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Abstract: We propose a varying-coefficient panel-data model with unobservable

multiple interactive fixed effects that are correlated with the regressors. We ap-

proximate each coefficient function using B-splines, and propose a robust nonlinear

iteration scheme based on the least squares method to estimate the coefficient func-

tions of interest. We also establish the asymptotic theory of the resulting estimators

under certain regularity assumptions, including the consistency, convergence rate,

and asymptotic distributions. To construct the pointwise confidence intervals for

the coefficient functions, we propose a residual-based block bootstrap method that

reduces the computational burden and avoids accumulative errors. We extend our

proposed procedure to partially linear varying-coefficient panel-data models with

unobservable multiple interactive fixed effects, and examine the problem of con-

stant coefficients versus function coefficients. Simulation studies and a real-data

analysis are used to assess the performance of the proposed methods.

Key words and phrases: Bootstrap, B-spline, hypothesis testing, interactive fixed ef-

fect, panel data, partially linear varying-coefficient model, varying-coefficient model.

1. Introduction

Panel-data models typically incorporate individual and time effects to control

the heterogeneity in the cross-section and across periods. Panel-data analysis has

attracted considerable attention in the literature. The methodology for a para-

metric panel-data analysis is relatively mature; see, for example, Arellano (2003),

Hsiao (2003), Baltagi (2005), and the references therein. Individual and time ef-

fects may enter the model additively, or they can interact multiplicatively, leading

to the so-called interactive effects or a factor structure. Panel-data models with

interactive fixed effects are a useful modeling paradigm. In macroeconomics,

incorporating interactive effects can account for the heterogenous effects of un-

observable common shocks, while the regressors can be inputs, such as labor and
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capital. Panel-data models with interactive fixed effects are used to incorpo-

rate unmeasured skills or unobservable characteristics, or to study the individual

wage rate (Su and Chen (2013)). In finance, a combination of unobserved fac-

tors and observed covariates can explain the excess returns of assets. Bai (2009)

considered the following linear panel-data model with interactive fixed effects:

Yit = Xτ
itβ + λτi Ft + εit, i = 1, . . . , N, t = 1, . . . , T, (1.1)

where Xit is a p×1 vector of observable regressors, β is a p×1 vector of unknown

coefficients, λi is an r×1 vector of factor loadings, Ft is an r×1 vector of common

factors, such that λτi Ft = λi1F1t + · · · + λirFrt, and εit are idiosyncratic errors.

In this model, λi, Ft, and εit are unobserved, and the dimension r of the factor

loadings does not depend on the cross-section size N or the time series length T .

A number of researchers have developed statistical methods to study panel-

data models with interactive fixed effects. For example, Holtz-Eakin, Newey and

Rosen (1988) estimated model (1.1) using quasi-differencing and lagged variables

as instruments. Their approach, however, rules out time constant regressors.

Coakley, Fuertes and Smith (2002) studied model (1.1) by augmenting the re-

gression of Y on X with the principal components of the ordinary least squares

residuals. However, Pesaran (2006) showed that this method is inconsistent un-

less Xit and λi tend to be uncorrelated or fully correlated as N tends to infinity.

As an alternative, Pesaran (2006) developed a correlated common effects (CCE)

estimator, in which model (1.1) is augmented with the cross-sectional averages

of Xit. Although Pesaran’s estimator is consistent, it does not allow for time-

invariant individual regressors. Ahn, Lee and Schmidt (2001) developed a gen-

eralized method of moments (GMM) estimator for model (1.1). Their estimator

is more efficient than the least squares estimator under a fixed T . However,

being able to identify their estimator requires that Xit is correlated with λi,

and it is impossible to test for the interactive random effects assumption. Bai

(2009) studied the identification, consistency, and limiting distribution of the

principal component analysis (PCA) estimators, showing that they are
√
NT -

consistent. Bai and Li (2014) investigated the maximum likelihood estimation of

model (1.1). Wu and Li (2014) conducted several tests for the existence of indi-

vidual effects and time effects in model (1.1). Li, Qian and Su (2016) studied the

estimation and inference of common structural breaks in panel-data models with

interactive fixed effects using Lasso-type methods. More studies can be found in

Moon and Weidner (2017), Lee, Moon and Weidner (2012), Su and Chen (2013),
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Moon and Weidner (2015), Lu and Su (2016), and many others.

Note that the aforementioned works focus on linear specifications of the

regression relationships in panel-data models with interactive fixed effects. A

natural extension of model (1.1) is to consider the following varying-coefficient

panel-data model with interactive fixed effects:

Yit = Xτ
itβ(Uit) + λτi Ft + εit, i = 1, . . . , N, t = 1, . . . , T, (1.2)

where β(·) = (β1(·), . . . , βp(·))τ is a p× 1 vector of unknown coefficient functions

to be estimated. We allow for {Xit} and/or {Uit} to be correlated with {λi}
alone or with {Ft} alone, or simultaneously correlated with {λi} and {Ft}, or

correlated with an unknown correlation structure. In fact, Xit can be a nonlinear

function of λi and Ft. Hence, model (1.2) is a fixed-effects model, and assumes

an interactive fixed-effects linear model for each fixed time t, but allows the

coefficients to vary with the covariate Uit. This model is attractive because it has

an intuitive interpretation, while retaining the unobservable multiple interactive

fixed effects, general nonparametric characteristics, and explanatory power of the

linear panel-data model.

Model (1.2) is fairly general, and encompasses various panel-data models as

special cases. If Xit ≡ 1 and p = 1, model (1.2) reduces to the nonparametric

panel-data model with interactive fixed effects, which has received much atten-

tion in recent years. Huang (2013) studied the local linear estimation of such

models. Su and Jin (2012) extended the CCE method of Pesaran (2006) from a

linear model to a nonparametric model using the method of sieves. Jin and Su

(2013) constructed a nonparametric test for poolability in nonparametric regres-

sion models with interactive fixed effects. Su, Jin and Zhang (2015) proposed

a consistent nonparametric test for linearity in a large-dimensional panel-data

model with interactive fixed effects.

