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ON THE BETA PRIME PRIOR

FOR SCALE PARAMETERS IN HIGH-DIMENSIONAL

BAYESIAN REGRESSION MODELS

Ray Bai and Malay Ghosh
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Abstract: We study a high-dimensional Bayesian linear regression model in which

the scale parameter follows a general beta prime distribution. Under the assump-

tion of sparsity, we show that an appropriate selection of the hyperparameters in

the beta prime prior leads to the (near) minimax posterior contraction rate when

p � n. For finite samples, we propose a data-adaptive method for estimating the

hyperparameters based on the marginal maximum likelihood (MML). This enables

our prior to adapt to both sparse and dense settings and, under our proposed empir-

ical Bayes procedure, the MML estimates are never at risk of collapsing to zero. We

derive an efficient Monte Carlo expectation-maximization (EM) and variational EM

algorithm for our model, which are available in the R package NormalBetaPrime.

Simulations and an analysis of a gene expression data set illustrate our model’s

self-adaptivity to varying levels of sparsity and signal strengths.

Key words and phrases: Beta prime density, empirical Bayes, high-dimensional

data, posterior contraction, scale mixtures of normal distributions.

1. Introduction

1.1. Background

Consider the classical linear regression model,

y = Xβ + ε, (1.1)

where y is an n-dimensional response vector, Xn×p = [X1, . . . ,Xp] is a fixed

regression matrix with n samples and p covariates, β = (β1, . . . , βp)
′ is a p-

dimensional vector of unknown regression coefficients, and ε ∼ N (0, σ2In), where

σ2 is the unknown variance. Throughout this paper, we assume that y and X

are centered at zero; as such, there is no intercept in our model.

High-dimensional settings in which p � n are receiving considerable atten-
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tion. This scenario is now routinely encountered in areas as diverse as medicine,

astronomy, and finance, among many others. In the Bayesian framework, nu-

merous methods have been proposed to handle the “large p, small n” scenario,

including spike-and-slab priors with point masses at zero (e.g., Martin, Mess

and Walker (2017), Castillo, Schmidt-Hieber and van der Vaart (2015), Yang,

Wainwright and Jordan (2016)), continuous spike-and-slab priors (e.g., Narisetty

and He (2014), Roc̆ková and George (2018)), nonlocal priors (e.g. Johnson and

Rossell (2012), Rossell and Telesca (2017), Shin, Bhattacharya and Johnson

(2018)), and scale-mixture shrinkage priors (e.g. van der Pas, Salomond and

Schmidt-Hieber (2016), Song and Liang (2017)). These priors have been shown

to have excellent empirical performance and possess strong theoretical properties,

including model selection consistency, (near) minimax posterior contraction, and

the Bernstein–von Mises theorems. In this study, we restrict our focus to the

scale-mixture shrinkage approach.

Under (1.1), scale-mixture shrinkage priors typically take the form,

βi|(σ2, ω2
i ) ∼ N (0, σ2ω2

i ), i = 1, . . . , p,

ω2
i ∼ π(ω2

i ), i = 1, . . . , p, (1.2)

σ2 ∼ µ(σ2),

where π and µ are densities on the positive reals. Priors of this form (1.2) have

been considered by many authors, including Park and Casella (2008), Carvalho,

Polson and Scott (2010), Griffin and Brown (2010), Bhattacharya et al. (2015),

Armagan, Clyde and Dunson (2011), and Armagan, Clyde and Dunson (2013).

Computationally, scale-mixture priors are very attractive. Discontinuous

spike-and-slab priors require searching over 2p models, whereas continuous spike-

and-slab priors and nonlocal priors almost always result in multimodal posteriors.

As a result, Markov chain Monte Carlo (MCMC) algorithms are prone to being

trapped at a local posterior mode and can suffer from slow convergence. Scale-

mixture shrinkage priors do not face these drawbacks because they are continuous

and typically give rise to unimodal posteriors, as long as the signal-to-noise ratio

is not too low. Additionally, there have been recent advances in fast sampling

from scale-mixture priors that scale linearly in time with p; see, for example,

Bhattacharya, Chakraborty and Mallick (2016) and Johndrow, Orenstein and

Bhattacharya (2020).

Scale-mixture priors have been studied primarily under sparsity assumptions.

If a sparse recovery of β is desired, the prior π(·) can be constructed so that it
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contains heavy mass around zero and heavy tails. This way, the posterior density

π(β|y) is heavily concentrated around 0 ∈ Rp, while the heavy tails prevent over-

shrinkage of the true active covariates. Although sparsity is often a reasonable

assumption, it is not always appropriate. Zou and Hastie (2005) demonstrated

an example where this assumption is violated: in microarray experiments with

highly correlated predictors, it is often desirable for all genes that lie in the same

biological pathway to be selected, even if the final model is not parsimonious.

Zou and Hastie (2005) introduced the elastic net to overcome the inability of the

LASSO (Tibshirani (1996)) to select more than n variables. Few works in the

Bayesian literature appear to have examined the appropriateness of scale-mixture

priors in dense settings. Ideally, we would like our priors on β in (1.1) to be able

to handle both sparse and non-sparse situations.

