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CALIBRATED ZERO-NORM REGULARIZED

LS ESTIMATOR FOR HIGH-DIMENSIONAL

ERROR-IN-VARIABLES REGRESSION
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Abstract: This study focuses on using a high-dimensional error-in-variables regres-

sion to identify a small number of important interpretable factors from corrupted

data in applications in which measurement errors or missing data cannot be ig-

nored. Motivated by the convex conditioned Lasso (CoCoLasso) method and the

advantage of using a zero-norm regularized LS estimator rather than a Lasso for

clean data, we propose a calibrated zero-norm regularized LS (CaZnRLS) estima-

tor. To do so, we construct a calibrated least squares loss with a positive-definite

projection of an unbiased surrogate for the covariance matrix of covariates. Then,

we use the multi-stage convex relaxation approach to compute the proposed estima-

tor. Under restricted strong convexity on the true covariate matrix, we derive the

`2-error bound for each iteration. Then, we establish the decreasing error bound

sequence and the sign consistency of the iterations after a finite number of steps.

Statistical guarantees are also provided for the CaZnRLS estimator under two types

of measurement errors. Numerical comparisons with the CoCoLasso and nonconvex

Lasso show that the CaZnRLS has a better relative RMSE and correctly identifies

more of the predictors.

Key words and phrases: Error-in-variables regression, high-dimensional, multi-stage

convex relaxation, zero-norm regularized LS.

1. Introduction

High-dimensional regressions are becoming popular in many fields, including

genomics, finance, image processing, climate science, sensor networks, and so on.

The canonical high-dimensional linear regression model assumes that the number

of available predictors p is larger than the sample size n, although the number of

true relevant predictors s is much less than p. This model can be expressed as

y = Xβ∗ + ε, (1.1)
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where y = (y1, . . . , yn)T is the vector of responses, X = (xij) is an n× p matrix

of covariates, β∗ ∈ Rp is a sparse coefficient vector with s nonzero entries, and

ε = (ε1, . . . , εn)T is the noise vector. Unless otherwise stated, we assume all

covariates are centered such that the intercept term is not included in (1.1) and

the matrix X of covariates has normalized columns.

Current popular high-dimensional regression methods include convex-type

estimators, such as the Lasso of Tibshirani (1996), adaptive Lasso of Zou (2006),

elastic net of Zou and Hastie (2005), and Dantzig selector of Candès and Tao

(2007), and nonconvex-type estimators, such as the smoothly clipped absolute

deviation (SCAD) of Fan and Li (2001) and minimax concave penalty (MCP)

of Zhang (2010). Refer to Fan and Lv (2010) and Bühlmann and van de Geer

(2011) for excellent overviews of these methods. To some extent, these methods

imitate the performance of the zero-norm penalized LS estimator

βzn ∈ argmin
‖β‖∞≤R

{
1

2nλ
‖y −Xβ‖2 + ‖β‖0

}
, (1.2)

where the ball constraint ‖β‖∞ ≤ R, for some R > 0, ensures the well-definedness

of βzn, and λ > 0 is the regularization parameter. Recently, by developing a

global exact penalty for the equivalent mathematical program with equilibrium

constraints (MPEC), Bi and Pan (2018) showed that a global optimal solution

can be obtained for (1.2) from the solution of a global exact penalization problem.

In addition, the popular SCAD estimator is the result of eliminating the dual

part of a global exact penalization problem. By solving such a problem in an

alternating way, they proposed a multi-stage convex relaxation approach (GEP-

MSCRA), which can be regarded as an adaptive Lasso that incorporates dual

information. Note that for the clean design matrix X, the zero-norm regularized

LS estimator computed using the GEP-MSCRA has a remarkable advantage over

the Lasso in terms of reducing the prediction error and capturing the sparsity.

In reality, we often face corrupted data, owing to inaccurate observations for

covariates, or missing values. Common examples include sensor network data

(see Slijepcevic, Megerian and Potkonjak (2002)), high-throughout sequencing

(see Benjamini and Speed (2012)), and gene expression data (see Purdom and

Holmes (2005)). In this setting, naively applying the high-dimensional regression

method for clean data to corrupted data will yield misleading inference results;

see Rosenbaum and Tsybakov (2010). Then, it is natural to ask how to modify

the zero-norm regularized LS estimator for corrupted data, without losing its

advantages. Motivated by the convex conditioned Lasso (CoCoLasso) method of
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Datta and Zou (2017), we propose a calibrated zero-norm regularized LS (CaZn-

RLS) estimator. For convenience, we assume that a corrupted covariate matrix

Z = (zij)n×p rather than the true covariate matrix X is observed. As mentioned

in Loh (2014) and Datta and Zou (2017), depending on the context, there are

various ways to model measurement errors. For example, in an additive noise

setting, Z = X + A, where A = (aij)n×p is the additive noise matrix. In a

multiplicative errors setup, Z = X ◦M , where M = (mij)n×p is the matrix of

multiplicative errors, and “◦” denotes the elementwise multiplication operator.

Note that missing values can be viewed as a special case of multiplicative errors.

The loss term (1/2n)‖y −Xβ‖2 in the clean setting can be rewritten as

1

2
βTΣβ − ξTβ +

1

2n
‖y‖2 with Σ :=

1

n
XTX and ξ :=

1

n
XTy. (1.3)

By recalling that the covariates are centered, it is easy to check that (Σ, ξ) is an

unbiased estimator of (Σx,Σxβ
∗), where Σx denotes the covariance matrix of the

covariates. Using corrupted Z and y, Loh and Wainwright (2012) constructed

an unbiased surrogate (Σ̂, ξ̂) of (Σ, ξ), and obtained an estimation for the true

β∗ using the following optimization model:

β̂ ∈ argmin
‖β‖1≤R0

{
1

2
βTΣ̂β − ξ̂Tβ + λn‖β‖1

}
. (1.4)

Note that the unbiased surrogate Σ̂ constructed from Z may not be positive

semidefinite (PSD); for example, when xij is corrupted by independent additive

errors aij with mean zero and variance τ2, the matrix Σ̂ = (1/n)ZTZ− τ2I is an

unbiased surrogate for Σ, which has a negative eigenvalue because n < p. As a

result, the objective function of (1.4) may be nonconvex and lower unbounded.

Loh and Wainwright imposed the constraint ‖β‖1 ≤ R0 on model (1.4) to guaran-

tee that it has an optimal solution. Through some careful analysis, they showed

that if R0 is chosen properly, a projected gradient descent algorithm will converge

in polynomial time to a small neighborhood of the set of all global minimizers.

