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SUFFICIENT DIMENSION REDUCTION

FOR FEASIBLE AND ROBUST

ESTIMATION OF AVERAGE CAUSAL EFFECT

Trinetri Ghosh1, Yanyuan Ma1 and Xavier de Luna2

1Pennsylvania State University and 2Ume̊a University

Abstract: To estimate the treatment effect in an observational study, we use a semi-

parametric locally efficient dimension-reduction approach to assess the treatment

assignment mechanisms and average responses in both the treated and the non-

treated groups. We then integrate our results using imputation, inverse probability

weighting, and doubly robust augmentation estimators. Doubly robust estimators

are locally efficient, and imputation estimators are super-efficient when the response

models are correct. To take advantage of both procedures, we introduce a shrink-

age estimator that combines the two. The proposed estimators retains the double

robustness property, while improving on the variance when the response model

is correct. We demonstrate the performance of these estimators using simulated

experiments and a real data set on the effect of maternal smoking on baby birth

weight.

Key words and phrases: Average treatment effect, double robust estimator, effi-

ciency, inverse probability weighting, shrinkage estimator.

1. Introduction

Dimension reduction is a major methodological issue in observational studies

that estimate the causal effect of a non-randomized treatment. This is largely be-

cause of the increased availability of health and administrative registers, giving

access to high-dimensional pre-treatment information sets that can help iden-

tifying causal effects of interest. To better estimate the average causal effect

of a treatment under possibly high-dimensional covariates, while maintaining

flexibility in terms of the model assumptions, we propose and study new es-

timators. These estimators are based on semiparametric sufficient dimension-

reduction methods, together with various well-known missing-data approaches,

including imputation, inverse probability weighting (IPW) and doubly robust

augmentation estimators. To take advantage of the various estimators’ proper-
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ties, we propose a new shrinkage-based procedure to estimate the average causal

effect. The resulting estimator is consistent in estimating the causal effect, even

when the treatment assignment model or one of the outcome models in the treated

and untreated groups is misspecified. Furthermore, its asymptotic variance is no

larger than that of any single approach.

Dimension reduction for feasible nonparametric and semiparametric causal

inference has recently been formalized, with most contributions focusing on

covariate selection, that is, methods that determine which covariates are con-

founders that need to be controlled for; see, for example, Gruber and van der

Laan (2010); de Luna, Waernbaum and Richardson (2011); Farrell (2015), and

Shortreed and Ertefaie (2017). Dimension reduction must consider nuisance con-

ditional models, that is, the probability of treatment given the covariates (propen-

sity score), and models for the two potential responses (i.e., responses under two

possible levels of a binary treatment) given the covariates (de Luna, Waernbaum

and Richardson (2011)). Sufficient dimension reduction (Li (1991); Li and Duan

(1991); Cook (1998); Xia et al. (2002); Xia (2007); Ma and Zhu (2012)) consti-

tutes an alternative to covariate selection, and has the advantage that, in addition

to considering covariates in isolation as confounders, it can accommodate linear

combinations of the whole covariate set. Such methods have recently attracted

attention in semiparametric causal inference. For example, Liu, Ma and Wang

(2018) considered sufficient dimension reduction when estimating the propensity

score alone, and Luo, Zhu and Ghosh (2017) considered that when estimating

the response models alone. In contrast, Ma et al. (2019) considered classical

sufficient dimension in all nuisance models.

In this study, we take a general approach to estimating the average causal

effect. We first use efficient semiparametric sufficient dimension-reduction meth-

ods (Ma and Zhu (2013, 2014)) in all nuisance models to explain the potential

responses and the treatment assignment. Then, we combine these into classical

imputation (IMP) and IPW estimators. Although our semiparametric sufficient

dimension-reduction model is very flexible, nuisance models may still be misspec-

ified. Thus, a doubly robust estimator (augmented inverse probability weighting

(AIPW) estimator) is also considered, which allows for the misspecification of

one of the nuisance models. The AIPW estimator is locally efficient, in the sense

that it reaches efficiency at the true nuisance models. The imputation estimator

is super-efficient, in the sense that if the true response model is known, then this

knowledge yields a lower asymptotic efficiency bound than that which the AIPW

estimator may reach (Tan (2007)). We therefore propose a novel estimator that
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shrinks the imputation and AIPW estimators toward each other. The shrinkage

estimator is also doubly robust. Furthermore, it is asymptotically equivalent to

the AIPW estimator if the response model is misspecified; if all nuisance models

are correctly specified, it shrinks toward the imputation estimator, which is more

efficient than the AIPW in this case. In general, the variability of the estimator

is no larger than that of the AIPW or IMP.

The remainder of the paper is organized as follows. Section 2 introduces the

semiparametric sufficient dimension-reduction structures and their estimations

for the nuisance models. Section 3 proposes estimators of average causal effect

using the models and estimations pressented in Section 2. This section also

provides the asymptotic properties of the imputation, IPW, AIPW, and shrinkage

estimators. Section 4 examines the finite-sample performance of the estimators

for different designs, including well-specified and misspecified situations. A real

data example on the effect of smoking on birth weight illustrates the use of the

methods proposed in Section 5. Section 6 concludes the paper.

2. Model and Dimension Reduction

Let YT be the treatment response under treatment T , where T = 1 if the

treatment of interest is applied, and T = 0 if some alternative treatment (e.g.,

a placebo or no treatment) is applied. Let X ∈ Rp be the set of pre-treatment

covariates. We observe a random sample {Xi, Ti, Y1iTi + Y0i(1 − Ti)}, for i =

1, . . . , n. In particular, Yti is observed only for unit i, such that Ti = t, and is

therefore called a potential response. Our goal is to estimate the average causal

effect of the treatment, here D = E(Y1 − Y0). We assume 0 < pr(T = 1 |
Y0, Y1,X) = pr(T = 1 | X) < 1 throughout. This assumption is often called

strong ignorability of the treatment assignment, and yields the parameter D

under the above sampling scheme (e.g., Rosenbaum and Rubin (1983)).