Another important issue to consider is the selection of hyperparameters in

our priors on β. Many authors, such as Narisetty and He (2014), Yang, Wain-

wright and Jordan (2016), and Martin, Mess and Walker (2017), have proposed

fixing hyperparameters a priori based on asymptotic arguments (such as con-

sistency or minimaxity), or by minimizing some criterion such as the Bayesian

information criterion (BIC) or deviance information criterion (DIC) (e.g., Song

and Liang (2017), Spiegelhalter et al. (2002)). In this study, we propose a differ-

ent approach based on a marginal maximum likelihood (MML) estimation, which

avoids the need for hyperparameter tuning by the user.

We consider a scale-mixture prior (1.2) with the beta prime density as the

scale parameters. We call our model the normal–beta prime (NBP) model. Our

main contributions are summarized as follows:

• We show that for a high-dimensional linear regression, the NBP model can

serve as both a sparse and a non-sparse prior. We prove that under sparsity

and appropriate regularity conditions, the NBP prior asymptotically obtains

the (near) minimax posterior contraction rate.

• In the absence of prior knowledge about sparsity or non-sparsity, we propose

an empirical Bayes variant of the NBP model that is self-adaptive and

learns the true sparsity level from the data. Under our procedure, the

hyperparameter estimates are never at risk of collapsing to zero. This is not

the case for many other choices of priors, where empirical Bayes estimates

can often result in degenerate priors.

• We derive efficient Monte Carlo expectation-maximization (EM) and vari-

ational EM algorithms, which we use to implement the self-adaptive NBP



846 BAI AND GHOSH

model. Our algorithms embed the EM algorithm used to estimate the hy-

perparameters into posterior simulation updates; as such, they do not need

to be tuned separately.

The rest of the paper is structured as follows. In Section 2, we introduce the

NBP prior for a Bayesian linear regression. In Section 3, we derive the posterior

contraction rates for the NBP when p � n. In Section 4, we introduce the

self-adaptive NBP model, which automatically learns the true sparsity pattern

from the data. In Section 5, we introduce the algorithms used to implement the

self-adaptive NBP. Section 6 provides simulation studies using our model, and

Section 7 applies the proposed model to a gene expression data set. Section 8

concludes the paper.

1.2. Notation

For two nonnegative sequences {an} and {bn}, we write an � bn to denote

0 < lim infn→∞ an/bn ≤ lim supn→∞ an/bn <∞. If limn→∞ an/bn = 0, we write

an = o(bn) or an ≺ bn. We use an . bn or an = O(bn) to denote that, for

sufficiently large n, there exists a constant C > 0, independent of n, such that

an ≤ Cbn. For a vector v ∈ Rp, we let ||v||0 :=
∑

i 1(vi 6= 0), ||v||1 :=
∑

i |vi|,
and ||v||2 :=

√∑
i v

2
i denote the `0, `1, and `2 norms, respectively. For a set A,

we denote its cardinality as |A|.

2. The NBP Model

The beta prime density is given by

π(ω2
i ) =

Γ(a+ b)

Γ(a)Γ(b)
(ω2
i )
a−1(1 + ω2

i )
−a−b. (2.1)

In particular, setting a = b = 0.5 in (2.1) yields the half-Cauchy prior C+(0, 1)

for ωi. For a multivariate normal means estimation, Polson and Scott (2012)

conducted numerical experiments for different choices of (a, b) in (2.1), and ar-

gued that the half-Cauchy prior should be a default prior for scale parameters.

Pérez, Pericchi and Ramı́rez (2017) generalized the beta prime density (2.1) to

the scaled beta2 family of scale priors by adding an additional scaling parameter

to (2.1). However, these studies did not consider linear regression models under

general design matrices.

Under the NBP model, we place a normal-scale mixture prior (1.2), with the

beta prime density (2.1) as the scale parameter, for each of the individual coeffi-
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Figure 1. The marginal densities of the NBP prior, π(β|σ2), with σ2 = 1. A small a
leads to a pole at zero. A large a removes the singularity.

cients in β, and place an inverse gamma prior IG(c, d) prior on σ2, where c, d > 0.

Letting β′(a, b) denote the beta prime distribution (2.1) with hyperparameters

a > 0 and b > 0, our full model is

βi|ω2
i , σ

2 ∼ N (0, σ2ω2
i ), i = 1, . . . , p,

ω2
i ∼ β′(a, b), i = 1, . . . , p, (2.2)

σ2 ∼ IG(c, d).

For model (2.2), we can choose very small values of c and d in order to make

the prior on σ2 relatively noninfluential and noninformative (e.g., a good default

choice is c = d = 10−5). The most critical hyperparameter choices governing the

performance of our model are those related to (a, b).

Proposition 1. Suppose that we endow (β, σ2) with the priors in (2.2). Then,

the marginal distribution, π(βi|σ2), for i = 1, . . . p, is unbounded, with a singu-

larity at zero for any 0 < a ≤ 1/2.

Proof. See Proposition 2.1 in Bai and Ghosh (2019).

Proposition 1 implies that in order to facilitate a sparse recovery of β, we

should set the hyperparameter a to a small value. This forces the NBP prior to

place most of its mass near zero and thus, the posterior π(β|y) is also concen-

trated near 0 ∈ Rp. Figure 1 plots the marginal density, π(β|σ2), for a single

β. When a = 0.1, the marginal density contains a singularity at zero, and the

probability mass is heavily concentrated near zero. However, when a = 2, the

marginal density does not contain a pole at zero, and the tails are significantly

heavier.