However, as remarked in Datta and Zou (2017), the practical performance of

the nonconvex Lasso model (1.4) depends greatly on the choice of R0. A similar

shortcoming applies to the procedure of Chen and Caramanis (2013).

To overcome the aforementioned shortcoming and benefit from the convex

formulation of the Lasso, Datta and Zou (2017) proposed the CoCoLasso method.

Let W � ε̂I mean that W − ε̂I is PSD and let ‖Z‖max = maxi,j |zij | denote the

elementwise maximum norm of a matrix Z. They first solved the following PSD
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optimization problem:

Σ ∈ argmin
W�ε̂I

‖W − Σ̂‖max for some ε̂ > 0, (1.5)

to obtain the nearest positive definite (PD) approximation to the unbiased sur-

rogate Σ̂ of Σ, constructed as in Loh and Wainwright (2012) using Z. Then, they

defined

β = argmin
β∈Rp

{
1

2n
‖y − Zβ‖2 + λ‖β‖1

}
(1.6)

using the Cholesky factor Z/
√
n of Σ and the vector y satisfying Z

T
y = ZTy.

The elementwise maximum norm in model (1.5) plays two roles: measuring

the approximation of Σ to Σ, and removing a particular noise from Σ̂. Compared

with other elementwise norms, such as the `1-norm and Frobenius norm, the

maximum norm yields an approximation with entries that are closer to those of

Σ̂. However, the computation of Σ is expensive, because model (1.5) is a convex

program of p2 variables involving two nonsmooth terms: the objective function

‖W − Σ̂‖max, and the PSD constraint. Figure 1 indicates that when using the

alternating direction method of multipliers (ADMM), described in Appendix A

of Datta and Zou (2017), to solve (1.5), using Σ̂ from the data in Subsection 5.1,

the computing time increases quickly with p and the improvement in the accuracy

of the solution. Now, consider using (1.5) to approximate the covariance matrix

Σx instead of the noisy unbiased surrogate Σ̂. Here, it is reasonable to seek a

slightly less accurate approximation that can be achieved cheaply, and then to

employ a more effective high-dimensional regression method than the Lasso to

define the estimator. When the elementwise maximum norm in (1.5) is replaced

with the Frobenius norm, the solution is exactly the projection of Σ̂ − ε̂I onto

the PSD cone, and can be obtained from one eigenvalue decomposition for Σ̂.

In addition, when Σ̂ = (1/n)ZTZ − τ2I, this solution matches the structure of

Σ̂ well. Motivated by this, we replace the objective function of (1.5) with the

Frobenius norm of W − Σ̂ to obtain an approximation Σ̃. Then, we define a

zero-norm regularized LS estimator using its eigenvalue decomposition.

Note that a Dantzig selector-type estimator and an improved version were

proposed in (Rosenbaum and Tsybakov (2010, 2013)) and Belloni, Rosenbaum

and Tsybakov (2017), respectively, for additive measurement error models. Be-

cause these estimators are defined via an optimization problem with a differ-

ence of convexity (D.C.) constraint, it is difficult to obtain these estimators in

practice. To overcome this difficulty, Belloni, Rosenbaum and Tsybakov (2016)
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Figure 1. The computing time and objective value of Algorithm 1 of Datta and Zou
(2017) with the stopping condition max(‖Ai+1−Ai‖F , ‖Bi+1−Bi‖, ‖Λi+1− Λi‖) ≤ tol.

relaxed the nonconvex constraint set to a convex set, and proposed two conic

programming-based estimators for the same model setup, which can be viewed

as a relaxed version of the Dantzig selector for clean data. In addition, Städler

and Bühlmann (2012) derived an algorithm for a sparse linear regression with

missing data, based on a sparse inverse covariance matrix estimation. In the

spirit of Loh and Wainwright (2012) and Datta and Zou (2017), we propose the

CaZnRLS estimator, which simultaneously handles additive errors, multiplica-

tive errors, and missing data. Although the CaZnRLS estimator is defined using

a nonconvex optimization problem, the GEP-MSCRA in Bi and Pan (2018) (see

Section 3) provides an efficient solver this problem that solves a sequence of

weighted `1-regularized LS problems. As shown in the simulation study in Sec-

tion 5, the estimator still reduces prediction error and captures the sparsity for

the contaminated data, as it does for the clean data.

The rest of this paper is organized as follows. In Section 2, we define the

CaZnRLS estimator and provide a primal-dual view of this estimator. Section 3

describes the GEP-MSCRA solver used to compute the CaZnRLS estimator. In

Section 4, under a restricted eigenvalue assumption on the matrix Σ, we provide

the deterministic theoretical guarantees, including the `2-error bound for every

iteration, decreasing error bound sequence, and sign consistency of the iterations,

after a finite number of steps. Here, we also provide the statistical guarantees for

the computed estimator under two types of measurement error. In Section 5, we

compare the performance of the CaZnRLS estimator with that of the CoCoLasso

and nonconvex Lasso (NCL). All proofs and technical details are provided in the

online Supplementary Material.

To close this section, we introduce some necessary notation. Let Sp be the
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space consisting of all p×p real symmetric matrices, equipped with the trace inner

product 〈W,Y 〉 = trace(WTY ) and its induced Frobenius norm ‖ · ‖F , and let Sp+
be the cone consisting of all PSD matrices in Sp. For any symmetric matrix W , let

λmin(W ) and λmax(W ) denote the smallest and largest eigenvalues, respectively,

of W . For any vector z, ‖z‖∞ denotes the infinity norm of z. Let I and e denote

an identity matrix and a vector of all ones, respectively, with dimensions that are

known from the context. For a closed set Ω, δΩ(·) denotes the indicator function

on Ω. That is, δΩ(x) = 0 if x ∈ Ω; otherwise, δΩ(x) = +∞. When Ω is convex,

ΠΩ(·) denotes the projection operator onto Ω. For an index set Λ ⊆ {1, . . . , p},
write Λc := {1, . . . , p}\Λ, and denote IΛ(·) as the characterization function on Λ,

and YΛ as the submatrix of Y consisting of the column Yj , for j ∈ Λ. For any

nonnegative real number a, bac and dae denote the largest integer less than a

and the smallest integer greater than a, respectively.

2. The CaZnRLS Estimator

When the data are corrupted by measurement errors, the observed matrix

Z of predictors is a function of the true covariate matrix X and random er-

rors. In this case, one may construct an unbiased surrogate (Σ̂, ξ̂) for the pair

(Σ, ξ) using Z and y, as in Loh and Wainwright (2012). For the specific form

of (Σ̂, ξ̂) under various types of measurement errors, refer to Section 2 in Loh

and Wainwright (2012), or see the Supplementary Material. Now, assume that

an unbiased surrogate (Σ̂, ξ̂) is available. Let Σ̂ have the eigenvalue decompo-

sition Σ̂ = PDiag(θ1, . . . , θp)P
T, where P is a p × p orthonormal matrix and

θ1 ≥ θ2 ≥ · · · ≥ θp are the eigenvalues of Σ̂.