If r = 1 and Ft ≡ 1, model (1.2) reduces to the fixed individual effects

panel-data varying-coefficient model:

Yit = Xτ
itβ(Uit) + λi + εit.

This model has also been widely studied in the literature. For example, Sun,

Carroll and Li (2009) considered estimations using a local linear regression and

kernel-based weights. Li, Chen and Gao (2011) considered a nonparametric

time varying-coefficient model with fixed effects under the assumption of cross-

sectional independence, and proposed methods for estimating the trend function
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and coefficient functions. Rodriguez-Poo and Soberon (2014) proposed a new

technique to estimate the varying-coefficient functions based on the first-order

differences and a local linear regression. Rodriguez-Poo and Soberon (2015) in-

vestigated the model using the mean transformation technique and a local linear

regression. Li et al. (2015) considered variable selection for the model using

the basis function approximations and the group nonconcave penalized func-

tions. Malikov, Kumbhakar and Sun (2016) considered the problem of a varying-

coefficient panel-data model in the presence of endogenous selectivity and fixed

effects. In addition, if λi ≡ 0 or Ft ≡ 0, model (1.2) reduces to the varying-

coefficient model with panel data. For the development of this model, refer to

Chiang, Rice and Wu (2001), Huang, Wu and Zhou (2002), Huang, Wu and Zhou

(2004), Xue and Zhu (2007), Cai (2007), Cai and Li (2008), Wang, Li and Huang

(2008), Wang and Xia (2009), and Noh and Park (2010). Note, however, that

most of these studies focus on a “large N small T” setting.

Despite the rich literature on panel data models with interactive fixed effects,

to the best of our knowledge, there are few works on varying-coefficient panel-

data models with interactive fixed effects. As such, the main goals of this study

are to estimate the coefficient functions β(·), and to establish the asymptotic the-

ory for varying-coefficient panel-data models with interactive fixed effects when

both N and T tend to infinity and there exist serial or cross-sectional correla-

tions and heteroskedasticities of unknown form in εit. To achieve these goals,

we first apply the B-spline expansion to estimate the smooth functions in model

(1.2), owing to its simplicity. We then introduce a novel iterative least squares

procedure to estimate the coefficient functions and the factor loadings, and de-

rive some asymptotic properties for the proposed estimators. Nevertheless, the

existence of the unobservable interactive fixed effects and the weak correlations

and heteroskedasticities of unknown form in both dimensions make the estima-

tion procedure and the asymptotic theory much more complicated than those

in Huang, Wu and Zhou (2002). To apply the asymptotic normality to con-

struct the pointwise confidence intervals for the coefficient functions, we need

consistent estimators of the asymptotic biases and variances. To reduce the com-

putational burden and to avoid accumulative errors, we propose a residual-based

block bootstrap procedure to construct these confidence intervals.

Moreover, we extend the proposed estimation procedure to include partially

linear varying coefficient models with interactive fixed effects, and show that the

convergence rate for the estimation of the parametric components is of order

OP ((NT )−1/2). To determine whether a varying-coefficient model or partially
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linear varying-coefficient model is appropriate, we propose a test statistic to

test between the two alternatives in practice. Numerical results confirm that our

proposed estimation and testing procedures work well in a wide range of settings.

The remainder of the paper is organized as follows. In Section 2, we propose

an estimation procedure for the coefficient functions and provide a robust iter-

ation algorithm under the identification restrictions. In Section 3, we establish

the asymptotic theory of the resulting estimators under some regularity assump-

tions as both N and T tend to infinity. In Section 4, we develop a residual-based

block bootstrap procedure to construct the pointwise confidence intervals for the

coefficient functions. In Section 5, we extend the estimation procedure to par-

tially linear varying coefficient models and establish the asymptotic distribution

of the estimator. In Section 6, a test statistic and the bootstrap procedure are

developed. Finally, we conclude the paper in Section 7. Technical details are

given in the online Supplementary Material, along with simulation studies and a

real application to demonstrate the efficacy of our proposed methods.

2. Methodology

To estimate the coefficient functions βk(·), for 1 ≤ k ≤ p, we consider the

widely used B-spline approximations. Let Bk(u) = (Bk1(u), . . . , BkLk
(u))τ be the

(m + 1)th-order B-spline basis functions, where Lk = lk + m + 1 is the number

of basis functions in approximating βk(u), lk is the number of interior knots for

βk(·), and m is the degree of the spline. The interior knots of the splines can be

either equally spaced or placed on the sample number of observations between

any two adjacent knots. With the above basis functions, the coefficient functions

βk(u) can be approximated by

βk(u) ≈
Lk∑
l=1

γklBkl(u), k = 1, . . . , p, (2.1)

where γkl are the coefficients, and Lk represent the smoothing parameters, se-

lected using “leave-one-subject-out” cross-validation.

Substituting (2.1) into model (1.2), we have the following approximation:

Yit ≈
p∑

k=1

Lk∑
l=1

γklXit,kBkl(Uit) + λτi Ft + εit, i = 1, . . . , N, t = 1, . . . , T. (2.2)

Model (2.2) is a standard linear regression model with interactive fixed effects.
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Because each coefficient function βk(u) in model (1.2) is characterized by γk =

(γk1, . . . , γkLk
)τ , model (2.2) cannot be estimated directly, owing to the unob-

servable multiple interactive fixed effects. In what follows, we propose a robust

nonlinear iteration scheme based on the least squares method to estimate the

coefficient functions and deal with these fixed effects.

For the sake of convenience, we use vectors and matrices to present the

model and perform the analysis. Let Yi = (Yi1, . . . , YiT )τ ,F = (F1, . . . , FT )τ ,

εi = (εi1, . . . , εiT )τ , and Λ = (λ1, . . . , λN )τ be an N × r matrix. Let

B(u) =

B11(u) · · · B1L1
(u) 0 · · · 0 0 · · · 0

...
...

...