Figure 1 shows that the NBP model can serve as both a sparse and a non-
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sparse prior. If we have prior knowledge that the true model is sparse with a

few large signal values, we can fix a to be a small value. On the other hand, if

we know that the true model is dense, we can set a to a larger value, creating a

more diffuse prior. Then, there is less shrinkage of individual covariates in the

posterior distribution. In Section 4, we introduce the self-adaptive NBP model,

which automatically learns the true sparsity level from the data, thus avoiding

the need for tuning by the user.

3. Posterior Contraction Rates Under the NBP Prior

For our theoretical analysis, we allow p to diverge to infinity as the sample

size n grows. We write p as pn to emphasize its dependence on n. We work under

the frequentist assumption that there is a true data-generating model; that is,

yn = Xnβ0 + εn, (3.1)

where εn ∼ N (0, σ2
0In) and σ2

0 is a fixed noise parameter.

Let sn = ||β0||0 denote the size of the true model, and suppose that sn =

o(n/ log pn). Under (3.1) and appropriate regularity conditions, Raskutti, Wain-

wright and Yu (2011) showed that the minimax estimation rate for any point

estimator β̂ of β0 under an `2 error loss is
√
sn log(pn/sn)/n. Many frequentist

point estimators, such as the LASSO (Tibshirani (1996)), have been shown to

attain the near -minimax rate of
√
sn log pn/n under `2 error loss.

In the Bayesian paradigm, we are mainly concerned with the rate at which

the entire posterior distribution contracts around the true β0. Letting P0 denote

the probability measure underlying (3.1) and Π(β|yn) denote the posterior of β,

our aim is to find a positive sequence rn, such that

Π(β : ||β − β0|| ≥Mrn|yn)→ 0 a.s. P0 as n→∞,

for some constant M > 0. The frequentist minimax convergence rate is a useful

benchmark for the speed of contraction rn, because the posterior cannot contract

faster than the minimax rate (Ghosal, Ghosh and van der Vaart (2000)).

We are also interested in the posterior compressibility (Bhattacharya et al.

(2015)), which allows us to quantify how well the NBP posterior captures the

true sparsity level sn. Because the NBP prior is absolutely continuous, it assigns

zero mass to exactly sparse vectors. To approximate the model size for the

NBP model, we use the following generalized notion of sparsity (Bhattacharya

et al. (2015)). For some δ > 0, we define the generalized inclusion indicator and
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generalized dimensionality as

γδ(β) = I

(∣∣∣∣βσ
∣∣∣∣ > δ

)
and |γδ(β)| =

pn∑
i=1

γδ(βi), (3.2)

respectively. The generalized dimensionality counts the number of covariates in

β/σ that fall outside the interval [−δ,+δ]. With an appropriate choice of δ, the

prior is said to have the posterior compressibility property if the probability that

|γδ(β)| asymptotically exceeds a constant multiple of the true sparsity level sn
tends to zero as n→∞; that is,

Π(β : |γδ(β)| > Asn|yn)→ 0 a.s. P0 as n→∞,

for some constant A > 0.

3.1. Near-minimax posterior contraction under the NBP prior

We first introduce the following set of regularity conditions, taken from Song

and Liang (2017). Let sn denote the size of the true model, and let λmin(A)

denote the minimum eigenvalue of a symmetric matrix A.

(A1) All the covariates are uniformly bounded. For simplicity, we assume they

are all bounded by one.

(A2) pn � n.

(A3) Let ξ ⊂ {1, . . . , pn}, and let Xξ denote the submatrix of Xn that contains

the columns with indices in ξ. There exists some integer p̄ (depending on n

and pn) and fixed constant t0 such that s ≺ p̄ ≺ n and λmin(X>ξ Xξ) ≥ nt0,

for any model of size |ξ| ≤ p̄.

(A4) sn = o(n/ log pn).

(A5) maxj{|β0j/σ0|} ≤ γ3En for some γ3 ∈ (0, 1), and En is nondecreasing with

respect to n.

Assumption (A3) is a minimum restricted eigenvalue (RE) condition that ensures

that X>nXn is locally invertible over sparse sets. When pn � n, minimum RE

conditions are imposed to render β0 estimable. Assumption (A4) restricts the

growth of sn, and (A5) constrains the size of the signals in β0 to be O(En) for

some nondecreasing sequence En.

As discussed in Section 2, the hyperparameter a in the NBP prior is the

main factor affecting the amount of posterior mass around zero. Hence, it plays
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a crucial role in our theory. We rewrite a as an to emphasize its dependence on

n.

Theorem 1. Assume that Assumptions (A1)–(A5) hold, with log(En) = O(log pn)

for Assumption (A5). Let rn = M
√
sn log pn/n for some fixed constant M > 0,

and let kn � (
√
sn log pn/n)/pn. Suppose that we place the NBP prior (2.2) on

(β, σ2), with an . k2
np
−(1+u)
n , for some u > 0, and b ∈ (1,∞). Then, under

(3.1), the following hold:

Π (β : ||β − β0||2 ≥ c1σ0rn|yn)→ 0 a.s. P0 as n→∞, (3.3)

Π
(
β : ||β − β0||1 ≥ c1σ0

√
srn|yn

)
→ 0 a.s. P0 as n→∞, (3.4)

Π
(
β : ||Xβ −Xβ0||2 ≥ c0σ0

√
nrn|Yn

)
→ 0 a.s. P0 as n→∞, (3.5)

Π (β : |γkn(β)| > Asn|yn)→ 0 a.s. P0 as n→∞, (3.6)

where c0 > 0, c1 > 0, A > 0, and |γkn(β)| =
∑

i I(|βi/σ| > kn).