Because it is time-consuming to compute a solution for (1.5) when p is large,

we replace elementwise maximum norm in (1.5) with Frobenius norm, and achieve

a nearest PD approximation to Σ̂ using the following model:

Σ̃ = argmin
W�ε̂I

‖W − Σ̂‖F . (2.1)

Note that (2.1) has the same solution set as the problem minW�ε̂I ‖W − Σ̂‖2F
does. Thus,

Σ̃ = ε̂I + ΠSp
+

(Σ̂−ε̂I) = PDiag
(

max(θ1, ε̂), . . . ,max(θp, ε̂)
)
PT. (2.2)

Clearly, when Σ̂ = (1/n)ZTZ − τ2I, a composite of a low-rank matrix and an

identity matrix, the solution Σ̃ keeps this structure. Furthermore, one eigenvalue
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decomposition of (1/n)ZTZ is enough to formulate the solution Σ̃. Indeed, let
Z̃ :=

√
nPDiag

(√
max(θ1, ε̂), . . . ,

√
max(θp, ε̂)

)
PT,

ỹ :=
√
nPDiag

(
1√

max(θ1,ε̂)
, . . . , 1√

max(θp,ε̂)

)
PTξ̂.

(2.3)

Then, from (2.2), we have that Σ̃ = (1/n)Z̃TZ̃ and ξ̂ = (1/n)Z̃Tỹ.

Although the computation of Σ̃ becomes much cheaper than that of Σ, the

accuracy of its approximation to Σ̂ is worse, because minimizing the elementwise

maximum norm tends to give smaller entries. This requires that we define an

estimator using high-dimensional regression methods that are more effective than

the Lasso. A natural candidate is a nonconvex-type estimator, such as the SCAD

or MCP, because they can remove the bias of the Lasso. Note that the SCAD

and MCP functions are actually imitating the performance of the zero-norm. We

define the zero-norm regularized LS estimator

β̃ ∈ argmin
β∈Rp

{
1

2nλ
‖Z̃β − ỹ‖2 + ‖β‖0

}
. (2.4)

Taking into account that (Z̃, ỹ) is a calibrated pair of (Σ̂, ξ̂), we call (2.4) a

calibrated version of the zero-norm regularized LS estimator defined using the

corrupted observation Z, as in (1.2), except that the ball constraint is now re-

moved, owing to the coerciveness of the strong convex ‖Z̃β − ỹ‖2. Compared

with the SCAD estimator, the solution of (2.4) seems to be much more difficult,

because the problem in (2.4) is even discontinuous, owing to the combinatorial

property of the zero-norm. However, as demonstrated later, the SCAD estimator

is actually equivalent to the zero-norm regularized LS.

Next, we provide a primal-dual view of the estimator β̃. Define

φ(t) :=
a−1

a+1
t2 +

2

a+1
t (a > 1), for t ∈ R. (2.5)

Using this function, we can immediately check that, for any β ∈ Rp,

‖β‖0 = min
w∈Rp

{
p∑
i=1

φ(wi) : 〈e− w, |β|〉 = 0, 0 ≤ w ≤ e

}
.

This shows that the zero-norm is essentially an optimal value function of a param-

eterized mathematical program with equilibrium constraints (MPEC), because

〈e− w, |β|〉 = 0 and e− w ≥ 0 constitute an equilibrium constraint. Thus, (2.4)
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is equivalent to the following MPEC:

min
β,w∈Rp

{
1

2nλ
‖Z̃β − ỹ‖2 +

p∑
i=1

φ(wi) : 〈e− w, |β|〉 = 0, 0 ≤ w ≤ e

}
, (2.6)

in the sense that if β̃\ is a global optimal solution of (2.4), then (β̃\, sign(|β̃\|))
is globally optimal to (2.6); conversely, if (β̃\, w̃\) is a global optimal solution of

(2.6), then β̃\ is globally optimal to (2.4), with ‖β̃\‖0 =
∑p

i=1 φ(β̃\i ).

The MPEC form (2.6) shows that the difficulty in computing the estimator

β̃ arises from the constraint 〈e −w, |β|〉 = 0, which introduces the bothersome

nonconvexity. Because it is much harder to handle nonconvex constraints than

it is to handle a nonconvex objective, we consider its penalized version,

min
β∈Rp,w∈[0,e]

{
1

2nλ
‖Z̃β − ỹ‖2 +

p∑
i=1

φ(wi) + ρ〈e− w, |β|〉

}
, (2.7)

where ρ > 0 is the penalty parameter. By the coerciveness of the function

β 7→ ‖Z̃β − ỹ‖2, there exists a constant R̂ > 0 such that (2.6) and (2.7) are

equivalent to their respective versions in which the variable β is required to lie

in the set {β ∈ Rp | ‖β‖∞ ≤ R̂}. Thus, invoking Theorem 2.1 of Bi and Pan

(2018), we have the following result.

Theorem 1. Let Lf be the Lipschitz constant of f(β) := (1/2n)‖Z̃β − ỹ‖2 on

the ball {β ∈ Rp : ‖β‖∞ ≤ R̂}. Then, for every ρ ≥ ρ := (4aLf )/((a + 1)λ), the

global optimal solution set of (2.7) associated with ρ coincides with that of (2.6).

Theorem 1 shows that the problem in (2.7) is a global exact penalty of (2.6),

in the sense that it has the same global optimal solution set as that of (2.6), once

ρ is greater than a threshold. Consequently, β̃ can be achieved by solving the

following exact penalty problem with ρ > ρ:

β̃ ∈ argmin
β∈Rp,w∈[0,e]

{
1

2n
‖Z̃β − ỹ‖2 +

p∑
i=1

λ
[
φ(wi) + ρ(1− wi)|βi|

]}
. (2.8)

Compared with (2.4), the problem in (2.8) involves an additional variable w ∈ Rp,
which provides part of the dual information on (2.4). Hence, (2.8) can be viewed

as a primal-dual equivalent form of (2.4). This form does not involve the combi-

natorial difficulty, and its nonconvexity is due only to the coupled term 〈w, |β|〉,
which is clearly much easier to cope with. In particular, the SCAD function in

Fan and Li (2001) is precisely the optimal value of the inner minimization in
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(2.8) w.r.t. w. To see this, we define

ψ(t) :=

{
φ(t) if t ∈ [0, 1],

+∞ otherwise.
(2.9)

Recalling the conjugate ψ∗(ω) = supt∈R{tω − ψ(t)} of ψ by Rockafellar (1970),

we can compactly write the inner minimization in (2.8) w.r.t. w as

min
w∈Rp

{
p∑
i=1

λ
[
ψ(wi) + ρ(1−wi)|βi|

]}
=

p∑
i=1

λ
[
ρ|βi| − ψ∗

(
ρ|βi|

)]
.

