400 100                   200                   400

N N

R
M

S
E

R
M

S
E

0
.8

  
  

  
1

.0
  
  
  

1
.2

  
  
 1

.4
  
  
  
1

.6
  
  
  
1

.8
  
  

 2
.0

 

0
.8

  
  

  
1

.0
  
  
  

1
.2

  
  
 1

.4
  
  
  
1

.6
  
  
  
1

.8
  
  

 2
.0

 

(c) (d)

100                   200                   400 100                   200                   400

N N

R
M

S
E

0
.8

  
  

  
1

.0
  
  
  

1
.2

  
  
 1

.4
  
  
  
1

.6
  
  
  
1

.8
  
  

 2
.0

 

R
M

S
E

0
.8

  
  

  
1

.0
  
  
  

1
.2

  
  
 1

.4
  
  
  
1

.6
  
  
  
1

.8
  
  

 2
.0

 

Figure 1. Box plots of the RMSE values of the three-stage nonparametric estimates in
1,000 independent simulations for three sample sizes N = 100, 200, 400 and T = 4.
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Figure 2. Box plots of the nonparametric backfitting estimates in 1,000 independent
simulations for three sample sizes N = 100, 200, 400 and T = 4.

10% (solid line), respectively. Therefore, the simulated sizes are close to the

nominal size, and our test can deliver a correct test size. In contrast, when φ1

deviates from zero, our test is reasonably powerful, because the power curves

tend to one quickly. Specifically, the power is over 90% for the significance levels

10% and 5% when φ1 ≥ 0.22.
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Figure 3. Box plots of the minimum distance estimator in 1,000 independent simulations
for three sample sizes N = 100, 200, 400 and T = 4.
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Figure 4. The power curves for sample size T = 4 and N = 200.

7. Empirical Results

To demonstrate the usefulness of the proposed method, in this section, we

analyze the effects of unexpected health expenses on household savings. Along

with liquidity constraints and habits in consumer preferences, uncertainty about

possible economic hardships and household risk aversion are key determinants

of a household’s consumption/savings decisions; see Friedman (1957). In this

situation, precautionary savings can protect individuals against potential income

downturns and unforeseen out-of-pocket medical expenses in later life, see Chou,

Liu and Huang (2004) for further discussion.

We propose extending the analysis of Chou, Liu and Huang (2004) by esti-
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mating the following regression model:

Yit = X1itm1(Zit) +X2itm2(Zit) + µi + vit, (7.1)

where i denotes a household, t denotes time, Zit is the age of the household

head, X1it is the healthcare expenditure (log), Yit denotes savings, and X2it is

permanent income (log). In this sense, household savings is characterized by

uncertainty related to future healthcare expenses, m1(·), and income downturns,

m2(·). Note that household’s permanent income is not directly observable. In

order to approximate this variable, we follow Chou, Liu and Huang (2004). Thus,

assuming the interest rate is equal to the productivity rate of growth, and 65 years

old is the maximum age at which people work, the permanent earnings at age τ0

is calculated as

X2(τ0) = X>3 β + (65− τ0 + 1)−1
65∑
τ=τ0

f(τ),

where f(τ) is the estimated quadratic function of age, Yit is household income,

and X3 is a vector of demographic characteristics.

After choosing the bandwidths in the same way as in the simulation study,

we have the estimation results shown in Figure 5. The estimated curves are plot-

ted against the age variable jointly, with the 95% pointwise confidence intervals

calculated by adapting the wild bootstrap technique of Härdle et al. (2004) to this

context. Figure 5 is divided into two panels, B and C, each of which is split into

three graphics. Panel B shows the corresponding elasticity to changes in health-

care expenditure, m̃1(·); Panels C shows the precautionary savings elasticity to

changes in household income, m̃2(·). In addition, Panel B-1 shows the estimated

curves when durable goods are not taken into account. Panel B-2 focuses on the

second definition of savings, whereas Panel B-3 compares the estimated curves

when endogeneity is not considered. This structure is maintained for Panels C.

The results show that when we control for uncertainty about healthcare ex-

penditure (Panel B), younger households (26–33) exhibit a declining savings rate,

then a constant rate until age 40, followed by an inverted U-shape. In addition,

if these results are combined with the delay in the wealth accumulation process

in Spanish households (age 45 (Spain) vs. age 40 (US)), we realize the negative

impact that public health programs have on precautionary savings, confirming

the results in Chou, Liu and Huang (2004). Comparing the elasticities for the

different savings results, we find that the consumption of durable goods is par-
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Notes: The thick line denotes the estimates for durable savings, the continuous line denotes those

nondurable savings, and the dotted line is the 95% pointwise confidence interval.

Figure 5. Household savings over the life cycle.

ticularly sensitive to unexpected changes in income, whereas that of nondurable

goods is more sensitive to potential healthcare expenses. This is especially true

for households over 45 years old.

Finally, in order to evaluate the empirical relevance of the endogeneity prob-

lem, we compare the results of our technique (gray line) against those obtained

without considering endogeneity (black line); see Panel 3 of Figure 5. The results

indicate significant differences. When we control for uncertainty about healthcare

expenditure, households accumulate assets in the middle of their lives. However,

when endogeneity is not taken into account, there is a more or less constant path

over the life cycle.

8. Conclusion

This study examined a nonparametric estimation of a varying-coefficient

structural panel data model, where the individual heterogeneity is allowed to
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be correlated with some explanatory variables. This specification is becoming

increasingly common in many standard econometric applications, such as stud-

ies of household consumption behavior or labor supply analysis. Therefore, we

require estimators that keep a reasonable degree of flexibility and are robust to

both endogeneity and fixed effects. We attempt to satisfy these requirements

using a nonparametric three-stage procedure, where IV techniques are used to

deal with the endogeneity, and differencing techniques are used to cope with the

fixed effects. Furthermore, to achieve efficiency, a minimum distance estimator is

proposed. The feasibility and advantages of the proposed procedure are shown by

estimating an LCH panel data model. Simulation results support the empirical

findings.

Supplementary Material

In Section S1 of the online Supplementary Material, we present the local

linear version of the three-stage estimator in Section 2 for the local constant

case. We also give its main asymptotic properties. In Sections S3 to S5, we

show the main results claimed in Section 3. Section S2 contains the assumptions

needed to prove these results. Section S6 contains the proof of Theorem 3, and

Section S7 provides that of Theorem 4. Both theorems appear in Section 4.2 of

this paper.
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