The proof of Theorem 1 is based on verifying a set of conditions proposed

by Song and Liang (2017), and can be found in the Supplementary Material.

In particular, (3.3)–(3.5) show that by fixing an . p
−(3+u)
n

√
sn log pn/n, for

u > 0, and b ∈ (1,∞) as the hyperparameters (an, b) in (2.2), the NBP model’s

posterior contraction rates under `2, `1, and prediction error loss are the familiar

near-optimal rates of
√
sn log pn/n, sn

√
log pn/n, and

√
sn log pn, respectively.

By setting δ = kn � (
√
sn log pn/n)/pn in our generalized inclusion indicator

(3.2), (3.6) also shows that the NBP possesses posterior compressibility, that is,

the probability that the generalized dimension size |γkn(β)| is a constant multiple

larger than sn asymptotically vanishes.

Our result relies on setting the hyperparameter an to a value dependent upon

the sparsity level sn. Previous theoretical studies on scale-mixture shrinkage

priors, such as van der Pas, Salomond and Schmidt-Hieber (2016) and Song and

Liang (2017), also adopt similar strategies in order for these priors to obtain

minimax posterior contraction. If we want to a priori fix the hyperparameters

(a, b) based on asymptotic arguments, we could first obtain an estimate of sn, ŝn,

and then set an = p
−(3+u)
n

√
ŝn log pn/n, for u > 0. For example, we could take

ŝn = ||β̂ALasso||0, where β̂ALasso is an adaptive LASSO solution (Zou (2006)) to

(1.1). Fixing an := p
−(3+u)
n

√
log n/n, for u > 0, would also satisfy the conditions

in our theorem (because log n ≺ sn log pn), thus removing the need to estimate

sn.
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4. Empirical Bayes Estimation of Hyperparameters

Although fixing (a, b) a priori as a = p−(3+u)
√

log n/n, for some u > 0, and

b ∈ (1,∞) leads to (near) minimax posterior contraction under conditions (A1)–

(A5), this does not allow the NBP prior to adapt to varying patterns of sparsity

or signal strengths. The minimum RE assumption (A3) is also computationally

infeasible to verify in practice. Dobriban and Fan (2016) showed that, given an

arbitrary design matrix X, verifying that the minimum RE condition holds is an

NP-hard problem. Finally, there is no practical way of verifying that the model

size condition (A4) (i.e. s = o(n/ log p)) holds, or that the true model is even

sparse.

For these reasons, we do not recommend fixing the hyperparameters in the

NBP model based on asymptotic arguments. Instead, we prefer to learn the

true sparsity pattern from the data. One way to do this is to use the MML.

The marginal likelihood, f(y) =
∫
f(y|β, σ2)π(β, σ2)d(β, σ2), is the probability

the model gives to the observed data with respect to the prior (or the “model

evidence”). Hence, choosing the prior hyperparameters to maximize f(y) gives

the maximum “model evidence,” and we can learn the most likely sparsity level

from the data. One potential shortcoming of the MML method is that it can lead

to degenerate priors. However, this problem is avoided under the NBP prior.

We propose an EM algorithm to obtain the MML estimates of (a, b). Hence-

forth, we refer to this empirical Bayes variant of the NBP model as the self-

adaptive NBP model. To construct the EM algorithm, we first note that the

beta prime density can be rewritten as the product of an independent gamma

density and an inverse gamma density. Thus, we may reparametrize (2.2) as

βi|(ω2
i , λ

2
i ξ

2
i ) ∼ N (0, σ2λ2

i ξ
2
i ), i = 1, . . . , p,

λ2
i ∼ G(a, 1), i = 1, . . . , p, (4.1)

ξ2
i ∼ IG(b, 1), i = 1, . . . , p,

σ2 ∼ IG(c, d).

The logarithm of the joint posterior under the reparametrized NBP prior (4.1)

is given by

−
(
n+ p

2

)
log(2π)−

(
n+ p

2
+ c+ 1

)
log(σ2)− 1

2σ2
||y −Xβ||22
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−
p∑
i=1

β2
i

2λ2
i ξ

2
i σ

2
− p log(Γ(a)) +

(
a− 3

2

) p∑
i=1

log(λ2
i )−

p∑
i=1

λ2
i − p log(Γ(b))

−
(
b+

3

2

) p∑
i=1

log(ξ2
i )−

p∑
i=1

1

ξ2
i

+ c log(d)− log(Γ(c))− d

σ2
. (4.2)

Thus, at the kth iteration of the EM algorithm, the conditional log-likelihood on

ν(k−1) = (a(k−1), b(k−1)) and y in the E-step is given by

Q(ν|ν(k−1)) =− p log(Γ(a)) + a

p∑
i=1

Ea(k−1)

[
log(λ2

i )|y
]
− p(log Γ(b))

− b
p∑
i=1

Eb(k−1)

[
log(ξ2

i )|y
]

+ terms not involving a or b. (4.3)

The M-step maximizes Q(ν|ν(k−1)) over ν = (a, b) to produce the next estimate

ν(k) = (a(k), b(k)). That is, we find (a, b), a ≥ 0, b ≥ 0, such that

∂Q
∂a = −pψ(a) +

p∑
i=1

Ea(k−1)

[
log(λ2

i )|y
]

= 0,

∂Q
∂b = −pψ(b)−

p∑
i=1

Eb(k−1)

[
log(ξ2

i )|y
]

= 0,

(4.4)

where ψ(x) = d/dx (Γ(x)) denotes the digamma function. We can solve for (a, b)

in (4.4) numerically using a fast root-finding algorithm, such as Newton’s method.