After an elementary calculation, the conjugate ψ∗ of ψ has the form

ψ∗(ω) =


0 if ω ≤ 2

a+ 1
,

((a+ 1)ω − 2)2

4(a2 − 1)
if

2

a+ 1
< ω ≤ 2a

a+ 1
,

ω − 1 if ω >
2a

a+ 1
.

By comparing this with the expression of the SCAD function pγ(t), the function

λ[ρ|t| − ψ∗(ρ|t|)], with λ = ((a+ 1)γ2)/2 and ρ = 2/((a+ 1)γ), reduces to pγ(t).

Thus,

β̃ ∈ argmin
β∈Rp

{ 1

2n
‖Z̃β − ỹ‖2 +

∑p
i=1pγ(|βi|)

}
. (2.10)

3. GEP-MSCRA for Computing the Estimator β̃

From the previous section, to compute the estimator β̃, one need only solve a

single penalty problem (2.8), which is much easier than (2.4) because its noncon-

vexity is from the coupled term 〈w, |β|〉. The GEP-MSCRA proposed by Bi and

Pan (2018) makes good use of the coupled structure, and solves the problem in

(2.8) in an alternating way. Because the threshold ρ is unknown, though one may

obtain an upper estimation for it, a varying ρ is introduced in the GEP-MSCRA.

The iterations of the GEP-MSCRA are described below.

Remark 1. (a) Because φ is strongly convex, the problem in (3.3) has a unique

optimal solution. From φ, we immediately obtain

wki = min

[
1,max

(
(a+ 1)ρk|βki | − 2

2(a− 1)
, 0

)]
for i = 1, 2, . . . , p. (3.1)
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Algorithm 1 GEP-MSCRA for computing β̃

Initialization: Choose λ > 0, ρ0 = 1 and an initial w0 ∈ [0, (1/2)e]. Set k := 1.
while the stopping conditions are not satisfied do

1. Compute the following minimization problem

βk = argmin
β∈Rp

{
1

2n

∥∥Z̃β − ỹ∥∥2 + λ

p∑
i=1

(1−wk−1i )|βi|

}
. (3.2)

2. When k = 1, select a suitable ρ1 ≥ ρ0 in terms of ‖β1‖∞. Otherwise, select ρk
such that ρk ≥ ρk−1 for k ≤ 3; and ρk = ρk−1 for k > 3.

3. Seek the unique optimal solution wki (i = 1, . . . , p) of the problem

wki = argmin
0≤wi≤1

{
φ(wi)− ρkwi|βki |

}
. (3.3)

4. Let k ← k + 1, and then go to Step 1.

end while

Thus, the main computation in each step is solving a weighted `1-regularized LS.

In this sense, the GEP-MSCRA is analogous to the local linear approximation

algorithm of Zou and Li (2008) applied to the problem in (2.10), except for

the start-up and the weights. The start-up of the former depends explicitly on

the dual variable w0, whereas that of the latter depends implicitly on a good

estimator β0. Therefore, when computing CaZnRLS using the GEP-MSCRA,

one actually obtains an adaptive Lasso estimator. The initial w0 may be an

arbitrary vector from the box set [0, (1/2)e]. Here, we restrict w0 to the box set

[0, (1/2)e], rather than the feasible set [0, e] of w in (2.8), so as to achieve a better

initial estimator β1.

(b) Owing to the combinatorial property of ‖ · ‖0, it is almost impossible to

obtain β̃ exactly. The popular Lasso of Tibshirani (1996) and adaptive Lasso of

Zou (2006), as a one-step and a series of convex relaxations to (2.4), respectively,

arise from the primal angle, whereas the series of weighted `1-norm regularized

LS problems in the GEP-MSCRA arise from the primal-dual reformulation of

(2.4).

(c) From the formula in (3.1), if ρk|βki | is larger, then wki has a value close to one,

Thus, in the (k+1)th iteration, a smaller weight (1−wki ) is imposed on the variable

βi, and consequently a conservative strategy is used for sparsity. Consider that for

some difficult problems, the solution β1 yielded by the `1-regularized LS problem
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may not have a sharp gap between its nonzero and zero entries. Hence, in order

to guarantee that the subsequent βk has a correct sparse support, we increase

ρk, for k ≤ 3, appropriately; that is, we cut down the smaller nonzero entries

conservatively. For k > 3, in general, βk has a big difference between its nonzero

and zero entries. Therefore, we keep ρk unchanged so as to cut down the smaller

nonzero entries quickly.

In the Supplementary Material, we implement the GEP-MSCRA by applying

the semi-smooth Newton augmented Lagrangian method (ALM) to the dual of

(3.2). As discussed in Li, Sun and Toh (2018), the semi-smooth Newton ALM

fully exploits the second-order information and good structure of its dual, and

can yield an accurate solution.

4. Theoretical Guarantees for the GEP-MSCRA

In this section, we denote S∗ as the support of the true vector β∗, and define

C(S∗) :=
⋃

S⊃S∗,|S|≤1.5s

{
β ∈ Rp : ‖βSc‖1 ≤ 3‖βS‖1

}
.

We say that Σ satisfies the κ-restricted eigenvalue condition (REC), or X satisfies

the κ-restricted strong convexity on C(S∗), if κ > 0 is such that

βTΣβ =
1

n
‖Xβ‖2 ≥ κ‖β‖2 for all β ∈ C(S∗).

This REC is a little stronger than that used in Negahban et al. (2012) for the clean

Lasso and in Datta and Zou (2017) for the CoCoLasso, because C(S∗) ⊇
{
β ∈ Rp :

‖β(S∗)c‖1 ≤ 3‖βS∗‖1
}

, and is different from the (L, S∗, N)-restricted eigenvalue

condition introduced in van de Geer and Bühlmann (2009). We provide the

deterministic theoretical guarantees for the GEP-MSCRA under this REC with

appropriate λ, ρ1, and ρ3. These include the error bound of every iteration βk

to the true β∗, decrease of the error sequence, and sign consistency of βk after a

finite number of steps.