0 · · · 0 0 · · · 0 Bp1(u) · · · BpLp
(u)

 ,

Rit = (Xτ
itB(Uit))

τ , andRi = (Ri1, . . . , RiT )τ . Furthermore, let γ = (γτ1 , . . . ,γ
τ
p )τ ,

where γk = (γk1, . . . , γkLk
)τ . Then, model (2.2) can be rewritten as

Yi ≈ Riγ + Fλi + εi, i = 1, . . . , N.

Owing to potential correlations between the unobservable effects and the

regressors, we treat Ft and λi as the fixed-effects parameters to be estimated. To

ensure the identifiability of the coefficient function β(·) = (β1(·), . . . , βp(·))τ , we

follow Bai (2009) and impose the following identification restrictions:

F τF

T
= Ir and ΛτΛ = diagonal. (2.3)

These two restrictions uniquely determine Λ and F . We then define the objective

function as

Q(γ,F ,Λ) =

N∑
i=1

(Yi −Riγ − Fλi)τ (Yi −Riγ − Fλi), (2.4)

subject to constraint (2.3). Taking partial derivatives of (2.4) with respect to λi
and setting them equal to zero, we have

λ̃i = (F τF )−1F τ (Yi −Riγ) = T−1F τ (Yi −Riγ). (2.5)
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Replacing λi in (2.4) with (2.5), we have

Q(γ,F ) =

N∑
i=1

(Yi −Riγ − F λ̃i)τ (Yi −Riγ − F λ̃i)

=

N∑
i=1

(Yi −Riγ)τMF (Yi −Riγ),

where MF = IT −F (F τF )−1F τ = IT −FF τ/T is a projection matrix. For each

given F , if
∑N

i=1R
τ
iMFRi is invertible, the least squares estimator of γ can be

uniquely obtained by minimizing Q(γ,F ), as follows:

γ̂(F ) =

(
N∑
i=1

Rτ
iMFRi

)−1 N∑
i=1

Rτ
iMFYi. (2.6)

Because the least squares estimator (2.6) of γ depends on the unknown common

factors F , the final solution of γ can be obtained by iteration between γ and F

using the following nonlinear equations:

γ̂ =

(
N∑
i=1

Rτ
iMF̂Ri

)−1 N∑
i=1

Rτ
iMF̂Yi, (2.7)

F̂VNT =

[
1

NT

N∑
i=1

(Yi −Riγ̂)(Yi −Riγ̂)τ

]
F̂ , (2.8)

where VNT is a diagonal matrix consisting of the r largest eigenvalues of the

matrix (NT )−1
∑N

i=1(Yi − Riγ̂)(Yi − Riγ̂)τ , arranged in decreasing order. As

noted by Bai (2009), the iterated solution is somewhat sensitive to the initial

values. Bai (2009) proposed starting with either the least squares estimator of

γ or the principal components estimate of F . From the numerical studies in the

Supplementary Material, we find that the procedure is more robust when the

principal components estimator of F is used for the initial values. In general,

poor initial values result in an exceptionally large number of iterations. By (2.5),

(2.7), and (2.8), we have

Λ̂ = (λ̂1, . . . , λ̂N )τ = T−1
(
F̂ τ (Y1 −R1γ̂), . . . , F̂ τ (YN −RN γ̂)

)τ
. (2.9)

Once we obtain the estimator γ̂ = (γ̂τ1 , . . . , γ̂
τ
p )τ of γ with γ̂k = (γ̂k1, . . . ,
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γ̂kLk
)τ , for k = 1, . . . , p, we can estimate βk(u) as

β̂k(u) =

Lk∑
l=1

γ̂klBkl(u), k = 1, . . . , p.

In what follows, we present a robust iteration algorithm for estimating the

parameters (γ,F ,Λ).

Step 1. Obtain an initial estimator (F̂ , Λ̂) of (F ,Λ).

Step 2. Given F̂ and Λ̂, compute γ̂(F̂ , Λ̂) =
(∑N

i=1R
τ
iRi

)−1∑N
i=1R

τ
i (Yi −

F̂ λ̂i).

Step 3. Given γ̂, compute F̂ according to (2.8) (multiplied by
√
T , owing to

the restriction that F τF /T = Ir), and calculate Λ̂ using formula (2.9).

Step 4. Repeat Steps 2 and 3 until (γ̂, F̂ , Λ̂) satisfy the given convergence cri-

terion.

3. Regularity Assumptions and Asymptotic Properties

To derive asymptotic properties for the proposed estimators, we let F ≡
{F : F τF /T = Ir} and

D(F ) =
1

NT

N∑
i=1

Rτ
iMFRi −

1

T

[
1

N2

N∑
i=1

N∑
j=1

Rτ
iMFRjaij

]
,

where aij = λτi (ΛτΛ/N)−1λj . To obtain a unique estimator of γ with probability

tending to one, we require that the first term of D(F ) on the right-hand side

is positive-definite when F is observable. The presence of the second term is

because of the unobservable F and Λ. The reason for this particular form is the

nonlinearity of the interactive effects (see Bai (2009)).

3.1. Regularity assumptions

In this section, we introduce a definition and present some regularity assump-

tions, which we use to establish the asymptotic theory of the resulting estimators.

Definition 1. Let Hd define the collection of all functions on the support U
whose mth-order derivative satisfies the Hölder condition of order ν, with d ≡
m + ν, where 0 < ν ≤ 1. That is, for each h ∈ Hd, there exists a constant

M0 ∈ (0,∞), such that |h(m)(u)− h(m)(v)| ≤M0|u− v|ν , for any u, v ∈ U .
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(A1) The random variable Xit is independent and identically distributed (i.i.d.)

across the N individuals, and there exists a positive M , such that |Xit,k| ≤
M < ∞, for all k = 1, . . . , p. We further assume that {Xit : 1 ≤ t ≤ T}
is strictly stationary for each i. The eigenvalues ρ1(u) ≤ · · · ≤ ρp(u) of

Ω(u) = E(XitX
τ
it|Uit = u) are bounded away from zero and ∞ uniformly

over u ∈ U ; that is, there exist positive constants ρ0 and ρ∗, such that

0 < ρ0 ≤ ρ1(u) ≤ · · · ≤ ρp(u) ≤ ρ∗ <∞, for u ∈ U .