We now describe the flexible dimension-reduction structures that we combine

into different semiparametric estimators for D. First, the treatment assignment

probability, also called the propensity score in the literature, can be modeled as

pr(T = 1 | X = x) =
eη(α

Tx)

{1 + eη(αTx)}
, (2.1)

where η(·) is an unknown function that is smooth and bounded from both above

and below to guarantee that the propensity is strictly in (0, 1), and α is an

unknown index vector or matrix with dimension p× dα, for p > dα.
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Further, we model Y1 given X = x using the flexible dimension-reduction

model

Y1 = m1(β
T
1 x) + ε1, (2.2)

where E(ε1 | x) = 0. Similarly, we model Y0 given X = x as

Y0 = m0(β
T
0 x) + ε0, (2.3)

where E(ε0 | x) = 0. Here, m1(·) and m0(·) are unknown functions, and β1 and

β0 are unknown index vectors or matrices with dimensions p × d1 and p × d0,
respectively, for p > d1 and p > d0, respectively.

The models (2.1), (2.2), and (2.3) separately describe the probability of

receiving treatment and the mean potential responses, respectively, without im-

posing a relation between these models. Indeed, unless prior knowledge suggests

otherwise, the three processes are irrelevant to each other and, hence, should be

modeled separately. Conceptually, when the structural dimension (dα, d1 or d0) is

p, dimension-reduction modeling includes nonparametric modeling; hence, using

the dimension-reduction models in (2.1), (2.2), and (2.3) provides large flexibility

in practice. Using each of the three models, we can estimate the corresponding

unknown parameters and unknown functions separately using a random sample.

We can then combine these estimators in various ways to estimate the treatment

effect D = E(Y1 − Y0).

2.1. Estimation of response models

We first consider (2.2). Because of the ignorability of the treatment assign-

ment assumption, the treated subsample forms a random sample from which to

fit model (2.2). Thus, we can directly implement the semiparametric method of

Ma and Zhu (2014) for the estimations of β1 and m1(·) based on the subset of the

data with Ti = 1. For identifiability purposes, we adopt the parameterization of

Ma and Zhu (2014), fix the upper d1×d1 submatrix of β1 as the identity matrix,

and leave the lower (p− d1)× d1 submatrix arbitrary. Thus, the locally efficient

estimator of β1 is obtained by solving

n∑
i=1

ti{y1i − m̂1(β
T
1 xi,β1)}m̂′1(βT

1 xi,β1)⊗ {xLi − Ê(XLi | βT
1 xi)} = 0, (2.4)

where the Nadaraya–Watson kernel estimator is used to obtain Ê(XL | βT
1 x), and

the local linear estimator is used to obtain m̂1(β
T
1 x,β1) and m̂′1(β

T
1 x,β1), where
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XL represents the subvector of X formed by the lower p−d1 components. Specifi-

cally, in (2.4), Ê(XL | βT
1 x) =

∑n
i=1 xLiKh(βT

1 xi−βT
1 x)/

∑n
i=1Kh(βT

1 xi−βT
1 x)

and m̂1(β
T
1 x,β1) = c0, m̂

′
1(β

T
1 x,β1) = c1 are the solution to

min
c0,c1

n∑
i=1

ti{y1i − c0 − cT1 (βT
1 xi − βT

1 x)}2Kh(βT
1 xi − βT

1 x). (2.5)

Many kernel functions can be used, for example, the Epanechnikov kernel (1 −
u2)3/4I(|u| ≤ 1), the quartic kernel (1 − u2)215/16I(|u| ≤ 1), and so on. It is

easy to verify that the minimizer of (2.5) has the explicit form

m̂1(β
T
1 x,β1) = A11 −AT

13(A14 −A13A
T
13)
−1(A12 −A13A11), (2.6)

m̂′1(β
T
1 x,β1) = (A14 −A13A

T
13)
−1(A12 −A13A11),

where A11 =
∑n

i=1 tiy1iKh(βT
1 xi − βT

1 x)/
∑n

i=1 tiKh(βT
1 xi − βT

1 x),A12 =
∑n

i=1

tiy1i(β
T
1 xi−βT

1 x)Kh(βT
1 xi−βT

1 x)/
∑n

i=1 tiKh(βT
1 xi−βT

1 x),A13 =
∑n

i=1 ti(β
T
1 xi

−βT
1 x)Kh(βT

1 xi−βT
1 x)/

∑n
i=1 tiKh(βT

1 xi−βT
1 x),A14 =

∑n
i=1 ti(β

T
1 xi−βT

1 x)⊗2

Kh(βT
1 xi−βT

1 x)/
∑n

i=1 tiKh(βT
1 xi−βT

1 x), and a⊗2 = aaT throughout the text.

Note that the above description is a typical profiling estimation procedure for β1.

Once we obtain β̂1, we then estimate m1 using m̂1(β̂
T
1 x, β̂1) given in (2.6). Note

that the incorporation of the kernel-based nonparametric estimation enables us

to perform the dimension reduction without assuming the frequently adopted

linearity or constant variance conditions.

Theorem 1 of Ma and Zhu (2014) established the property of the above

estimator. Specifically, the estimator β̂1 satisfies

√
n1vecl(β̂1 − β1) = −B1n

−1/2
1

n∑
i=1

ti{y1i −m1(β
T
1 xi)}vec[m′1(β

T
1 xi)

⊗{xLi − E(XLi | βT
1 xi)}] + op(1), (2.7)

where n1 =
∑n

i=1 Ti, vecl(β1) is the vector formed by the lower (p − d1) × d1
submatrix of β1, and

B1 (2.8)

≡
{
E

(
∂vec[Ti{Y1i −m1(β

T
1 Xi)}m′1(βT

1 Xi)⊗ {XLi − E(XLi | βT
1 Xi)}]

∂vecl(β1)T

)}−1
.

We can estimate β0 and m0 in a similar manner using the subset of the data

set corresponding to Ti = 0. Then, implementing Theorem 1 from Ma and Zhu
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(2014), the asymptotic behavior of the efficient estimator β̂0 is given by

√
n0vecl(β̂0 − β0) = −B0n

−1/2
0

n∑
i=1

(1− ti){y0i −m0(β
T
0 xi)}vec[m′0(β

T
0 xi)

⊗{xLi − E(XLi | βT
0 xi)}] + op(1), (2.9)

where n0 = n− n1, and

B0 (2.10)

≡
{
E

(
∂vec[(1−Ti){Y0i−m0(β

T
0 Xi)}m′0(βT

0 Xi)⊗{XLi−E(XLi |βT
0 Xi)}]

∂vecl(β0)T

)}−1
.