4.1. Error bound sequence and its decrease

To determine the error bound of iteration βk to the true β∗, we write

D := Σ̂− Σ and ε̃ := ξ̂ − Σ̃β∗. (4.1)

The following theorem states a deterministic result for the error bound.
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Theorem 2. Suppose Σ satisfies the κ-REC on C(S∗), with κ > 24s‖D‖max. If

λ and ρ3 are chosen such that λ ≥ 8‖ε̃‖∞ and ρ3 ≤ (2(κ−24s‖D‖max))/(5
√

2λ),

then

‖βk − β∗‖ ≤ 5
√
s λ

2(κ− 24s‖D‖max)
∀k ∈ N. (4.2)

The error bound in Theorem 2 has the same order, that is, O(λ
√
s), as

that established for the clean Lasso by Negahban et al. (2012). From the proof

of Theorem 1 in Datta and Zou (2017), ‖D‖max ≤ κ/64s holds with a high

probability. Therefore, there is a high probability that the error bound of βk is

not greater than 4λ
√
s/κ, which is a little better than the bound 4

√
2λ
√
s/κ in

Datta and Zou (2017). However, λ is allowed to be greater than 8‖ε̃‖∞, instead

of 2‖ε̃‖∞, as in Datta and Zou (2017).

Theorem 2 provides an error bound for each iteration, but does not tell us

if the error bound of the current βk is better than that of the previous βk−1.

To answer this question, we study the decrease of the error bound sequence by

bounding (1−wki )2, for i ∈ S∗. Write F 0 := S∗ and, for k ∈ N, define

F k :=
{
i :
∣∣|βki | − |β∗i |∣∣ ≥ (ρk)

−1
}

and Λk :=

{
i : |β∗i | ≤

4a

(a+1)ρk

}
. (4.3)

By Lemma 3, (1− wki )2, for i ∈ S∗, can be controlled by max(IΛk(i), IF k(i)). As

a result, we have the following error bound involving IΛk(i).

Theorem 3. Suppose Σ satisfies the κ-REC on C(S∗), with κ > 24s‖D‖max. If

λ and ρ3 are chosen in the same way as in Theorem 2, then

∥∥βk− β∗∥∥ ≤ 4 + 2
√

2

κ− 24s‖D‖max

∥∥ε̃S∗∥∥+

(
1√
2

)k−1∥∥β1− β∗
∥∥

+
2λ

κ− 24s‖D‖max

k−1∑
j=1

√∑
i∈S∗IΛj (i)

(
1√
2

)k−1−j
∀k ∈ N.

The error bound in Theorem 3 consists of three parts: a statistical error

‖ε̃S∗‖ induced by noise, an identification error
∑k−1

j=1

√∑
i∈S∗IΛj (i)(1/

√
2)k−1−j

related to the choice of ρj , and a computation error (1/
√

2)k−1‖β1− β∗‖. By

the definition of Λj , if ρj is chosen such that ρj > 4a/((a+ 1) mini∈S∗ |β∗i |), then

the identification error becomes zero. Consequently, the error bound sequence

decreases to the statistical error ‖ε̃S∗‖ as k increases. Clearly, if mini∈S∗ |β∗i | is not

too small, it is easy to choose such ρj . In the next section, we provide an explicit

choice range of ρj such that the identification error is zero. From Theorem 3, we
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also observe that a smaller error bound of β1 brings a smaller error bound for βk,

with k ≥ 2. The importance of β1 also comes from the fact that one may use it

to estimate the choice range of ρj (j ≥ 1), because ‖ε̃‖∞ is unknown in practice.

In the implementation of the GEP-MSCRA, we choose ρ1 using this strategy.

4.2. Sign consistency

We show that if the smallest nonzero component of β∗ is not so small, then

the GEP-MSCRA can deliver βl satisfying supp(βl) = supp(β∗) within a finite

number of steps. To achieve this goal, we need the oracle least squares solution:

βLS ∈ argmin
β∈Rp

{
1

2n
‖Z̃β − ỹ‖2 : supp(β) ⊆ S∗

}
. (4.4)

Write εLS := (1/n)Z̃T(ỹ − Z̃βLS). Then, εLS
S∗ = Z̃T

S∗(Z̃β
LS − ỹ) = 0. This implies

that βLS
S∗ − β∗S∗ = Σ̃−1

S∗S∗

[
(1/n)Z̃T

S∗
(
Z̃βLS − Z̃β∗

)]
= Σ̃−1

S∗S∗

[
(1/n)Z̃T

S∗(ỹ − Z̃β∗)
]
,

and

βLS
S∗ − β∗S∗ = Σ̃−1

S∗S∗

(
ξ̂S∗ − Σ̃S∗S∗β

∗
S∗
)

= Σ̃−1
S∗S∗ ε̃S∗ := ε̃†. (4.5)

Based on this observation for βLS, we establish the following result.

Theorem 4. Suppose Σ satisfies the κ-REC on C(S∗), with κ > 24s‖D‖max. Set

γ := κ − 24s‖D‖max. If λ, ρ1, and ρ3 are chosen such that λ ≥ 6‖εLS‖∞, ρ1 >

max
(
4a/((a + 1) mini∈S∗ |β∗i|), γλ−1‖ε̃†‖∞

)
, and ρ3 ≤

√
4γ/9

√
3λ, respectively,

then for all k ∈ N,

∥∥βk − βLS
∥∥ ≤ 2.03ρk−1λ

γ

√
|F k−1| and

√
|F k| ≤ 18.27

√
3ρkρk−1λ

(9
√

3−4)γ

√
|F k−1|.

In particular, when k≥k with k=
⌈
0.5 ln(s)/(ln[(9

√
3−4)γλ−1]−ln[18.27

√
3(ρ3)2])

⌉
,

we have

βk = βLS and sign(βk) = sign(β∗).

Remark 2. (a) Note that Datta and Zou (2017) achieved the sign consistency

of β under an irrepresentable condition on Σ and the condition mini∈S∗ |β∗i| >
[4‖Σ−1

S∗S∗‖∞ + (λmin(ΣS∗S∗))
−1/2]λ, where ‖A‖∞ = maxi

∑
j |Aij | means the

matrix `∞-norm. Their irrepresentable condition on Σ requires that ‖Σ(S∗)cS∗

Σ−1
S∗S∗‖∞ ≤ γ < 1 and λmin(ΣS∗S∗) ≥ Cmin, for some constants γ > 0 and

Cmin > 0. Here, the former restricts the scale of the entries of Σ, and the

latter is precisely the REC of Σ on the set
{
β ∈ Rp : β(S∗)c = 0

}
. We ob-

tain the sign consistency of βk, for k ≥ k, under the κ-REC of Σ on C(S∗),



922 TAO, PAN AND BI

with κ > 24s‖D‖max and ρ1>max
(
4a/((a+ 1) mini∈S∗ |β∗i|), γλ−1‖ε̃†‖∞

)
. When

λmin(ΣS∗S∗) is large, there is high probability that our κ-REC holds. In addition,

when ‖Σ(S∗)cS∗Σ
−1
S∗S∗‖∞ ≤ γ does not hold, our κ-REC may hold; for example,

consider Σ = [1 0 2; 0 1 2; 2 2 9] and S∗ = {1, 2}. In fact, to some extent,

our κ-REC also depends on the unbiased surrogate Σ̂ of Σ. If ‖Σ̂ − Σ‖max is

small, there is a high probability that our κ-REC holds. Finally, the condition

on mini∈S∗ |β∗i| used by Datta and Zou (2017) implies a large choice range for our

parameter ρ1 regardless of whether ‖Σ−1
S∗S∗‖∞ or (λmin(ΣS∗S∗))

−1/2 is larger or

λ is larger.