The summands, Ea(k−1)

[
log(λ2

i )|y
]

and Eb(k−1)

[
log(ξ2

i )|y
]
, for i = 1, . . . , p, in

(4.4) can be estimated from either the mean of M Gibbs samples based on ν(k−1),

for sufficiently large M > 0 (as in Casella (2001)), or the (k − 1)th iteration of

the mean field variational Bayes (MFVB) algorithm (as in Leday et al. (2017)).

Theorem 2. At every kth iteration of the EM algorithm for the self-adaptive

NBP model, there exists a unique solution ν(k) = (a(k), b(k)) that maximizes (4.3)

in the M-step. Moreover, a(k) > 0 and b(k) > 0 at the kth iteration.

The proof of Theorem 2 can be found in the Supplementary Material. Theo-

rem 2 ensures that we do not encounter the issue of the sparsity parameter a (or

the parameter b) collapsing to zero. Empirical Bayes estimates of zero are a ma-

jor concern for MML approaches used to estimate hyperparameters in Bayesian

regression models. For example, in g-priors,
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β|σ2 ∼ Np
(
γ, gσ2(X>X)−1

)
,

George and Foster (2000) showed that the MML estimate of the parameter g

could equal zero. In global-local shrinkage priors of the form,

βi|(λ2
i , σ

2) ∼ N (0, σ2τ2λ2
i ), λ

2
i ∼ π(λ2

i ), i = 1, . . . , p,

the variance rescaling parameter τ is also at risk of being estimated as zero under

an MML (Polson and Scott (2010), Tiao and Tan (1965), Carvalho, Polson and

Scott (2009), Datta and Ghosh (2013)). Finally, Scott and Berger (2010) proved

that if we endow (1.1) with a binomial model selection prior,

π(Mγ |θ) = θkγ (1− θ)p−kγ ,

where Mγ is the model indexed by γ ⊂ {1, . . . , p} and kγ represents the number

of variables included in the model, the MML estimate of the mixing proportion θ

could be estimated as either zero or one, leading to a degenerate prior. Clearly,

the MML approach to tuning hyperparameters is not without problems, because

it can lead to degenerate priors in high-dimensional regression. However, using

the NBP prior, we can incorporate a data-adaptive procedure that estimates the

hyperparameters, while avoiding this potential pitfall.

In the aforementioned examples, placing priors on g, τ , or θ with strictly

positive support or performing cross-validation or a restricted MML estimation

over a range of strictly positive values can help avoid a collapse to zero. The

hierarchical Bayes approach does not quite address the issue of misspecification

of hyperparameters, because these still need to be specified in the additional

priors. If we use cross-validation, the “optimal” choice or spacing of grid points

is also not clear-cut.

In a general regression setting, it is unclear what the endpoints should be

if we use a truncated range of positive values to estimate the hyperparameters

from a restricted MML. Recently, for a sparse normal means estimation (i.e.,

X = I, p = n, and σ2 = 1 in (1.1)), van der Pas, Szabó and van der Vaart

(2017) advocated using the restricted MML estimator for the sparsity parame-

ter τ in the range [1/n, 1] for the horseshoe prior (Carvalho, Polson and Scott

(2010)). This choice allows the horseshoe model to obtain the (near) minimax

posterior contraction rate for multivariate normal means. Although this choice

gives theoretical guarantees for a normal means estimation, it does not seem to
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be justified for a high-dimensional regression (1.1), when p � n. Theorem 3.1

in Song and Liang (2017) shows that the minimax optimal choice for τ in the

horseshoe under model (1.1) satisfies τ . (
√
s log p/n)p−(1+(u+1)/(r−1)), where

u > 0, r > 1, and s = ||β0||0. It would thus appear that any τ ∈ [1/n, 1] leads

to a suboptimal contraction rate in a sparse high-dimensional regression. In our

numerical experiments in Section 6, we demonstrate that for the horseshoe prior,

endowing τ with a C+(0, 1) prior fares better than the truncation suggested by

van der Pas, Szabó and van der Vaart (2017) under the general linear regression

model (1.1).

The self-adaptive NBP prior circumvents these issues by obtaining the MML

estimates of (a, b) over the range [0,∞) × [0,∞), while ensuring that (a, b) are

never estimated as zero. Thus, the self-adaptive NBP’s automatic selection of

hyperparameters provides a practical alternative to the hierarchical Bayes or

cross-validation approaches used to tune hyperparameters.