When the mean function models are correct, the meanings of β1, β0, m1 and

m0 are easy to understand. When the models are incorrect, as we allow in the

following, we can understand β1, β0, m1, and m0 as quantities that satisfy

E[T{Y1 −m1(β
T
1 X,β1)}m′1(βT

1 X,β1)⊗ {XL − E(XL | βT
1 X)}] = 0,

E[(1− T ){Y0 −m0(β
T
0 X,β0)}m′0(βT

0 X,β0)⊗ {XL − E(XL | βT
0 X)}] = 0,

where m1(β
T
1 x) = E(Y1 | βT

1 x) 6= E(Y1 | x), and m0(β
T
0 x) = E(Y0 | βT

0 x) 6=
E(Y0 | x).

2.2. Estimation of propensity score model

The estimation of α, η has been studied previously (Liu, Ma and Wang

(2018); Ma and Zhu (2013)). Hence, we provide the five-step algorithm here, for

completeness and clarity.

Step 1. Form the Nadaraya–Watson estimator of E(Xi | αTxi) to obtain Ê(Xi |
αTxi).

Step 2. Solve
∑n

i=1 vecl({xi−Ê(Xi | αTxi)}[ti−1+1/{1+exp(1T
dα

Txi)}]1T
d ) =

0 to obtain a consistent initial estimator α̃.

Step 3. Obtain the local linear estimators of η(z,α) and its first derivative

η′(z,α) by solving

n∑
i=1

[
ti−

exp{b0+bT
1 (αTxi−z)}

1 + exp{b0+bT
1 (αTxi−z)}

]
Kh(αTxi−z)=0, (2.11)

n∑
i=1

[
ti−

exp{b0+bT
1 (αTxi−z)}

1+exp{b0+bT
1 (αTxi−z)}

]
(αTxi−z)Kh(αTxi−z)=0,



DIMENSION REDUCTION IN AVERAGE CAUSAL EFFECT ESTIMATION 827

for b0,b1 at z = αTx1, . . . ,α
Txn. Write the resulting estimator as η̂(αTxi,

α) and η̂′(αTxi,α).

Step 4. Insert η̂(·,α), η̂′(·,α) and Ê(·) into the estimating equation

n∑
i=1

{xLi − Ê(XLi | αTxi)}
[
ti −

exp{η̂(αTxi)}
1 + exp{η̂(αTxi)}

]
η̂′(αTxi)

T = 0,

and solve to obtain the efficient estimator α̂, using the starting value α̃.

Step 5. Repeat Step 3 at α = α̂ to obtain the final estimator of η(·).

We then have p̂r(T = 1 | X = x) = exp{η̂(α̂Tx)}/[1 + exp{η̂(α̂Tx)}], which

we use in the final calculation of the average causal effect. Let us write

pi =
exp{η(αTxi)}

1 + exp{η(αTxi)}
, Pi =

exp{η(αTXi)}
1 + exp{η(αTXi)}

, p̂i =
exp{η̂(α̂Txi)}

[1 + exp{η̂(α̂Txi)}]
,

and define

B ≡

{
E

(
∂vec

[
{XLi − E(XLi | αTXi)}(Ti − Pi)η′(αTXi)

T
]

∂vecl(α)T

)}−1
. (2.12)

Then, using Lemma 2 from Liu, Ma and Wang (2018), we have

√
nvecl(α̂−α) (2.13)

= −Bn−1/2
n∑
i=1

(ti − pi)vec[{xLi − E(XLi | αTxi)}η′(αTxi)
T] + op(1).

When the propensity score model is correct, the meaning of α and η is clear.

When the model is incorrect, as we shall allow in the following, α and η are

quantities that satisfy

E

[
{XL − E(XL | αTX)}

[
T − exp{η(αTX)}

1 + exp{η(αTX)}

]
η′(αTX)T

]
= 0,

where [1 + exp{η(−αTx)}]−1 = E(T | αTx) 6= E(T | x).

3. Average Causal Effect: Estimators and Properties

We are now ready to propose several estimators for estimating the aver-

age treatment effect, based on the semiparametric modeling and estimators de-
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scribed in Section 2. These propositions all take advantage of existing methods

in missing-at-random problems, including imputation and weighting; hence, they

inherit the properties expected. We also introduce a novel shrinkage estimator

that combines imputation and weighting, and has an optimal property. Let

yi = tiy1i + (1− ti)y0i be the observed response value.

3.1. Imputation estimators

First, we estimate the average causal effect using an imputation approach,

as proposed in the context of missing data (Rubin (1978)). The imputation

approach is semiparametric in spirit, similar to the nonparametric imputation

(Wang, Garcia and Ma (2012)). Specifically, we construct Ê(Y1) = n−1
∑n

i=1

{
tiyi + (1− ti)m̂1(β̂

T
1 xi)

}
, Ê(Y0) = n−1

∑n
i=1

{
(1− ti)yi + tim̂0(β̂

T
0 xi)

}
, and then

form the imputation estimator IMP as D̂IMP = Ê(Y1)− Ê(Y0).

We further consider an alternative imputation estimator that uses the model-

predicted values, while ignoring the observed responses, even when they are avail-

able. Specifically, we still form D̂IMP2 ≡ Ê(Y1)− Ê(Y0) for the treatment effect,

using Ê(Y1) = n−1
∑n

i=1 m̂1(β̂
T
1 xi) and Ê(Y0) = n−1

∑n
i=1 m̂0(β̂

T
0 xi) to obtain

the imputation estimator IMP2. The latter is sometimes called the outcome

regression estimator; see, for example, Tan (2007).

3.2. (Augmented) IPW estimators

Robins, Rotnitzky and Zhao (1994) proposed a class of semiparametric esti-

mators based on IPW estimating equations, borrowing from Horvitz and Thomp-

son (1952) in the survey sampling literature. Later, Liu, Ma and Wang (2018)

implemented an IPW estimator that uses semiparametric modeling to assess the

propensity score function. Following this procedure, the IPW estimator first con-

structs Ê(Y1) = n−1
∑n

i=1 tiyi/p̂i and Ê(Y0) = n−1
∑n

i=1(1 − ti)yi/(1 − p̂i), and

then estimates the average causal effect D̂IPW ≡ Ê(Y1)− Ê(Y0).