(A2) The observation variables Uit are chosen independently according to a dis-

tribution FU on the support U . Moreover, the density function of U , fU (u),

is uniformly bounded away from zero and∞, and continuously differentiable

uniformly over u ∈ U .

(A3) βk(u) ∈ Hd, for all k = 1, . . . , p.

(A4) Let uk1, . . . , uklk be the interior knots of the kth coefficient function over

u ∈ U = [U0, U1], for k = 1, . . . , p. Furthermore, let uk0 = U0 and uk(lk+1) =

U1. There exists a positive constant C0, such that

hk
min1≤i≤lk hki

≤ C0 and
max1≤k≤p hki
min1≤k≤p hki

≤ C0,

where hki = uki − uk(i−1) and hk = max1≤i≤lk+1 hki.

(A5) Suppose that inf
F∈F

D(F ) > 0.

(A6) E‖Ft‖4 ≤M and
∑T

t=1 FtF
τ
t

/
T

P−→ ΣF > 0, for some r × r matrix ΣF , as

T →∞, where “
P−→” denotes convergence in probability.

(A7) E‖λi‖4 ≤M and ΛτΛ/N
P−→ ΣΛ > 0, for some r×r matrix ΣΛ, as N →∞.

(A8) (i) Suppose that εit are independent of Xjs, Ujs, λj , and Fs, for all i, t, j,

and s with zero mean and E(εit)
8 ≤M .

(ii) Let σij,ts = E(εitεjs). |σij,ts| ≤ ρij for all (t, s), and |σij,ts| ≤ %ts for all

(i, j), such that

1

N

N∑
i,j=1

ρij ≤M,
1

T

T∑
t,s=1

%ts ≤M,
1

NT

N∑
i,j=1

T∑
t,s=1

|σij,ts| ≤M.

The smallest and largest eigenvalues of Ωi = E(εiε
τ
i ) are bounded uniformly

for all i and t, where εi = (εi1, . . . , εiT )τ .
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(iii) For every (t, s), E
∣∣∣N−1/2

∑N
i=1[εitεis − E(εitεis)]

∣∣∣4 ≤M .

(iv) Moreover, we assume that T−2N−1
∑

t,s,u,v

∑
i,j |cov(εitεis, εjuεjv)| ≤

M and T−1N−2
∑

t,s

∑
i,j,m,l |cov(εitεjt, εmsεls)| ≤M.

(A9) lim supN,T (maxk Lk/mink Lk) <∞.

Assumptions (A1)–(A4) are mild conditions that can be validated in many

practical situations. These conditions have been widely assumed in studies on

varying-coefficient models with repeated measurements, such as those of Huang,

Wu and Zhou (2002), Huang, Wu and Zhou (2004), and Wang, Li and Huang

(2008). Assumption (A5) is an identification condition for γ, and γ can be

uniquely determined by (2.7) if D(F ) is positive-definite. Assumptions (A6) and

(A7) imply the existence of r factors. In this study, whether Ft or λi has a zero

mean is not crucial, because they are treated as parameters to be estimated.

Assumption (A8) allows for weak forms of both cross-sectional dependence and

serial dependence in the error processes. Assumption (A9) can also be found in

Noh and Park (2010), and is used for the system of general basis functions Bkl,

which includes orthonormal bases, non-orthonormal bases, and B-splines.

Let ‖a‖L2
= {

∫
U a

2(u)du}1/2 be the L2 norm of any square integrable real-

valued function a(u) on U , and let ‖A‖L2
= {

∑p
k=1 ‖a‖

2
L2
}1/2 be the L2 norm

of A(u) = (a1(u), . . . , ap(u))τ , where ak(u) are real-valued functions on U (see

Huang, Wu and Zhou (2002)). We define β̂k(·) as a consistent estimator of βk(·) if

limN,T→∞ ‖β̂k(·)−βk(·)‖L2
= 0 holds in probability. Define δNT = min[

√
N,
√
T ]

and LN = max1≤k≤p Lk, which tend to infinity as N or T tends to infinity. Let

D = {(Xit, Uit, λi, Ft), i = 1, . . . , N, t = 1, . . . , T}. We use ED and VarD to

denote the expectation and variance conditional on D, respectively.

3.2. Asymptotic properties

Let F 0 be the true value of F . With an appropriate choice of Lk to bal-

ance the bias and variance, our proposed estimators have asymptotic properties

including consistency, a convergence rate, and an asymptotic distribution.

Theorem 1. Suppose assumptions (A1)–(A9) hold. If δ−2
NTLN logLN → 0 as

N →∞ and T →∞ simultaneously, then

(i) β̂k(·), for k = 1, . . . , p, are uniquely defined with probability tending to one.

(ii) The matrix F 0τ F̂ /T is invertible and ‖PF̂ − PF 0‖ P−→ 0, where PA =

A(AτA)−1Aτ for a given matrix A.
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Part (i) of Theorem 1 implies that, with probability tending to one, we

can obtain unique estimators β̂k(·) for the unknown coefficient functions βk(·)
under some regularity assumptions, regardless of whether unobservable multiple

interactive fixed effects exist in model (1.2). Part (ii) of Theorem 1 indicates that

the spaces spanned by F̂ and F 0 are asymptotically consistent. This is a key

result that guarantees that the estimators β̂k(·) have good asymptotic properties,

including the optimal convergence rate, consistency, and asymptotic normality.

Theorem 2. Under the assumptions of Theorem 1, we further have

‖β̂k(u)− βk(u)‖2L2
= OP

(
LN
NT

+
LN
T 2

+
LN
N2

+ L−2d
N

)
, k = 1, . . . , p.