(b) Note that ρ3 ≤
√

4γ/9
√

3λ. Together with the definition of k, we have

ln[(9
√

3−4)γλ−1] − ln[18.27
√

3(ρ3)2] ≥ ln(1.4), which, with s ≥ 9, implies that

k ≤ k̂ :=
⌈
0.5 ln(s)/ ln(1.4)

⌉
. As one referee pointed out, k or k̂ is actually

unknown because it depends on the sparsity s of β∗. In practice, some prior

upper estimation on s is usually available; for example, a rough upper estimation

on s is the dimension p. Thus, one still can obtain a rough upper estimation

on k̂. In the practical numerical computation, we identify k by monitoring the

index change of the nonzero entries in each iteration.

(c) By Theorem 4, the choice of ρ1 is crucial for the GEP-MSCRA to yield an

oracle solution with a sign that is consistent with that of β∗ after a finite number

of steps. As remarked after Theorem 3, the ease of choosing ρ1 depends on the

error bound of β1. From Theorem 4 and Theorem 3, we conclude that a smaller

ρ3 results in good output from the GEP-MSCRA in terms of the error bound

and sign consistency. Furthermore, for those problems with high noise, a large λ

is needed and, of course, the error bound of βk becomes large.

We have established the deterministic theoretical guarantees of the GEP-

MSCRA when computing the CaZnRLS estimator under suitable conditions.

From (Raskutti, Wainwright and Yu (2010, 2011)), if X is from the Σx-Gaussian

ensemble
(
i.e., X is formed by independently sampling each row Xi ∼ N(0,Σx)

)
,

then there exists a constant κ > 0 (depending on Σx), such that Σ satisfies

the REC on C(S∗) with probability greater than 1− c1 exp(−c2n), as long as

n > cs ln p, where c, c1, and c2 are absolutely positive constants. It is natural

to ask whether such κ satisfies the requirements of the above theorems. What

is the likelihood of choosing λ, ρ1, and ρ3 as required in the above theorems? In

the Supplementary Material, we focus on these questions for two specific types

of errors-in-variables models.
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5. Numerical Experiments

We use simulated data sets to evaluate the performance of the CaZnRLS

estimator, computed using the GEP-MSCRA (see the Supplementary Material

for the implementation details). Then, we compare its performance with that of

CoCoLasso and NCL in terms of the number of signs identified correctly (NC)

and incorrectly (NIC) for the predictors, and in terms of the relative root-mean-

square error (RMSE). Let βf be the final output of one of three solvers. Define

NC(βf ) :=
∑
i∈S∗

I
{
|sign(βfi )− sign(β∗i )| = 0

}
,

NIC(βf ) := Nnz(β
f )−NC(βf ), and relative RMSE :=

‖βf − β∗‖
‖β∗‖

,

where Nnz(β
f ) :=

∑p
i=1 I

{
|βi| >10−8

}
is the number of nonzero entries of βf . All

results are obtained using a desktop computer running on 64-bit Windows with

an Intel(R) Core(TM) i7-7700 CPU 3.6GHz and 16 GB memory.

For the GEP-MSCRA, we choose a = 6.0 for φ, w0 = 0, and ρk for k ≤ 3 as

ρ1 = max

(
1,

5

3‖β1‖∞

)
, ρk = min

(
2ρk−1,

108

‖βk‖∞

)
for k = 2, 3.

We terminate GEP-MSCRA at βk once the following condition is satisfied:
|Nnz(β

k−j)−Nnz(β
k−j−1)| ≤ 5, j = 0, 1, 2;∣∣∣∣ 1

2n
‖Z̃βk−ỹ‖2 − 1

2n
‖Z̃βk−1−ỹ‖2

∣∣∣∣ ≤ 0.1,

or the number of iterations reaches the maximum number kmax = 4 (Our code is

available from https://github.com/SCUT-OptGroup/ErrorInvar). This stop-

ping criterion captures a solution βk with a sparsity that tends to be stable, and

a predictor error that has a small variation. In addition, from Remark 2(b), we

have a rough upper estimation for k as d0.5 ln(p)/ ln(1.4)e, which is equal to 11

for p = 1,000. As such, we set the maximum number of iterations to four. We

solve the dual of (3.2) using Algorithm 2 for εj = 10−8. For the NCL, we run the

code “doProjGrad,” solving the model in (1.4) with λn = 0 and R0 = ‖β∗‖1, for

the test examples. Because the Matlab code for CoCoLasso is not available, we

include our implementation in the Supplementary Material. It is time-consuming

for Algorithm 4 to use the stopping rule max{εkpinf , ε
k
dinf , ε

k
gap}≤ 10−5. Therefore,

https://github.com/SCUT-OptGroup/ErrorInvar
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we use the looser max{εkpinf , ε
k
dinf , 10−3εkgap} ≤ 10−4 to obtain an approximate

solution for (1.5), and then use Algorithm 2 to solve the associated problem

(1.6).

From the theoretical results in Section 4, the appropriate λ lies in an in-

terval associated with ‖ε̃‖∞. Such a λ is also suitable for the CoCoLasso, by

the proof of Theorem 1 and 2 in Datta and Zou (2017). As such, we set

λ = max(0.01, α∗/n‖Z̃Tỹ‖∞) and max(0.01, α∗/n‖ZT
y‖∞) for the CaZnRLS and

CoCoLasso, respectively, where the appropriate α∗ ∈ [0.06, 0.32] is chosen using

the five-fold corrected cross-validation proposed by Datta and Zou (2017).

Throughout this section, all test examples are generated randomly as the

triple (p, s, n), consisting of the dimension p of the predicted variable, number

of nonzero entries of β∗, and sample size n. Among others, n = bαs ln(p)c,
with α = 4 + 0.2(j−1), for j = 1, . . . , 11. We obtain observation y from the

model (1.1), where the entries of ε are independent and identically distributed

(i.i.d.) N (0, σ2). We describe how to generate the true β∗S∗ in the following. The

average relative RMSE (respectively, NC and NIC) is the average of the total

RMSE (respectively, NC and NIC) for 100 problems, generated randomly.