If at least one of the mean function models, m1(·) and m0(·), is incorrectly

specified, the IMP and IMP2 estimators will be inconsistent. Similarly, if η(·)
is incorrectly specified, the IPW will not be consistent. As a result, we use the

more flexible semiparametric dimension-reduction models instead of fully para-

metric models. This reduces, but does not completely eliminate, the chance of

model misspecification. Thus, we still need protection against either misspecifi-

cation using the doubly robust estimator (Robins, Rotnitzky and Zhao (1994)).

This leads to the AIPW estimator, which is consistent when either the mean

models are correctly specified or the propensity score model is correctly speci-
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fied. The estimate of the average causal effect is still D̂AIPW ≡ Ê(Y1) − Ê(Y0),

where now Ê(Y1) = n−1
∑n

i=1

{
tiyi/p̂i + (1− ti/p̂i) m̂1(β̂

T
1 xi)

}
and Ê(Y0) =

n−1
∑n

i=1

[
(1− ti)yi/(1− p̂i)+{1−(1− ti)/(1− p̂i)}m̂0(β̂

T
0 xi)

]
. An improved ver-

sion of the AIPW estimator was proposed in Robins, Rotnitzky and Zhao (1995),

providing extra protection against deteriorated estimation variability. Based

on this idea, Tan (2006) later developed a nonparametric likelihood estimator.

Adopting this idea in the treatment effect estimation framework, we construct

the estimator Ê(Y1) = n−1
∑n

i=1

{
tiyi/p̂i + γ̂1 (1− ti/p̂i) m̂1(β̂

T
1 xi)

}
, Ê(Y0) =

n−1
∑n

i=1

[
(1 − ti)yi/(1 − p̂i) + γ̂0{1 − (1 − ti)/(1 − p̂i)}m̂0(β̂

T
0 xi)

]
, and es-

timate the average causal effect by D̂IAIPW ≡ Ê(Y1) − Ê(Y0). Here, γ̂1 =

cov
{
m̂1(β̂

T
1 xi)ti/p̂i, (1− ti/p̂i) m̂1(β̂

T
1 xi)

}−1
cov{tiyi/p̂i, (1 − ti/p̂i)m̂1(β̂

T
1 xi)}

and γ̂0 = cov
[
(1− ti)/(1− p̂i)m̂0(β̂

T
0 xi), {1− (1− ti)/(1− p̂i)} m̂0(β̂

T
0 xi)

]−1
cov
[

(1− ti)yi/(1− p̂i), {1− (1− ti)/(1− p̂i)} m̂0(β̂
T
0 xi)

]
.

3.3. The shrinkage estimator

The ideas of imputation and weighting are quite different, and each has its

own advantages and drawbacks. For example, when the treatment mean models

m1(β
T
1 X) and m0(β

T
0 x) are correct, regardless of whether or not the propensity

score model is correct, the IMP and AIPW are both consistent; however, it is

unclear which estimator is more efficient. When the treatment mean models

m1(β
T
1 X) and m0(β

T
0 x) are not both correct, the AIPW is still consistent as

long as the propensity score model is correct, but the IMP methods will be

inconsistent. Of course, if both the mean models and the propensity models are

incorrect, then neither method will provide a consistent estimation. In practice,

we typically do not know which scenario we are in, making it difficult to determie

which method to employ. Therefore, in order to take advantage of both methods,

we use the idea of a shrinkage estimator (Mukherjee and Chatterjee (2008)) to

construct a weighted average between the IMP and the AIPW.

The general observation is that if the IMP is consistent, then the AIPW will

be consistent as well, but not vice versa. However, it is not generally clear which

estimator is more efficient. We construct the following shrinkage estimator: Let√
n(D̂AIPW −DAIPW)→ N(0, vAIPW) in distribution and

√
n(D̂IMP −DIMP)→

N(0, vIMP) in distribution, and let cov{
√
n(D̂AIPW−DAIPW),

√
n(D̂IMP−DIMP)}

→ vAI. We form w = {(D̂AIPW − D̂IMP)2 + (vIMP − vAI)/
√
n}/{(D̂AIPW −

D̂IMP)2 + (vIMP + vAIPW − 2vAI)/
√
n}, and form the shrinkage estimator D̂ =

wD̂AIPW + (1−w)D̂IMP, where we replace vAIPW, vIMP, and vAI with their esti-

mated versions. This construction has the property that when the IMP is incon-
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sistent and the AIPW is consistent, w → 1, and we essentially obtain the AIPW;

that is, the shrinkage estimator is doubly robust. On the other hand, when both

estimators are consistent, w → w0, where w0 ≡ (vIMP−vAI)/(vIMP+vAIPW−2vAI)

in probability, which yields the optimal combination of the two estimators in

terms of the final estimation variability. Of course, when both estimators are

inconsistent, the weighted average is still inconsistent.

To construct the shrinkage estimator described above, we derive the asymp-

totic variances and covariances of the estimators in Section 3.4.

Note that one may also choose to shrink the IMP2 and AIPW, or either

of the two versions of the imputation estimator and the improved AIPW, in a

similar fashion.

3.4. Asymptotic properties of the treatment effect estimators

In this section, we discuss the asymptotic properties of the proposed average

treatment effect estimators. These properties are developed under the following

conditions:

C1. The univariate mth-order kernel function K(·) is symmetric and Lipschitz

continuous on its support [−1, 1], which satisfies
∫
K(u)du = 1,

∫
uiK(u)du

= 0, for 1 ≤ i ≤ m− 1, 0 6=
∫
umK(u)du <∞.

C2. The bandwidths satisfy nh2m → 0 and nh2d →∞.

C3. The probability density functions of βT
1 x, βT

0 x and αTx, denoted by

f(βTx), f(αTx), and f(αTx), respectively, with an abuse of notation, are

bounded away from zero and ∞.

Let the true average causal effect be D = E(Y1 − Y0). Then, we have the

following results.