Theorem 2 gives the convergence rate of β̂k(u), for all k = 1, . . . , p, and,

hence, establishes the consistency of our proposed estimators under the condition

δ−2
NTLN logLN → 0 as N → ∞ and T → ∞ simultaneously. From the proof

of Theorem 2, we note the following. The first term in the convergence rate

is caused by the stochastic error. The second and third terms are caused by

the estimation error of the fixed effects F 0 and the presence of cross-sectional

and serial correlation and heteroskedasticity, respectively. The last term is the

error due to the basis approximation. If we take the appropriate relative rate

T/N → c > 0 as N → ∞ and T → ∞ simultaneously, then we have a more

accurate convergence rate, as follows

‖β̂k(u)− βk(u)‖2L2
= OP

(
LN
NT

+ L−2d
N

)
, k = 1, . . . , p.

Furthermore, if we take LN = O((NT )1/(2d+1)), then

‖β̂k(u)− βk(u)‖2L2
= OP

(
(NT )−2d/(2d+1)

)
, k = 1, . . . , p.

This leads to the optimal convergence rate of order OP
(
(NT )−2d/(2d+1)

)
, which

holds for the i.i.d. data in Stone (1982).

Next, we establish the asymptotic distribution of β̂(u). Let Zi = MF 0Ri −
N−1

∑N
j=1 aijMF 0Rj . The variance-covariance matrix of β̂(u), conditioning on

D, is Σ = Var(β̂(u)|D) = B(u)ΦB(u)τ , where Φ is the limit in probability of

Φ∗ =

(
N∑
i=1

Zτ
i Zi

)−1

ΣNT1

(
N∑
i=1

Zτ
i Zi

)−1

,
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with ΣNT1 =
∑N

i=1

∑N
j=1

∑T
t=1

∑T
s=1 σij,tsZitZ

τ
js. Let $k denote the unit vector

in Rp with one in the kth coordinate, and zero in all other coordinates, for

k = 1, . . . , p. Then, the conditional variance of β̂k(u) is

Σkk = Var(β̂k(u)|D) = $τ
kΣ$k, k = 1, . . . , p.

To study the asymptotic distribution of β̂(u), we add the following assump-

tion.

(A10) Let Σ1 be the limit in probability of (1/NT )ΣNT1; then, (1/
√
NT )

∑N
i=1

Zτ
i εi

L−→ N(0,Σ1), where “
L−→” denotes convergence in distribution.

Denote Σ̃ = D−1
0 Σ1D

−1
0 , where D0 = plim(LN/NT )

∑N
i=1Z

τ
i Zi. The fol-

lowing theorem establishes the asymptotic distribution of β̂(u).

Theorem 3. Suppose that assumptions (A1)–(A10) hold. If δ−2
NTLN logLN → 0,

L2d+1
N /NT →∞, and T/N → c as N →∞ and T →∞ simultaneously, then

Σ−1/2(β̂(u)− β(u))
L−→ N(b(u), Ip),

where b(u) = Σ̃−1/2c1/2W 0
1 + Σ̃−1/2c−1/2W 0

2 , and W 0
1 is the limit in probability

of W1, with

W1 = −B(u)
(
LND(F 0)

)−1 1

N

N∑
i=1

N∑
j=1

(Ri − Vi)τF 0

T

(
F 0τF 0

T

)−1

×
(

ΛτΛ

N

)−1

λj

(
1

T

T∑
t=1

σij,tt

)
,

and W 0
2 is the limit in probability of W2, with

W2 = −B(u)
(
LND(F 0)

)−1 1

NT

N∑
i=1

Rτ
iMF 0ΩF 0

(
F 0τF 0

T

)−1(
ΛτΛ

N

)−1

λi,

where Vi = N−1
∑N

j=1 aijRj and Ω = N−1
∑N

i=1 Ωi.

From the asymptotic normality in Theorem 3, we find that β̂(u) has a bias

term b(u), and b(u) has a complex structure. In order to improve the efficiency of

a statistical inference, we propose a bias-corrected procedure to remove the bias

term b(u). Noting that cross-sectional and serial dependence and heteroskedas-
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ticity are allowed in the error terms, we first estimate W1 and W2, as follows:

Ŵ1 = −B(u)D̂−1
0

1

n

n∑
i=1

n∑
j=1

(Ri − V̂i)τ F̂
T

(
Λ̂τ Λ̂

N

)−1

λ̂j

(
1

T

T∑
t=1

ε̂itε̂jt

)
,

Ŵ2 = −B(u)D̂−1
0

1

NT

N∑
i=1

1

N

N∑
k=1

(
Rτ
i Ω̂kF̂ − T−1F̂ F̂ τ Ω̂kF̂

)( Λ̂τ Λ̂

N

)−1

λ̂i,

where n satisfies n/N → 0, n/T → 0, and D̂0 = (LN/NT )
∑N

i=1

∑T
t=1 ẐitẐ

τ
it,

with F 0, λi, and Λ replaced with F̂ , λ̂i, and Λ̂ in Ẑit, respectively. Note that

Rτ
i Ω̂kF̂ = (Ip0 ,0)(Sτi Ω̂kSi)(0

τ , Ir)
τ and F̂ τ Ω̂kF̂ = (0, Ir)(S

τ
i Ω̂kSi)(0

τ , Ir)
τ ,

where p0 =
∑p

k=1 Lk and Sτi Ω̂kSi = C0i +
∑q

ν=1 [1− ν/(q + 1)] (Cνi + Cτνi),

Si = (Ri, F̂ ), Cνi = (1/T )
∑T

t=ν+1 Sitε̂ktε̂k,t−νSi,t−ν , and q →∞ and q/T 1/4 → 0

as T →∞. Thus, we define the bias-corrected estimator of β(u) as

β̆(u) = β̂(u)− LN
N
Ŵ1 −

LN
T
Ŵ2.

The following theorem shows there is no bias term in the asymptotic distri-

bution of the bias-corrected estimator β̆(u).