5.1. Random locations of the nonzero entries of β∗

In this section, we evaluate the performance of the CaZnRLS using randomly

generated examples, where β∗S∗ is an i.i.d. standard normal random vector, with

the s = b0.5√pc entries of S∗ chosen randomly from {1, . . . , p}. First, we test

whether the CaZnRLS is stable with respect to the variance σ of ε.

Example 1. We generate Z = X+ A with p = 500, where the rows of X are

i.i.d. standard normal random vectors with mean zero and covariance matrix

ΣX = I. The rows of A are i.i.d. N (0, I).

Figure 2 plots the average relative RMSE, NC, and NIC curves of the CaZn-

RLS, CoCoLasso, and NCL for Example 1 under different sample sizes, with

σ = 0.5 and 1.0. The subfigures in the first column show that the CaZnRLS

is comparable to, or even a little better than the CoCoLasso in terms of the

relative RMSE. The second column shows that the NC of the CaZnRLS is at

most two fewer than that of the CoCoLasso. Finally, the third column indicates

that the NIC of the CaZnRLS is much lower than that of the CoCoLasso. From

this, we conclude that the CaZnRLS maintains the advantages of the zero-norm

regularized LS estimator in the clean data setting. We also see that the CaZn-

RLS exhibits similar performance for σ = 0.5 and σ = 1, indicating that it is
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Figure 2. The relative RMSE, NC, and NIC of three solvers under different σ for Example
1.

insensitive to the variance σ of the regression error. Therefore, in the following,

we always take σ = 0.5.

Next, we evaluate the performance of the CaZnRLS for three classes of mea-

surement errors using test problems generated with p = 1,000.

Case 1. Additive errors

Example 2. We generate Z = X +A, where X is defined as in Example 1, and

the rows of A are i.i.d. N (0, τ2I), with τ = 0.5 or 1.0.

Example 3. We generate Z = X + A, where the entries of X are i.i.d. and

follow the uniform distribution on (0, 1), and A is defined as in Example 2.

Figure 3 plots the average relative RMSE, NC, and NIC curves of three

solvers under different sample sizes for Example 2. From this figure, whether X

is corrupted by high noise or low noise, the CaZnRLS is the best of the three

solvers in terms of the relative RMSE and NIC, though its NC is (at most one)

fewer than the NC of the CoCoLasso. The relative RMSE of the CaZnRLS

improves on that of the CoCoLasso by at least 20% for the low noise, and by

4% for the high noise when n ≥ b5s ln(p)c. We also see that the NCL performs

worst in terms of the relative RMSE, NC, and NIC for the high noise.

Figure 4 plots the average relative RMSE, NC, and NIC curves of three

solvers under different sample sizes for Example 3. We see that the three solvers

have much higher relative RMSEs than those in Example 2. Furthermore, the
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Figure 3. The relative RMSE, NC, and NIC of three solvers under different n for Example
2.
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Figure 4. The relative RMSE, NC, and NIC of three solvers under different n for Example
3.

NCL fails to give the desired estimator. The relative RMSE of the CaZnRLS

is a little (about 4%) higher than that of the CoCoLasso. After checking the

unbiased estimation Σ of the covariance matrix of the true covariates, we find

that the irrepresentable and minimum eigenvalue conditions in Datta and Zou

(2017) are not satisfied. Now, it is not clear whether our REC on C(β∗) holds.

This does not contradict the theoretical analysis in Section 4, because we know

only that our REC on C(β∗) holds w.h.p. when X is from the Gaussian ensemble.

The first subfigure indicates that it is very likely that our REC does not hold

when X is from the uniform distribution.

Case 2. Multiplicative errors
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Figure 5. The relative RMSE, NC, and NIC of three solvers under different n for Example
4.
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Figure 6. The relative RMSE, NC, and NIC of three solvers under different n for Example
5.

Example 4. We generate Z = X ◦M , where the rows of X are i.i.d. N (0, I),

and the entries of M are i.i.d. and follow the log-normal distribution; that is,

ln(Mij) are i.i.d and follow N(0, τ2I), with τ = 0.5 or 0.8.

Example 5. We generate Z in the same way as in Example 4, except that the

entries of X are i.i.d. and follow the Laplace distribution with mean zero and

variance one.

Figures 5 and 6 plot the average relative RMSE, NC, and NIC curves of three

solvers under different n for Examples 4 and 5, respectively. Comparing Figures

5 with 3, we see that the CaZnRLS and CoCoLasso perform similarly, as they

do for the additive errors. That is, the CaZnRLS outperforms the CoCoLasso in
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Figure 7. The relative RMSE, NC, and NIC of three solvers under different n for Example
6.

terms of the relative RMSE and NIC, whether for X corrupted by high noise or

low noise, although its NC is (at most two) fewer than the NC of the CoCoLasso.

This, together with Figure 6, leads us to conclude that the CaZnRLS performs

similarly when the rows of X follow the Gaussian and Laplace distributions.

Case 3. Missing data case

Example 6. We generate (Zij)n×p for Zij = Xij with probability 1 − τ and,

Zij = 0 with probability τ , for τ = 0.3 or 0.5, where the rows of X are i.i.d. and

follow the standard normal distribution N (0, I).

Example 7. We generate Z in the same way as in Example 6 except that Xij

are i.i.d. and follow the exponential distribution with mean one and variance

one.

Figures 7 and 8 plot the average relative RMSE, NC, and NIC curves of

three solvers under different n for Examples 6 and 7, respectively. Comparing

Figure 7 with Figure 3 or 5, we see that the three solvers perform similarly to the

cases of additive and multiplicative errors. In fact, similarly to Example 2, 4, and

5, Example 6 satisfies the irrepresentable and minimum eigenvalue conditions in

Datta and Zou (2017) when n ≥ b4.4s ln(p)c. Of course, our REC on C(β∗) holds

with a high probability for Examples 2 and 4, and Figures 6–8 indicate that our
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Figure 8. The relative RMSE, NC, and NIC of three solvers under different n for Example
7.

REC holds with a high probability when the rows of X follow the Laplace and

exponential distributions. Figure 8 shows that, when the entries of X follow the

exponential distribution, the CaZnRLS is superior to the other two solvers in

terms of the relative RMSE and NIC, and its RMSE improves on that of the

CoCoLasso by at least 11%. Now, the NCL fails to yield the desired estimator.

After checking, we find that Example 7 does not satisfy the irrepresentable and

minimum eigenvalue conditions in Datta and Zou (2017). Now, it is not clear

whether our REC holds for this example.