Theorem 1. Under the regularity conditions C1–C3, when n → ∞, the IMP

estimator D̂IMP satisfies
√
n(D̂IMP −D)

d→ N(0, vIMP), where, using the results

for Ê(Y1) and Ê(Y0) in the Supplementary Material S3,

vIMP = E
({

m1(β
T
1 xi)−m0(β

T
0 xi)− E(Y1) + E(Y0)

}
+E[1 + exp{−η(αTXi)} | βT

1 xi]ti{y1i −m1(β
T
1 xi)}

−E[1 + exp{η(αTXi)} | βT
0 xi](1− ti){y0i −m0(β

T
0 xi)}

−E[(1− Pi)vec{XLim
′
1(β

T
1 Xi)

T}]TB1ti{y1i −m1(β
T
1 xi)}

×vec[m′1(β
T
1 xi)⊗ {xLi − E(XLi | βT

1 xi)}]
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+E[Pivec{XLim
′
0(β

T
0 Xi)

T}]TB0(1− ti){y0i −m0(β
T
0 xi)}

×vec[m′0(β
T
0 xi)⊗ {xLi − E(XLi | βT

0 xi)}]
)2
, (3.1)

where B1 and B0 are defined in (2.8) and (2.10), respectively.

In the variance expression vIMP, the first term captures the treatment effect

estimation variability due to the different covariates. The second term is re-

lated to the variability of the outcome, given the covariates in the treated group,

weighted by the treatment probability. The third term resembles the second

term, but applies to the non-treated group. The fourth term compensates for

the second term to fully capture the variability due to the imputation and di-

mension reduction in the treated group. Similarly, the fifth term compensates

for the third term in the non-treated group.

Theorem 2. Under the regularity conditions C1–C3, when n → ∞, the IMP2

estimator D̂IMP2 satisfies
√
n(D̂IMP2−D)

d→ N(0, vIMP2), where using the results

for Ê(Y1) and Ê(Y0) from the Supplementary Material S4, vIMP2 = E
(
{m1(β

T
1 xi)

−m0(β
T
0 xi)−E(Y1)+E(Y0)}+E(P−1i | βT

1 xi)ti{y1i−m1(β
T
1 xi)}−E{(1−Pi)−1 |

βT
0 xi}(1−ti){y0i−m0(β

T
0 xi)}−E[vec{XLim

′
1(β

T
1 Xi)

T}]TB1ti{y1i−m1(β
T
1 xi)}×

vec[m′1(β
T
1 xi)⊗{xLi−E(XLi | βT

1 xi)}]+E[vec{XLim
′
0(β

T
0 Xi)

T}]TB0(1−ti){y0i−
m0(β

T
0 xi)} × vec[m′0(β

T
0 xi) ⊗ {xLi − E(XLi | βT

0 xi)}]
)2
, where B1 and B0 are

defined in (2.8) and (2.10), respectively.

Note that the first three terms in vIMP2 are identical to those in vIMP. The

only difference between vIMP2 and vIMP is in the Pi component in the last two

terms, reflecting the difference due to the imputation method.

Theorem 3. Under the regularity conditions C1–C3, when n → ∞, the IPW

estimator D̂IPW satisfies
√
n(D̂IPW−D)

d→ N(0, vIPW), where using the results for

Ê(Y1) and Ê(Y0) in the Supplementary Material S1, vIPW = E({tiy1i/pi−E(Y1)

− (1− ti)y0i/(1−pi)+E(Y0)}+(1− ti/pi)E
{
m1(β

T
1 Xi) | αTxi

}
− (ti−pi)/(1−

pi)E
{
m0(β

T
0 Xi) | αTxi

}
+ (E[{m1i(β

T
1 Xi)(1 − Pi) + m0i(β

T
0 Xi)Pi}vec{XLiη

′

(αTXi)
T}])TB × (ti − pi)vec[{xLi − E(XLi | αTxi)}η′(αTxi)

T])2, where B is

defined in (2.12).

The variance vIPW has a very different form to those from the imputation

methods, partially reflecting the difference in how the methods handle the missing

outcomes. The first three terms of vIPW can be rewritten as E
{
m1(β

T
1 Xi) | αTxi

}
−E

{
m0(β

T
0 Xi) | αTxi

}
−E(Y1) +E(Y0), tipi

−1[y1i− E
{
m1(β

T
1 Xi) | αTxi

} ]
,

and −(1− ti)(1− pi)−1
[
y0i−E{m0(β

T
0 Xi) | αTxi}

]
. We can view the first term
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as the variability in the treatment effect due to the covariates, and the second

term as the variability in the inversely weighted individual treatment effect in

the treatment group. The third term is similar to the second term, but applies to

the non-treated group. The last term compensates for the combined variability

due to the way in whch the IPW handles the missing outcomes.

Theorem 4. Under the regularity conditions C1–C3, when n → ∞, the AIPW

estimator D̂AIPW satisfies
√
n(D̂AIPW−D)

d→ N(0, vAIPW), where vAIPW, derived

in the Supplementary Material S2, is

vAIPW = E
(
{y1i −m1(β

T
1 xi)}ti[1 + exp{−η(αTxi)}] + {m1(β

T
1 xi)− E(Y1)}

−C1B1ti{y1i −m1(β
T
1 xi)}vec[m′1(β

T
1 xi)⊗ {xLi − E(XLi | βT

1 xi)}]
+D1B(ti − pi)vec[{xLi − E(XLi | αTxi)}η′(αTxi)

T]

−{y0i −m0(β
T
0 xi)}(1− ti)[1 + exp{η(αTxi)}]

−{m0(β
T
0 xi)− E(Y0)}+ C0B0(1− ti)

×{y0i −m0(β
T
0 xi)}vec[m′0(β

T
0 xi)⊗ {xLi − E(XLi | βT

0 xi)}]
+D0B(ti − pi)vec[{xLi − E(XLi | αTxi)}η′(αTxi)

T]
)2
, (3.2)

where C1 ≡ E
[
{∂m1(β

T
1 Xi)/∂vecl(β1)

T}(1− Ti/Pi)
]
, D1 ≡ E

[
{Y1i−m1(β

T
1 Xi

)}Ti exp{−η(αTXi)}vec{XLiη
′(αTXi)

T}
]
, C0 ≡ E

[
{∂m0(β

T
0 Xi)/∂vecl(β0)

T}
{1−(1−Ti)/(1−Pi)}

]
, and D0 ≡ E

[
{Y0i−m0(β

T
0 Xi)}(1−Ti) exp{η(αTXi)}vec{

XLiη
′(αTXi)

T}
]
. Note that C1, C0, D1, and D0 will degenerate to zero if the

relevant model is correct. Then,

vAIPW = E

[
{y1i −m1(β

T
1 xi)}ti

pi
+m1(β

T
1 xi)− E(Y1) (3.3)

−{y0i −m0(β
T
0 xi)}(1− ti)

1− pi
−m0(β

T
0 xi) + E(Y0)

]2
.