4.1. Illustration of the self-adaptive NBP model

To illustrate the self-adaptive NBP prior’s ability to adapt to differing spar-

sity patterns, we consider two settings: one sparse (n = 60, p = 100, 10

nonzero covariates), and one dense (n = 60, p = 100, and 60 nonzero covari-

ates), where the active covariates are drawn from U ([−2,−0.5] ∪ [0.5, 2]). Our

examples come from experiments 1 and 4, respectively, in Section 6. We ini-

tialize (a(0), b(0)) = (0.01, 0.01) and implement the Monte Carlo EM algorithm

(described in Section 5.1) to obtain MML estimates of the parameters (a, b),

which we denote as (â, b̂).

In Figure 2, we plot the iterations from two runs of the EM algorithm. The

algorithm terminates at iteration k when the square of the `2 distance between

(a(k−1), b(k−1)) and (a(k), b(k)) falls below 10−6. We then set (â, b̂) = (a(k), b(k)).

The top panel in Figure 2 plots the paths for a and b from the sparse model, and

the bottom panel plots the paths for a and b from the dense model. The final

MML estimates of a are â = 0.184 for the sparse model, and â = 1.104 for the

dense model.

Figure 3 shows the NBP’s marginal density, π(β|â, b̂, σ2), for a single coeffi-

cient β using the MML estimates of (a, b) obtained in the sparse and the dense

settings. The left panel depicts the marginal density under the sparse setting (10

active predictors, (â, b̂) = (0.184, 1.124)). Here, the marginal density for β con-

tains a singularity at zero, and most of the probability mass is around zero. We

thus recover a sparse model for π(β|y) under these MML hyperparameters. The
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Figure 2. Paths of the Monte Carlo EM algorithm for obtaining (â, b̂). The dashed line
indicates the final MML estimate at convergence.

right panel depicts the marginal density in the dense setting (60 active predic-

tors, (â, b̂) = (1.104, 1.645)). Here, the marginal density for β does not contain

a pole, and more mass is placed in neighborhoods away from zero. Thus, we

recover a more dense model. Figures 2 and 3 illustrate that, in both cases, the

EM algorithm was able to correctly learn the true sparsity (or non-sparsity) from

the data, and then incorporate this into its estimates of the hyperparameters.

As noted by a referee, a mixture prior of beta prime densities as the prior

for ω2
i in (1.2) could also accommodate dense situations. While we recognize this

fact, we believe that it is better to use the MML. First, putting a mixture of beta

primes as the prior on ω2
i , for i = 1, . . . , p, would make the posteriors for βi, for i =

1, . . . , p, multimodal. The quality of our posterior approximation algorithms in

Section 5 depends on the assumption that the approximate posterior is unimodal

(especially if we use a variational density to approximate π(β|y)). Second, if we

used a mixture prior, we would then need to tune both the mixture weight(s) and
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Figure 3. The marginal densities of the NBP prior, π(β|a, b, σ2), with different MML
estimates of (a, b).

the hyperparameters in each mixture component. As we demonstrate in Sections

4.1 and 6, using a single beta prime prior as the scale with MML estimates for

the hyperparameters performs quite well.

5. Computation for the NBP Model

5.1. Posterior approximation

Using the reparametrization (4.1), the NBP model admits fully closed-form

conditional densities for the parameters (β, λ2
1, . . . , λ

2
p, ξ

2
1 , . . . , ξ

2
p , σ

2). Thus, the

NBP model can be implemented using either an MCMC or a or mean field

variational Bayes (MFVB) approach. At the same time, the EM algorithm of

Section 4 is easily embedded into either the MCMC or the MFVB updates,

thus negating the need to estimate the hyperparameters (a, b) separately. The

complete algorithms are given in the Supplementary Material.

The Monte Carlo EM and variational EM algorithms for the self-adaptive

NBP model are both implemented in the R package, NormalBetaPrime. In our

experience, although the Monte Carlo EM algorithm tends to be slower than

the variational EM algorithm, it is also more accurate. The Monte Carlo EM

algorithm is also relatively insensitive to the initialization of the parameters,

unlike the variational EM algorithm. This is not a problem in our model, but

an inherent shortcoming of MFVB; because the MFVB optimizes a highly non-

convex objective function over O(p2) parameters, it can become “trapped” at a

suboptimal local solution. In future research, we will attempt to derive more

efficient sampling algorithms and more accurate variational algorithms for the

NBP model.
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5.2. Variable selection

Because the NBP model assigns zero mass to exactly sparse vectors, selection

must be performed using some post hoc method. We propose using the “decou-

pled shrinkage and selection” (DSS) method proposed by Hahn and Carvalho

(2015). Letting β̂ denote the posterior mean of β, the DSS method selects the

variables by finding the “nearest” exactly sparse vector to β̂. The DSS method

solves the optimization,

γ̂ = argmin
γ

n−1||Xβ̂ −Xγ||+ λ||γ||0, (5.1)

and chooses the nonzero entries in γ̂ as the active set. Because (5.1) is an NP-

hard combinatorial problem, Hahn and Carvalho (2015) propose using a local

linear approximation; that is, solving the following surrogate optimization:

γ̂ = argmin
γ

n−1||Xβ̂ −Xγ||+ λ

p∑
i=1

|γi|
|β̂i|

, (5.2)

where β̂i is a components in the posterior mean β̂, and λ is chosen using 10-

fold cross-validation to minimize the mean squared error (MSE). Solving this

optimization is not computationally expensive, because (5.2) is essentially an

adaptive LASSO regression (Zou (2006)) with weights 1/|β̂i|, for i = 1, . . . , p,

and very efficient gradient descent algorithms to find LASSO solutions; see, for

example, Friedman, Hastie and Tibshirani (2010). We use the R package glmnet,

developed by Friedman, Hastie and Tibshirani (2010), to solve (5.2). We select

the nonzero entries in γ̂ from (5.2) as the active set of covariates. The DSS

method is available for the NBP prior in the R package, NormalBetaPrime.