Motivated by one referee’s comments, we next provide an example that does

not satisfy the irrepresentable condition, but in which our REC holds w.h.p.

Example 8. We generate Z = X + A, with p = 250, where the entries of XS∗

are i.i.d. N (0, 1), the entries of X(S∗)c are i.i.d. N (0, 52), and the rows of A are

generated in the same way as in Example 2, with τ = 0.75.

Figure 9 plots the average relative RMSE, NC, and NIC curves of the CaZn-

RLS and CoCoLasso under different n for Example 8. Because the NCL fails

in this example, we do not include its results in Figure 9. We see that the rel-

ative RMSE of the CaZnRLS is lower than that of the CoCoLasso, and when

n ≥ b5s ln(p)c, the relative RMSE of the CaZnRLS improves on that of the Co-

CoLasso by at least 10%. The NC and NIC of the CoCoLasso are still higher than

those of the CaZnRLS, but the NC of the latter is at most one fewer than that

of the former. This example further confirms the theoretical results in Section 4.

5.2. Fixed locations of the nonzero entries of β∗

As one referee pointed out, it would be interesting to show the effects of the

correlation between the predictors on the performance of the three solvers. In

this section, we test whether this correlation affects the performance of the three



930 TAO, PAN AND BI

Figure 9. The relative RMSE, NC, and NIC of three solvers under different n for Example
8.

Table 1. The average relative RMSE, NC, and NIC of the three solvers

Additive errors Multiplicative errors Missing data

τ = 1 τ = 0.8 τ = 0.5

CaZnRLS CoCoLasso NCL CaZnRLS CoCoLasso NCL CaZnRLS CoCoLasso NCL

RMSE 0.410 0.492 0.535 0.370 0.524 0.600 0.447 0.521 0.528

NC 2.81 2.87 2.41 2.76 2.87 2.18 2.69 2.75 2.27

NIC 1.48 2.46 6.48 1.30 2.48 5.31 2.41 2.60 6.90

solvers using the examples generated by Datta and Zou (2017), in which the loca-

tions of the nonzero entries of β∗ are fixed. Specifically, β∗ = (3, 1.5, 0, 0, 2, 0, . . . ,

0), with the number of nonzero entries s = 3. The data X are generated us-

ing p = 250 and n = 100, such that the rows of X obey i.i.d. N (0,ΣX), for

(ΣX)ij = 0.5|i−j|. Table 1 summarizes the simulation results of the three solvers

for the additive errors, multiplicative errors, and missing data, where the error

matrices A and M for the additive and multiplicative errors, respectively, are

generated in the same way as in Example 2 and 4, respectively. The contami-

nated matrix Z in the missing data is generated in the same way as in Example

6.

From Table 1, the CaZnRLS yields the lowest relative RMSE and NIC for

the three classes of measurement errors, although its NC is a little lower than

that of the CoCoLasso. The NCL yields the highest relative RMSE and NIC.

Comparing the numerical results in Section 5.1, we find that the three solvers

perform similarly to those examples in which the locations of the nonzero entries

of β∗ are not fixed. That is, the correlation between the predictors has little

effect on their performance.

The numerical comparisons in the previous two subsections show that when

the true covariate matrix X follows the standard normal distribution (i.e., our
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Figure 10. The computing time for the three solvers in Example 2.

REC holds with a high probability), or other distributions, such as the Laplace

distribution in Example 5 and the exponential distribution in Example 7, the

CaZnRLS outperforms the CoCoLasso in terms of the relative RMSE (especially

for low noise cases) and NIC. However, its NC is a little lower than that of the

CoCoLasso. As shown in Figure 10, the CaZnRLS requires much less computing

time.

Supplementary Material

The online Supplementary Material includes the algorithms, auxiliary lem-

mas, and proofs of the lemmas, theorems, and corollaries.
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Bühlmann, P. and van de Geer, S. A. (2011). Statistics for High-Dimensional Data: Methods,

Theory and Applications. Springer, Heidelberg.

Chen, Y. and Caramanis, C. (2013). Noisy and missing data regression: Distribution-oblivious

support recovery. Journal of Machine Learning Research 28, 383–391.

Candès, E. and Tao, T. (2007). The Dantzig selector: Statistical estimation when p is much

larger than n. The Annals of Statistics 35, 2313–2351.

Datta, A. and Zou, H. (2017). CoCoLASSO for high-dimensional error-in-variables regression.

The Annals of Statistics 45, 2400–2426.

Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle

properties. Journal of American Statistics Association 96, 1348–1360.

Fan, J. and Lv, J. (2010). A selective overview of variable selection in high dimensional feature

space. Statistica Sinica 20, 101–148.

Loh, P. L. and Wainwright, M. J. (2012). High-dimensional regression with noisy and missing

data: Provable guarantees with nonconvexity. The Annals of Statistics 40, 1637–1664.

Loh, P. L. (2014). High-Dimensional Statistics with Systematically Corrupted Data. PhD Thesis.

University of California. http://escholarship.org/uc/item/8j49c5n4.

Li, X. D., Sun, D. F. and Toh, K.-C. (2018). A highly efficient semismooth Newton augmented

Lagrangian method for solving Lasso problems. SIAM Journal on Optimization 28, 433–

458.

Negahban, S., Ravikumar, P., Wainwright, M. J. and Yu, B. (2012). A unified framework

for high-dimensional analysis of M-estimators with decomposable regularizers. Statistical

Science 27, 538–557.

Purdom, E. and Holmes, S. P. (2005). Error distribution for gene expression data. Statistical

Applications in Genetics and Molecular Biology 4, Article 16.

Raskutti, G., Wainwright, M. J. and Yu, B. (2010). Restricted eigenvalue properties for corre-

lated Gaussian designs. Journal of Machine Learning Research 11, 2241–2259.

Raskutti, G., Wainwright, M. J. and Yu, B. (2011). Minimax rates of estimation for high-

dimensional linear regression over `1-balls. IEEE Transactions on Information Theory 57,

6976–6994.

Rockafellar, R. T. (1970). Convex Analysis. Princeton University Press, NJ.

Rosenbaum, M. and Tsybakov, A. B. (2010). Sparse recovery under matrix uncertainty. The

Annals of Statistics 38, 2620–2651.

Rosenbaum, M. and Tsybakov, A. B. (2013). Improved matrix uncertainty selector. Institute of

Mathematical Statistics Collections 9, 276–290.

Slijepcevic, S., Megerian, S. and Potkonjak, M. (2002). Location errors in wireless embedded

sensor networks: Sources, models, and effects on applications. Mobile Computing and

Communications Review 6, 67–78.
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