The expression for vAIPW is closely realated to that for vIMP2. In fact, the

third and seventh terms in vAIPW are refinements of the fourth and fifth terms,

respectively, in vIMP2. Furthermore, we have an additional fourth and eighth

term in vAIPW to provide extra protection against a treatment assignment model

misspecification. When the outcome models and assignment models are correct,

as seen from (3.3), the variability contains only two parts, that due to the co-

variate variability, and that due to the incomplete outcomes and random errors.

Noting that (1− ti/pi)m1(β
T
1 xi) and {1− (1− ti)/(1− pi)}m0(β

T
0 xi) have

mean zero, it is straightforward to show that the improved AIPW estimator has
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the same asymptotic expansion as the AIPW estimator when all three models are

correct. Thus, despite their different finite-sample performance, the expansion

in (3.3) also applies to the improved AIPW estimator. Therefore, the following

result holds.

Theorem 5. Under the regularity conditions C1–C3, and assuming all models

are correct, then when n → ∞, the improved AIPW estimator D̂IAIPW satisfies√
n(D̂IAIPW −D)

d→ N(0, vAIPW), where vAIPW is given by (3.3).

Finally, when both estimators D̂IMP and D̂AIPW are consistent, we have√
n(D̂ −D) =

√
nw0(D̂AIPW −D) +

√
n(1− w0)(D̂IMP −D) + op(1), as noted

above.

Theorem 6. Under the regularity conditions C1–C3, when D̂AIPW and D̂IMP

are consistent and n → ∞, the shrinkage estimator D̂ satisfies
√
n(D̂ − D)

d→
N(0, vshrinkage), where vshrinkage = w2

0vAIPW+(1−w0)
2vIMP+2w0(1−w0)vAI, with

vAI = E{({y1i − m1(β
T
1 xi)}ti/pi + m1(β

T
1 xi) − E(Y1) − {y0i − m0(β

T
0 xi)}(1 −

ti)/(1 − pi) − m0(β
T
0 xi) + E(Y0)) × (tiy1i − (1 − ti)y0i + (1 − ti)m1(β

T
1 xi) −

tim0(β
T
0 xi) − E(Y1) + E(Y0) + E[exp{−η(αTXi)} | βT

1 xi]ti{y1i −m1(β
T
1 xi)} −

E[exp{η(αTXi)} | βT
0 xi](1 − ti){y0i − m0(β

T
0 xi)} − E[(1 − Pi)vec{XLim

′
1(β

T
1

Xi)
T}]TB1ti{y1i −m1(β

T
1 xi)} × vec[m′1(β

T
1 xi)⊗ {xLi −E(XLi | βT

1 xi)}] +E[Pi
vec{XLim

′
0(β

T
0 Xi)

T}]TB0(1 − ti){y0i − m0(β
T
0 xi)} × vec[m′0(β

T
0 xi) ⊗ {xLi −

E(XLi | βT
0 xi)}])}.

The vAI term is a simple result of the correlation between the AIPW esti-

mator and IMP estimator. When D̂IMP is not consistent owing to a misspeci-

fication of at least one of the treatment mean models m1(·) and m0(·), w → 1;

thus,
√
n(D̂ −D)

d→
√
n(D̂AIPW −D).

4. Simulation Study

We conducted a simulation study to compare the performance of the esti-

mators discussed in Section 3. We used a sample size n = 1,000 and covariate

dimension p = 6 with 1,000 replicates.

Specifically, the covariate vector X = (X1, . . . , X6)
T is generated as fol-

lows. First, X1 and X2 are generated independently from N(1, 1) and N(0, 1),

respectively. We let X4 = 0.015X1 + u1, where u1 is uniformly distributed in

(−0.5, 0.5). Then, X3 and X5 are generated independently from the Bernoulli

distributions with success probabilities 0.5+0.05X2 and 0.4+0.2X4, respectively.

We let X6 = 0.04X2 + 0.15X3 + 0.05X4 + u2, where u2 ∼ N(0, 1). We set β1 =
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(1,−1, 1,−2,−1.5, 0.5)T, β0 = (1, 1, 0, 0, 0, 0)T, and α = (−0.27, 0.2,−0.15, 0.05,

0.15,−0.1)T.

4.1. Study 1

Our first study examines the estimators when the response and the propen-

sity score models are correctly specified. We generated the response variables

based on Y1 = 0.7(βT
1 x)2 + sin(βT

1 x) + ε1 and Y0 = βT
0 x + ε0. Here, ε1 and ε0

are normally distributed with mean zero and variances 0.5 and 0.2, respectively.

We let η(αTx) = αTx. Thus, the treatment indicator T is generated from the

logistic model pr(T = 1|X) = exp(αTx)/{1 + exp(αTx)}.
We implemented the six estimators described in Section 3. In the nonpara-

metric estimations of η(·) and the mean functions m1(·) and m0(·), we used a

local linear regression with an Epanechnikov kernel and a bandwidth chosen as

cσn−1/3, where σ2 is the estimated variance of the corresponding index, and c

is a constant ranging from 0.1 to 3.5. As is frequently observed in semipara-

metric estimations, the final estimator is relatively insensitive to the bandwidth

used for the nuisance estimation, because this bandwidth has no first-order effect

as long as it satisfies Condition C2. When needed, we extrapolated the local

linear fit at the boundary of the support. For comparison, we also computed∑n
i=1 TiY1i/(

∑n
i=1 Ti)−

∑n
i=1(1−Ti)Y0i/(n−

∑n
i=1 Ti) as a naive sample average

estimator.

From the results summarized in Figure 1 and Table 1, we can see that the

naive estimator is obviously severely biased. As expected, all six methods yield a

small bias, and the IMP2 and IPW provide the smallest and largest, respectively,

variability and mean squared error (MSE). The estimator that shrinks the IMP

and the AIPW improves slightly on the latter with respect to the variability and

MSE. The estimated standard deviation (based on the asymptotics) matches

fairly well with the empirical variability of the estimators.

4.2. Study 2

The second study compares the performance of the estimators when the

mean functions m1(·) and m0(·) are misspecified. We kept the data-generation

procedure identical to that of Study 1, except that we generated the response

variables based on the models Y1 = (βT
1 x)2 + sin(βT

1 x) + (γT
1 x)2 + ε1 and Y0 =

βT
0 x+sin(γT

0 x)+ε0, where γ1 = (0, 1, 1, 0, 0, 0)T and γ0 = (0, 1,−0.75, 0,−1, 0)T.