6. Simulation Studies

For our simulation studies, we implement the self-adaptive NBP model (2.2)

for model (1.1) using the Monte Carlo EM algorithm described in Section 5. We

set c = d = 10−5 in the IG(c, d) prior on σ2. We run the Gibbs samplers for 15,000

iterations, discarding the first 10,000 as burn-in. We use the posterior median

estimator β̂ as our point estimator, and deploy the DSS strategy described in

Section 5.2 for the variable selection.

6.1. Adaptivity to different sparsity levels

In the first simulation study, we evaluate the self-adaptive NBP model’s

performance under a variety of sparsity levels. Under model (1.1), we generate
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a design matrix X, where the n rows are independently drawn from Np(0,Γ),

Γ = (Γij)p×p, with Γij = 0.5|i−j|, and then centered and scaled. The nonzero

predictors in β0 are generated from U ([−2,−0.5] ∪ [0.5, 2]). We fix σ2 = 2 and

set n = 60 and p = 100, with varying levels of sparsity:

• Experiment 1: 10 active predictors (sparse model)

• Experiment 2: 20 active predictors (fairly sparse model)

• Experiment 3: 40 active predictors (fairly dense model)

• Experiment 4: 60 active predictors (dense model)

We compare the results of self-adaptive NBP prior with those of several

other popular Bayesian and frequentist methods. For the competing Bayesian

methods, we use the horseshoe (Carvalho, Polson and Scott (2010)) and the

spike-and-slab LASSO (SSL) (Roc̆ková and George (2018)). For the horseshoe,

we consider two ways of tuning the global shrinkage parameter τ : 1) endowing

τ with a standard half-Cauchy prior C+(0, 1); and 2) estimating τ from a MML

on the interval [1/n, 1], as advocated by van der Pas, Szabó and van der Vaart

(2017). These methods are denoted as HS-HC and HS-REML, respectively. For

the SSL model, the beta prior on the mixture weight θ controls the sparsity of

the model. We consider two scenarios: 1) endowing θ with a B(1, p) prior, which

induces strong sparsity; and 2) endowing θ with a B(1, 1) prior, which does not

strongly favor sparsity. Finally, we consider the following frequentist methods:

the minimax concave penalty (MCP) (Zhang (2010)), smoothly clipped absolute

deviation (SCAD) (Fan and Li (2001)), and elastic net (ENet) (Zou and Hastie

(2005)). These methods are available in the R packages: horseshoe1, SSLASSO,

picasso, and glmnet.

For each method, we compute the MSE, false discovery rate (FDR), false

negative rate (FNR), and overall misclassification probability (MP), averaged

across 100 replications:

MSE =
||β̂ − β0||22

p
,FDR =

FP

TP + FP
,

FNR =
FN

TN + FN
, MP =

FP + FN

p
,

where FP, TP, FN, and TN denote the number of false positives, true positives,

false negatives, and true negatives, respectively.

1 For the HS-REML method, we slightly modified the code in the horseshoe function in the horseshoe

R package.
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Tables 1 and 2 in the Supplementary Material show our results averaged

across 100 replications for the NBP, HS-HC, HS-REML, SSL-B(1, p), SSL-B(1, 1),

MCP, SCAD, and ENet methods. Across all sparsity settings, the NBP has

the lowest MSE, showing that it performs consistently well for estimation. In

Experiments 2, 3, and 4, the NBP model also achieves either the lowest or the

second lowest misclassification probability, demonstrating that it is robust for

variable selection.

The performance of the HS, SSL, MCP, and SCAD methods worsens as

the true model becomes more dense. The truncation of τ ∈ [1/n, 1] in the HS-

REML model lowers the FDR for the horseshoe. However, this also tends to

overshrink large signals, leading to a greater estimation error than that of the

HS-HC model. For the SSL model, endowing the sparsity parameter θ with a

B(1, 1) prior improves the model’s performance under dense settings, but not

enough to be competitive with the NBP. Finally, the ENet method performs

worst under sparsity, but its performance improves as the model becomes more

dense. However, the NBP still outperforms the ENet in terms of estimation.

6.2. Additional numerical experiments with large p

In the following experiments, the design matrix X is generated in the same

way as that in Section 6.1. The active predictors are randomly selected and fixed

at a certain level, and the remaining covariates are set to zero.

• Experiment 5: ultra-sparse model with a few large signals (n = 100, p = 500,

eight active predictors set equal to five)

• Experiment 6: dense model with many small signals (n = 200, p = 400, 200

active predictors set equal to 0.6)

We implement Experiments 5 and 6 for the self-adaptive NBP, HS-HC, HS-

REML, SSL-B(1, p), SSL-B(1, 1), MCP, SCAD, and ENet models. Table 3 in

the Supplementary Material shows our results, averaged across 100 replications.