Theorem 4. Suppose that assumptions (A1)–(A10) hold. If δ−2
NTLN logLN → 0,

L2d+1
N /NT →∞, and T/N → c as N →∞ and T →∞ simultaneously, then

Σ−1/2(β̆(u)− β(u))
L−→ N(0, Ip).

In particular, we have Σ
−1/2
kk (β̆k(u)− βk(u))

L−→ N(0, 1), for k = 1, . . . , p.

Next, we consider some special cases where the asymptotic bias can be sim-

plified. (1) In the absence of serial correlation and heteroskedasticity, E(εitεjt) =

σij,tt = σij , because it does not depend on t. It is easy to show that W2 = 0. (2)

In the absence of cross-sectional correlation and heteroskedasticity, E(εitεis) =

σii,ts = ωts, because it does not depend on i, in which case, a simple calculation

yields W1 = 0. Let Π and Ξ be the probability limits, defined as, respectively,

Π = plimB(u)

(
N∑
i=1

Zτ
i Zi

)−1

ΣNT2

(
N∑
i=1

Zτ
i Zi

)−1

B(u)τ ,

Ξ = plimB(u)

(
N∑
i=1

Zτ
i Zi

)−1

ΣNT3

(
N∑
i=1

Zτ
i Zi

)−1

B(u)τ ,
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where ΣNT2 =
∑N

i=1

∑N
j=1 σij

∑T
t=1ZitZ

τ
jt and ΣNT3 =

∑T
t=1

∑T
s=1 ωts

∑N
i=1ZitZ

τ
is.

Corollary 1. Suppose that assumptions (A1)–(A10) hold. If δ−2
NTLN logLN → 0

and L2d+1
N /NT → ∞ as N → ∞ and T → ∞ simultaneously, we have the

following results:

(i) In the absence of serial correlation and heteroskedasticity and T/N → 0,

Π−1/2(β̂(u)− β(u))
L−→ N(0, Ip).

(ii) In the absence of cross-sectonal correlation and heteroskedasticity and N/T

→ 0, Ξ−1/2(β̂(u)− β(u))
L−→ N(0, Ip).

For model (1.2) with unobservable multiple interactive fixed effects, Theorem

4 establishes the asymptotic normality for the bias-corrected estimator β̆k(·) of

βk(·). Hence, if we can obtain a consistent estimator Σ̂kk of Σkk, the asymptotic

pointwise confidence intervals for βk(u) can be constructed as

β̆k(u)± zα/2Σ̂
−1/2
kk , k = 1, . . . , p,

where zα/2 is the (1− α/2) quantile of the standard normal distribution.

4. A Residual-Based Block Bootstrap Procedure

In theory, we can construct the pointwise confidence intervals for the coef-

ficient functions βk(·) from Theorems 3 and 4. For Theorem 3, we first need

to derive consistent estimators for the asymptotic biases and variances of the

estimators β̂k(·), for k = 1, . . . , p. Nevertheless, because the asymptotic biases

and variances involve the unknown fixed effects F and the covariance matrices

Ωi of εi, it is difficult to obtain their consistent and efficient estimators, even if

the plug-in method is used. For Theorem 4, it is difficult to show the consistency

of the estimators Ŵ1 and Ŵ2, because cross-sectional and serial dependence and

heteroskedasticity are allowed in the error terms.

Therefore, the standard nonparametric bootstrap procedure cannot be ap-

plied to construct the pointwise confidence intervals directly, because cross-

sectional and serial correlations exist within the group in model (1.2). In ad-

dition to increasing the computational burden and causing accumulative errors,

they make it more difficult to construct the pointwise confidence intervals. To

overcome these limitations, we propose a residual-based block bootstrap bias-

correction procedure to construct the pointwise confidence intervals for βk(·).
The algorithm follows.
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Step 1. Fit model (1.2) using the methods proposed in Section 2, and estimate

the residuals εit using

ε̂it = Yit −
p∑

k=1

Lk∑
l=1

γ̂klXit,kBkl(Uit) + λ̂τi F̂t, i = 1, . . . , N, t = 1, . . . , T.

Step 2. Generate the bootstrap residuals ε∗it by ε̂it using the block bootstrap

method with a two-step procedure: (i) Choose the block lengths. In

our block bootstrap procedure, similarly to Inoue and Shintani (2006), we

choose block lengths of l1 = cT 1/3 and l2 = cN1/3, respectively, for some

c > 0. (ii) Resample the blocks and generate the bootstrap samples. The

blocks can be overlapping or non-overlapping. According to Lahiri (1999),

there is little difference in the performance for these two methods. We hence

adopt the non-overlapping method, for simplicity. Then, we first divide the

N × T residual matrix ε̂ into m1 = T/l1 blocks by column, and generate

the bootstrap samples N × T matrix ε̃ by resampling, with replacement,

the m1 blocks of columns of ε̂. Next, we divide ε̃ into m2 = N/l2 blocks

by row, and generate the bootstrap samples matrix ε∗ by resampling, with

replacement, the m2 blocks of rows of ε̃.

Step 3. We generate the bootstrap sample Y ∗it using the following model:

Y ∗it =

p∑
k=1

Lk∑
l=1

γ̂klXit,kBkl(Uit) + λ̂τi F̂t + ε∗it, i = 1, . . . , N, t = 1, . . . , T,

where γ̂kl, F̂t, and λ̂i are the respective estimators of γkl, Ft, and λi, us-

ing the estimation procedure in Section 2. Based on the bootstrap sample

{(Y ∗it , Xit, Uit), i = 1, . . . , N, t = 1, . . . , T}, we calculate the bootstrap esti-

mator β̂(b)(·), also using the estimation procedure in Section 2.

Step 4. Repeat Steps 2 and 3 B times to obtain a size B bootstrap estimator

β̂(b)(u), for b = 1, . . . , B. The bootstrap estimator Var∗(β̂(u)|D) of Σ =

Var(β̂(u)|D) is taken as the sample variance of β̂(b)(u). Next, the bootstrap

bias-corrected estimator of β̂k(u) can be defined as

β̆k(u) = β̂k(u)−

(
1

B

B∑
b=1

β̂
(b)
k (u)− β̂k(u)

)
= 2β̂k(u)− 1

B

B∑
b=1

β̂
(b)
k (u).