Here, ε1 and ε0 are normally distributed with mean zero and variance 0.5 and

0.2, respectively. Note that the mean functions no longer have the single index
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Figure 1. Box plot of Naive, IMP, IMP2, IPW, AIPW, IAIPW, and Shrinkage estimators
for Study 1. The horizontal line is the true average causal effect (ACE), here 2.030.

Table 1. Results for Study 1 based on 1,000 replicates; Full gives the average causal effect
and corresponding standard deviation (sd) based on all potential responses, including
the counterfactual ones not observable in practice; Naive provides the same statistics,
but based only on the observed potential responses. For the different estimators, we
also compute the mean of the estimated sd (based on asymptotics, row ŝd), empirical
coverage obtained with confidence intervals based on these estimated sd (95% cvg), and
mean squared error (mse).

Estimators Full Naive IMP IMP2 IPW AIPW IAIPW Shrinkage
mean 2.030 1.569 2.007 2.032 2.029 2.037 2.036 2.036

sd 0.118 0.172 0.123 0.122 0.168 0.131 0.130 0.131

ŝd - - 0.134 0.130 0.176 0.146 0.146 0.138
95% cvg - - 96.1% 96% 96.5% 97.8% 98% 97.5%

mse - - 0.016 0.015 0.028 0.017 0.017 0.017

forms.

When we implemented the six estimators described in Section 3, we still

treated m1(·) and m0(·) as functions of βT
1 x and βT

0 x, respectively; hence, the

mean function models we used are misspecified. The same nonparametric esti-

mation procedures as in Study 1 were used to estimate η(·), m1(·), and m0(·).
From the results in Figure 2 and Table 2, we can see that the IMP and IMP2

estimators are biased, along with the severely biased naive estimator, whereas

the IPW, AIPW, IAIPW and shrinkage methods yield a small bias, even when

m1(·) and m0(·) are misspecified, as expected. Although the IMP is biased, it

provides the smallest variability, whereas the IPW yields the largest variability.

Here, the shrinkage estimator that combines the IMP and AIPW is able to down-

weight the IMP and inherit the lower bias and variability from the AIPW. Again

estimated standard deviations match the empirical variability of the estimators.
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Figure 2. Box plot of Naive, IMP, IMP2, IPW, AIPW, IAIPW, and Shrinkage estimators
for Study 2, where m1(·) and m0(·) are misspecified. The horizontal line is the true ACE,
here 3.990.

Table 2. Results for Study 2, where m1(·) and m0(·) are misspecified; see also the caption
of Table 1.

Estimators Full Naive IMP IMP2 IPW AIPW IAIPW Shrinkage
mean 3.990 3.647 3.761 3.716 4.005 3.984 3.979 3.983

sd 0.137 0.202 0.187 0.189 0.207 0.188 0.189 0.188

ŝd - - 0.188 0.193 0.211 0.195 0.195 0.194
95% cvg - - 79% 74.7% 95.8% 94.9% 94.9% 94.9%

mse - - 0.087 0.111 0.043 0.035 0.036 0.035

4.3. Study 3

In the third simulation study, we compare the performance of the estimators

when the model of the propensity score function is misspecified. We followed

the same data-generation procedure as that in Section 4.1, but the true function

inside the logistic link here is η(αTx) = (αTx) + 0.45/{(γTx)2 + 0.5}, where

γ = (1, 0.5,−1, 0.5,−1,−3)T. Thus, η(·) is no longer a function of a single index.

The treatment indicator T is generated from

pr(T = 1|X) =
exp[(αTx) + 0.45/{(γTx)2 + 0.5}]

1 + exp[(αTx) + 0.45/{(γTx)2 + 0.5}]
.

In implementing the six estimators described in Section 3, we considered η(·)
as a function of αTx only; thus, the propensity score used to estimate the aver-

age causal effect is misspecified. Furthermore, we used the same nonparametric

approach as in Studies 1 and 2 to estimate m1(·), m0(·), and η(·).
The results in Figure 3 and Table 3 show that, except for the naive estimator,
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Figure 3. Box plot of Naive, IMP, IMP2, IPW, AIPW, IAIPW, and Shrinkage estimators
for Study 3, where η(·) is misspecified. The horizontal line is the true ACE, here 2.033.

Table 3. Results for Study 3, where η(·) is misspecified; see also the caption of Table 1.

Estimators Full Naive IMP IMP2 IPW AIPW IAIPW Shrinkage
mean 2.033 1.596 2.009 2.029 2.030 2.037 2.037 2.036

sd 0.122 0.165 0.123 0.122 0.169 0.135 0.134 0.135

ŝd - - 0.140 0.140 0.160 0.143 0.143 0.142
95% cvg - - 96.8% 97.6% 94.5% 96% 96.3% 95.8%

mse - - 0.016 0.015 0.029 0.018 0.018 0.018

which is significantly biased, all six estimators yield small biases. Whereas the

small biases of IMP, IMP2, AIPW, IAIPW, and the shrinkage estimator are

within our expectation, the IPW performs better than anticipated by the theory.

Here, the IMP2 has the smallest variability and MSE, whereas the IPW performs

worst. As in Study 1, the IMP and AIPW are both consistent in this design,

and the shrinkage estimator is again as good as the AIPW. By construction,

we expect the shrinkage estimator to have a lower variability in this situation.

However, this is not evident, probably owing to the difficulty in obtaining precise

estimates of the asymptotic variances used to compute the shrinkage weight. On

the other hand, the variance estimates are sufficiently good to yield satisfactory

empirical coverages for the confidence intervals constructed.

4.4. Study 4

In this last study, we consider a scenario in which all models, m1(·), m0(·),
and η(·) are misspecified. Here, the covariate X is generated as in the previous

studies, the response variables Y1 and Y0 are generated as in Section 4.2, and

the treatment assignment is as described in Section 4.3. While implementing the
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Figure 4. Box plot of Naive, IMP, IMP2, IPW, AIPW, IAIPW, and Shrinkage estimators
for Study 4, where m1(·), m0(·) and η(·) are misspecified. The horizontal line is the true
ACE, here 3.986.