In Experiment 5, the NBP, HS, and SSL models all significantly outperform

their frequentist competitors, with the HS and SSL performing slightly better

than NBP. In Experiment 5, the NBP model gives zero for FDR, FNR, and

MP, showing that the self-adaptive NBP is resilient against overfitting if the true

model is very sparse. In Experiment 6, the NBP model gives the lowest MSE

and the lowest MP of all the methods, demonstrating that the self-adaptive NBP

model can effectively adapt to non-sparse situations.

It seems as though the horseshoe, SSL, MCP, and SCAD are well-suited to
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sparse estimations but cannot accommodate non-sparse situations as well. The

elastic net seems to be a suboptimal estimator under sparsity (e.g., in Experi-

ment 5, its misclassification rate was 0.104, much higher than those of the other

methods), but it improves significantly in dense settings.

In contrast, the self-adaptive NBP prior is the most robust estimator across

all sparsity patterns. If the true model is sparse, the sparsity parameter a is

estimated to be small, and hence, place heavier mass around zero. However, if

the true model is dense, the sparsity parameter a will be large, in which case,

the singularity at zero disappears and the prior becomes more diffuse.

7. Analysis of a Gene Expression Data Set

We analyze a real data set from a study on Bardet–Biedl syndrome (BBS)

(Scheetz et al. (2006)), an autosomal recessive disorder that leads to progressive

vision loss, and is caused by a mutation in the TRIM32 gene. This data set,

available in the R package flare, contains n = 120 samples, with TRIM32 as

the response variable and the expression levels of p = 200 other genes as the

covariates.

To determine TRIM32’s association with these other genes, we implement the

self-adaptive NBP, HS-HC, HS-REML, SSL-B(1, p), SSL-B(1, 1), MCP, SCAD,

and ENet models on this data set after centering and scaling X and y. To assess

these methods’ predictive performance, we perform five-fold cross-validation, us-

ing 80 percent of the data as our training set to obtain an estimate of β, β̂train.

We then use β̂train to compute the MSE of the residuals on the remaining 20

percent of the data. We repeat this five times, using different training and test

sets each time, and take the average MSE as our mean squared prediction error

(MSPE).

Table 4 in the Supplementary Material shows the results of our analysis. The

NBP and ENet models exhibit the best predictive performance of the methods,

with 31 genes and 26 genes, respectively, selected as significantly associated with

TRIM32. The ENet model has a slightly lower MSPE, but its performance is

very similar to that of the NBP model. The HS, SSL, MCP, and SCAD methods

result in parsimonious models, with six or fewer genes selected, but their average

prediction errors are all higher.

Figure 4 plots the posterior medians and 95 percent posterior credible inter-

vals for the 31 genes selected by the NBP model as significant. Figure 4 shows

that the self-adaptive NBP prior is able to detect small gene expression values
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Figure 4. Point estimates and credible intervals for the 31 genes selected as significantly
associated with TRIM32 by the self-adaptive NBP.

that are very close to zero. On this particular data set, the slightly denser mod-

els exhibited better prediction performance than that of the most parsimonious

models, suggesting that small signals may exist in our data.

8. Conclusion

We have introduced the NBP model for high-dimensional Bayesian linear

regressions. We proved that the NBP prior obtains the (near) minimax posterior

contraction rate in the asymptotic regime where p� n, and that the underlying

model is sparse. To make our prior self-adaptive in finite samples, we introduced

an empirical Bayes approach for estimating the NBP’s hyperparameters based on

the MML. This approach affords the NBP a great deal of flexibility and adaptivity

to different levels of sparsity and signal strengths, while avoiding degeneracy.

In future work, we will extend the NBP prior to more complex and more

flexible models, such as a nonparametric regression or a semiparametric regression

with an unknown error distribution. The NBP prior can also be employed for

other statistical problems, including density estimation and classification. Owing

to its flexibility, we anticipate that the NBP prior will retain its strong empirical

and theoretical properties in these other settings.
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Additionally, we would like to provide further theoretical support for the

MML approach described in Section 4. Although there are philosophical reasons

for using an MML (i.e., it maximizes the “model evidence”), it would be inter-

esting to determine whether the MML estimates of (a, b) also lead to a (near)

minimax posterior contraction under the conditions described in Section 3.1.

Currently, the theoretical justifications for the MML under model (1.1) are con-

fined to the simple normal means model (X = I, n = p) and the scenario where

p ≤ n and the MML estimate can be explicitly calculated in closed form (as is the

case for the hyperparameter g in g-priors); see, for example, van der Pas, Szabó

and van der Vaart (2017), Johnstone and Silverman (2004), George and Foster

(2000), and Sparks, Khare and Ghosh (2015). Recently, Rousseau and Szabó

(2017) extended the class of models for which the posterior contraction rate can

be obtained under MML estimates of a hyperparameter in the prior. However,

their framework does not seem to be applicable to a high-dimensional linear re-

gression model (1.1), which is complicated by the presence of a high-dimensional

design matrix X. We hope to address the theoretical aspects of the self-adaptive

NBP model with MML-estimated hyperparameters in future work.

Supplementary Material

The Online Supplementary Material provides the results of the simulation

and the data analysis in Sections 6 and 7, respectively, proofs for Theorems 1 and

2, and technical details for the Monte Carlo EM and variational EM algorithms

from Section 5 used to implement the self-adaptive NBP model.
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