Intuitively, the bias of a bootstrap estimator is a good approximation to that
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of a true coefficient function estimator. Finally, we construct the asymptotic

pointwise confidence intervals for βk(u) as

β̆k(u)± zα/2{Var∗(β̂k(u)|D)}1/2, k = 1, . . . , p,

where zα/2 is the (1− α/2) quantile of the standard normal distribution.

5. Partially Linear Varying-Coefficient Model

In this section, we consider a special case of model (1.2), where some com-

ponents Xit = (Xit,1, . . . , Xit,q)
τ of Xit are constant effects, and the rest Xit =

(Xit,q+1, . . . , Xit,p)
τ are varying effects, for i = 1, . . . , N and t = 1, . . . , T . Then,

model (1.2) becomes the following partially linear varying-coefficient model with

interactive fixed effects:

Yit = Xτ
itβ

(1)(Uit) +X
τ
itθ + λτi Ft + εit, (5.1)

where β(1)(u) = (β1(u)), . . . , βq(u))τ and θ = (βq+1, . . . , βp)
τ .

Similarly to the proposed estimation procedure in Section 2, we can define

the following objective function:

Q(γ(1),θ,F ) =

N∑
i=1

(Yi −Riγ
(1) −Xiθ)τMF (Yi −Riγ

(1) −Xiθ). (5.2)

Thus, the estimators of γ(1) and θ can be obtained by iterating between γ(1), θ,

and F using the following nonlinear equations:

θ̂ =

 N∑
i=1

X
τ
iMF̂

IT −Ri

(
N∑
i=1

Rτ
iMF̂Ri

)−1 N∑
i=1

Rτ
iMF̂

Xi

−1

×
N∑
i=1

X
τ
iMF̂

IT −Ri

(
N∑
i=1

Rτ
iMF̂Ri

)−1 N∑
i=1

Rτ
iMF̂

Yi,
γ̂(1) =

(
N∑
i=1

Rτ
iMF̂Ri

)−1 N∑
i=1

Rτ
iMF̂ (Yi −X

τ
i θ̂),

F̂VNT =

[
1

NT

N∑
i=1

(Yi −Riγ̂
(1) −Xτ

i θ̂)(Yi −Riγ̂
(1) −Xτ

i θ̂)τ

]
F̂ . (5.3)

By the property of B-spline bases that
∑Lk

l=1Bkl(u) = 1 if βk(u) is a constant
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βk, we set γk = βk1Lk
, where 1Lk

is an Lk × 1 vector with entries of one. With

a slight abuse of notation, (5.2) can be rewritten as

Q(γ(1),θ,F ) = Q(γ,F ) =

N∑
i=1

(Yi −Riγ)τMF (Yi −Riγ), (5.4)

where γ = (γτ1 , . . . , γ
τ
q , βq+11

τ
Lq+1

, . . . , βp1
τ
Lp

)τ = (γ(1)τ , βq+11
τ
Lq+1

, . . . , βp1
τ
Lp

)τ .

For each k = q + 1, . . . , p, we treat βk as a function, and apply the estimation

procedure in Section 2 to obtain the initial estimators of γ̂(1), F̂ , and Λ̂. Then,

we propose the following robust iteration algorithm for estimating the parameters

(γ(1),θ,F ,Λ).

Step 1. Start with an initial estimator (γ̂(1), F̂ , Λ̂).

Step 2. Given γ̂(1), F̂ , and Λ̂, compute

θ̂(γ̂(1), F̂ , Λ̂) =

(
N∑
i=1

X
τ
iXi

)−1 N∑
i=1

X
τ
i (Yi −Riγ̂

(1) − F̂ λ̂i).

Step 3. Given θ̂, F̂ , and Λ̂, compute

γ̂(1)(θ̂, F̂ , Λ̂) =

(
N∑
i=1

Rτ
iRi

)−1 N∑
i=1

Rτ
i (Yi −Xiθ̂ − F̂ λ̂i).

Step 4. Given γ̂(1) and θ̂, compute F̂ according to (5.3) (multiplied by
√
T ,

owing to the restriction that F τF /T = Ir), and calculate Λ̂ using formula

(2.9), with γ̂ = (γ̂(1)τ , β̂q+11
τ
Lq+1

, . . . , β̂p1
τ
Lp

)τ .

Step 5. Repeat Steps 2–4 until (γ̂(1), θ̂, F̂ , Λ̂) satisfy the given convergence cri-

terion.

In order to give the following asymptotic distribution, we first introduce some

notation. Let

Zi = MF 0Xi −
1

N

N∑
j=1

MF 0Xjaij , Zi = MF 0Ri −
1

N

N∑
j=1

MF 0Rjaij ,

Φ =
1

NT

N∑
i=1

Z
τ
iZi, Φ =

1

NT

N∑
i=1

Zτ
iZi, Ψ =

1

NT

N∑
i=1

Z
τ
iZi,
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and Ži = Zi−ZiΦ
−1Ψτ . In addition, we define the following probability limits:

Π1 = plim
1

NT

N∑
i=1

Žτ
i Ži = plim(Φ−ΨΦ−1Ψτ ),

Π2 = plim
1

NT

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

σij,tsŽitŽ
τ
js.

The following theorem gives the asymptotic normality of the parametric

components.