Table 4. Results for Study 4, where m1(·), m0(·), and η(·) are misspecified; see also the
caption of Table 1.

Estimators Full Naive IMP IMP2 IPW AIPW IAIPW Shrinkage
mean 3.986 3.665 3.727 3.637 3.987 3.980 3.977 3.980

sd 0.135 0.198 0.175 0.173 0.202 0.186 0.184 0.186

ŝd - - 0.194 0.205 0.207 0.191 0.191 0.191
95% cvg - - 78.5% 66.7% 95.4% 95.5% 96.1% 95.5%

mse - - 0.098 0.152 0.041 0.035 0.034 0.035

estimators described in Section 3, we still treat m1(·), m0(·), and η(·) as functions

of βT
1 x, βT

0 x, and αTx, respectively, and use the same nonparametric estimation

procedure as in earlier sections.

From Figure 4 and Table 4, we can see that the misspecification of the mean

function models means the IMP and IMP2 estimators are biased, as is the naive

estimator. As in Study 3, although η(·) is misspecified, the IPW estimator yields

quite a small bias. Consequently, the AIPW, IAIPW, and shrinkage estimators

are not affected significantly by the misspecifications of the various models. The

IMP2 and IMP have the lowest variability, followed by the IAIPW and AIPW,

and IPW has the largest variance, as in the earlier cases. Because the IMP has

a much larger bias than that of the AIPW, the shrinkage estimator mimics the

AIPW, as the theory predicts.

Following the request of a referee, we also conducted the simulation study

using sample sizes of n = 100, 200, and 500. The results are provided in the

Supplementary Material Section S5 to S7. The results show that as the sample
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size increases, the bias and variance (and thus the MSEs) decrease for all of the

estimators.

5. Data Analysis

We now apply the proposed methods to estimate the average causal effect

of maternal smoking during pregnancy on birth weight. The data consist of the

birth weights (in grams) of 4,642 singleton births in Pennsylvania, USA (Almond,

Chay and Lee (2005)), for which several covariates are observed: mother’s age,

mother’s marital status, an indicator variable for alcohol consumption during

pregnancy, an indicator variable for a previous birth in which the infant died,

mother’s education, father’s education, number of prenatal care visits, months

since last birth, mother’s race, and an indicator variable for the first-born child.

The data set also contains the maternal smoking habit during pregnancy, which

we view as our treatment, Ti (1 = Smoking, 0 = Non-Smoking). This data set

was first used by Almond, Chay and Lee (2005) to study the economic cost of low

birth weights on society, and was further analyzed in Cattaneo (2010) and Liu,

Ma and Wang (2018). The data set is available at http://www.stata-press.

com/data/r13/cattaneo2.dta.

To determine the structural dimension of the two response models and the

propensity score function model, we use the validated information criterion (VIC)

(Ma and Zhang (2015)), where the true reduced space dimension corresponds to

the smallest VIC value. We conducted the VIC calculation separately for all

three models to determine their suitable dimensions. When we consider the

mean response model for the non-treated group, the VIC value at d = 1 is 84.43,

and is 201.86 at d = 2, after which it continues to increase with d. Hence, we

select d = 1 for this model, and fit a single index structure. Similarly, when we

conducted the VIC method on the mean response model for the treated group,

the smallest VIC value was also obtained at d = 1. Finally, the same is true

for the propensity score model, where the VIC value at the single index case is

the smallest. Thus, we apply the single index structure in all three dimension-

reduction models. Of the 4,642 observations, 864 of the mothers smoked (T = 1)

and 3,778 non-smoking (T = 0). The naive estimator (without the covariate

adjustment) yields an effect of -275g. We used a local linear regression with an

Epanechnikov kernel in the nonparametric estimations of the propensity score

function, η(·), and the mean functions, m1(·) and m0(·), where the bandwidth

was selected as cσn−1/3, with σ2 the estimated variance of the corresponding

http://www.stata-press.com/data/r13/cattaneo2.dta
http://www.stata-press.com/data/r13/cattaneo2.dta
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Table 5. Estimated average causal effect of maternal smoking on birth weight, including
standard error and confidence interval, for the estimators introduced.

Estimator Estimate se 95% CI
naive -275.3 - -
IMP -259.8 22.2 (-303.3,-216.3)
IMP2 -262.6 23.1 (-307.8,-217.4)
IPW -296.5 85.5 (-464.2,-128.9)

AIPW -264.6 22.2 (-308.1,-221.1)
IAIPW -264.7 22.2 (-308.3,-221.2)

Shrinkage -264.6 22.2 (-308.1,-221.1)

index and c a constant. In our analysis, we find that the results are not sensitive

to the value of c; for example, when we vary c from 0.01 to 5, the results barely

change. Applying the six estimators studied in Section 3 yields estimated effects

of smoking of between -259 and -296g. These are displayed in Table 5, together

with the estimated standard deviations and the 95% confidence intervals. The

IPW stands out, with an estimated effect larger than the naive value. This is

because some observations have propensity scores close to zero, leading to very

large weights, and thus much larger standard error. Overall, there is evidence

that smoking results in lower birth weight, given the assumption that we have

observed all confounders.

6. Conclusion

We have introduced feasible and robust estimators for the average causal

effect of a nonrandomized treatment. Nuisance models are fitted using semi-

parametric sufficient dimension-reduction methods. The parameter estimation

in these nuisance models is locally efficient, which is important when combin-

ing the IPW and IMP estimators. The AIPW estimators are efficient and their

asymptotic distributions do not depend on the fit of the nuisance parameters, as

long as the nuisance models are well specified and the estimations are consistent

(e.g., Farrell (2015); Belloni, Chernozhukov and Hansen (2014)). The proposed

shrinkage estimator combines the AIPW and IMP, thus improving the efficiency

when the nuisance model for the response is correctly specified. When the latter

model is misspecified, the shrinkage estimator is asymptotically equivalent to the

AIPW, and nothing is lost. Numerical experiments show that the shrinkage es-

timator performs at least as well as the AIPW, although no improvement could

be observed over the AIPW for well-specified response models, possibly because

the weights estimates are insufficient for the sample size considered. As is the
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case for the IMP, the shrinkage estimator is super-efficient and its asymptotic

inference is not expected to be uniform.

Supplementary Material

The online Supplementary Material contains proofs for Theorems 1–4.
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