Theorem 5. Suppose that assumptions (A1)–(A10) hold. If δ−2
NTLN logLN → 0,

L2d+1
N /NT →∞, and T/N → c as N →∞ and T →∞ simultaneously, then

(NT )−1/2(θ̂ − θ)
L−→ N(b,Π−1

1 Π2Π−1
1 ),

where b = c1/2Š0
1 + c−1/2Š0

2 , and Š0
1 is the probability limit of Š1, with

Š1 = −(Φ−ΨΦ−1Ψτ )−1

[
1

N

N∑
i=1

N∑
j=1

(Xi − V i)
τF 0

T
G0λj

(
1

T

T∑
t=1

εitεjt

)

−ΨΦ−1 1

N

N∑
i=1

N∑
j=1

(Ri − V i)
τF 0

T
G0λj

(
1

T

T∑
t=1

εitεjt

)]
,

and Š0
2 is the probability limit of Š2, with

Š2 = −(Φ−ΨΦ−1Ψτ )−1

(
1

NT

N∑
i=1

X
τ
iMF 0ΩF 0G0λi

−ΨΦ−1 1

NT

N∑
i=1

Rτ
iMF 0ΩF 0G0λi

)
,

where G0 = (F 0τF 0/T )−1(ΛτΛ/N)−1 and V i = N−1
∑N

j=1 aijXj.

It is easy to show that Š0
1 = 0 in the bias term b if the cross-sectional

correlation and heteroskedasticity are absent. Similarly, Š0
2 = 0 if the serial

correlation and heteroskedasticity are absent. We also show that both Š0
1 =

Š0
2 = 0 if εit are i.i.d. over i and t. From Theorem 5, the convergence rate of

θ̂ is of order OP ((NT )−1/2). Thus substituting θ̂ for θ in model (5.1) will have

little effect on the estimation of βj(u), for j = 1, . . . , q. This implies that the

estimator β̂j(u) will have similar asymptotic distributions in Theorems 3 and 4.
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6. Hypothesis Testing

In practice, it is often of interest to test whether one or several coefficient

functions are nonzero constants or are identically zero. We here propose a

goodness-of-fit test that compares the residual sum of squares from least square

fits under the null and alternative hypotheses.

We consider the null hypothesis that some of the coefficient functions are

constants:

H0 : βq+1(u) = βq+1, . . . , βp(u) = βp,

for all u ∈ U , where βk (k = q + 1, . . . , p) are unknown constants. Under H0,

model (1.2) reduces to the partially linear varying-coefficient panel-data model

(5.1). Let γ̂(1)∗, θ̂, F̂ ∗, and λ̂∗i be the consistent estimators of γ(1), θ, F , and λi,

respectively. Thus, the residual sum of squares under the null hypothesis H0 is

RSS0 =
1

NT

N∑
i=1

(Yi −Riγ̂
(1)∗ −Xiθ̂ − F̂ ∗λ̂∗i )τ (Yi −Riγ̂

(1)∗ −Xiθ̂ − F̂ ∗λ̂∗i ).

Under the general alternative that all coefficient functions are allowed to

vary with u, the residual sum of squares is defined by

RSS1 =
1

NT

N∑
i=1

(Yi −Riγ̂ − F̂ λ̂i)τ (Yi −Riγ̂ − F̂ λ̂i). (6.1)

We extend the generalized likelihood ratio in Fan, Zhang and Zhang (2001) to

the current setting, and construct the test statistic under the null hypothesis H0

as follows:

Tn =
RSS0 − RSS1

RSS1
, (6.2)

where RSS0 − RSS1 indicates the difference of fit under the null and alternative

hypotheses. If Tn is larger than an appropriate critical value, we reject the null

hypothesis H0. Let t0 be the observed value of Tn. Then, the p-value of the

test is defined as p0 = PH0
(Tn > t0), which denotes the probability of the event

{Tn > t0}. For a given significance level α0, the null hypothesis H0 is rejected if

p0 ≤ α0.

Theorem 6. Suppose that the conditions of Theorem 3 are satisfied. Under the

null hypothesis H0, Tn → 0 in probability as N →∞ and T →∞. Otherwise, if

infa∈R ‖βk(u)− a‖L2
> 0, for some k = q + 1, . . . , p, then there exists a constant

t0, such that Tn > t0 with probability approaching one as N →∞ and T →∞.
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Because it is difficult to develop the asymptotic null distribution of the statis-

tic Tn, we use the following bootstrap procedure to evaluate the null distribution

of Tn and compute the p-values of the test.

Step 1. We generate the bootstrap sample {(Y ∗it , Xit, Uit), i = 1, . . . , N, t =

1, . . . , T}, as described in Section 4, and calculate the bootstrap test statis-

tic T ∗n .

Step 2. We repeat Step 1 many times to compute the bootstrap distribution of

T ∗n .

Step 3. When the observed test statistic Tn is greater than or equal to the

{100(1 − α0)}th percentile of the empirical distribution T ∗n , we reject the

null hypothesis H0 at the significance level α0. The p-value of the test is

the empirical probability of the event {T ∗n ≥ Tn}.

7. Conclusion

This study contributes to the literature by proposing an estimation procedure

for a varying-coefficient panel-data model with interactive fixed effects. First, we

use B-splines to approximate the coefficient functions for the model. With an

appropriate choice of smoothing parameters, we propose a robust nonlinear it-

eration scheme based on the least squares method to estimate the coefficient

functions. Then, we establish the asymptotic theory for the resulting estimators

under some regularity assumptions, including their consistency, convergence rate,

and asymptotic distribution. Second, to deal with the serial and cross-sectional

correlation and heteroskedasticity within our model, which increases the compu-

tational burden and cause accumulative errors, we propose using a residual-based

block bootstrap procedure to construct the pointwise confidence intervals for the

coefficient functions. Third, we extend our proposed estimation procedure to

include partially linear varying-coefficient models with interactive fixed effects,

and study the asymptotic properties of the resulting estimator. In addition, we

develop a test statistic for the constancy of the varying coefficient functions, and

propose a bootstrap procedure to evaluate the null distribution of the test statis-

tic. Finally, numerical studies demonstrate the satisfactory performance of our

proposed methods in practice, and support our theoretical results.
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Supplementary Material

The online Supplementary Material contains the numerical studies, proofs of

Theorems 1–6 and Corollary 1, and Lemmas 1–7 and their proofs. In addition,

we introduce the estimation procedure for a special model, namely, the varying-

coefficient panel-data model with additive fixed effects.
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