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Supplementary Material

This part contains additional numerical studies and technical proofs of the asymptotic
theories in the manuscript. In addition, we describe locally quadratic approximation (LQA) in
the model identification procedure.

S1 Complementary Numerical Studies
S1.1 Example 1(Continued)

First, we fix (n,m) = (30,20), and compute three-step M-estimators under the loss func-
tions p1, p2, and ps3, denoted as Ls, Lad, and Hub, respectively. For comparison, we also compute
the spline-based oracle estimator of varying-coefficient component functions given all additive
component functions in advance and, analogously, the oracle estimator of additive component
functions when all varying-coefficient component functions are known. We denote the oracle
estimator by the suffix -O, e.g., Ls-O denotes the oracle estimator under the quadratic loss func-
tion. Based on 500 Monte Carlo replications, Tablecompares the average MSE (AMSE) of the

three-step M-estimators with that of the oracle estimators under different error distributions.
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The standard deviation is given in parentheses. From Table |1} we conclude that

e under the normal error distribution, Huber estimators are comparable to least-squares
estimators, and median estimators are slightly inferior. Moreover, the AMSE of the three-
step M-estimators is similar to that of the oracle estimators, even for medium sample sizes.
This embodies the oracle property of the three-step M-estimator, as if more information

is known in advance.

e under non-normal error distributions, least-squares estimators exhibit worse performance
than the others, especially under the (1) error distribution. The Huber and median
estimators have similar performance, and their AMSEs are similar to those of the oracle

estimators.

e The influence of the intra-subject covariance structure is not substantial under the differ-

ent error distributions and loss functions.

Under normal error distribution N(0,0.2), Figure |1| presents the iterative least square
estimator (dashed line) and 95% CLT-based CI (dotted lines) and 500 wild bootstrap sampling
(dash-dotted lines). We note that the similar performance with Figure 1 (under mixed normal
error distribution) in the manuscript, which indicates the rationality of our estimation method
and two types CI.

For normal error distribution and mixed normal distribution, we also investigate the aver-
age experience coverage probability (AECP) of three-step M-estimator at given 50 grid poins
on the range of interested variable. We sample 200 times with dependent within-subject cor-
relations (0 = 0.5) and make 500 Monte Carlo replications in each run. Figure [2| presents the
boxplot of AECP under normal error distribution for different subjects/observations combina-

tions: 1 is for (n,m) = (20,30); 2 and 3 are for (n,m) = (30, 20) and (60, 10), respectively. The
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Figure 1: Three-step M-estimators under normal error distribution. Solid line: true
component function, dashed line: three-step M-estimator, dotted lines: 95% CI based
on asymptotic distribution, and dash-dotted lines: 95% CI based on 500 wild bootstrap
resampling.

results implies that the CLT-based CI is acceptable.

1 1 1
095 . 095 095
- T - ==
= = = = =
a1 *
09 09 09
o 08 085
1 2 3 1 2 3 1 2 3
(a) AECP for ag (b) AECP for aj (c) AECP for 81

Figure 2: Boxplots for average experience coverage probability (AECP) under normal
error distribution: 1, (n,m) = (20, 30); 2, (n,m) = (30,20); 3, (n,m) = (60, 10).

The analogue of Figure[2] under mixed normal error distribution is given in Figure[3] from
which we see that the pointwise CI is well-performed even in the presence of small proportion
outliers.

In addition, for the mixed normal error distribution, Figure [f] investigates AECPs of com-
ponent functions under more general sampling plan, i.e., sparse observations for some subjects
and dense observations for other subjects. Specifically speaking, we generate 30 subjects, the
first 7% subjects with sparse observations (m; = 10) and the last (1 — )% subjects with dense

observation (mgo = 30). Here, we take r = 1/2, 1/3 and 2/3. The result shows that the AECPs



4 LIXIA HU, TAO HUANG AND JINHONG YOU

. . :
P 0ss
== -+ -+ -+ — . - é -
—+ i -
= =2 EH 5 5 = =
‘ - : ‘ ‘
—+ + - : . =
09 0.9 - 0.9
I
0ss o o
: 2 P : : s : : s
(a) AECP for ag (b) AECP for aq (c) AECP for 8

Figure 3: Boxplots for average experience coverage probability (AECP) based on 200
sampling under mixed normal error distribution. 1, (n,m) = (20,30); 2, (n,m) =
(30,20); 3, (n,m) = (60, 10).

of component functions remain acceptable even under the mixture sampling plan and small

proportion outliers.
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Figure 4: AECPs for component functions ag, a; and 31 under mixture sampling plan:
the ratio of sparse (m; = 10) and dense (m2 = 30) observations is 1:1 for 1, 1:2 for 2
and 2:1 for 3.

Note that he bivariate function g(¢, ) = a1 (t)B1(z) can be estimated by §(¢, z) = a1 (t)51(z),
Figure [5| compares the estimated surfaces of g under different loss function with the true surface.
Obviously, huber estimator is nearest to the true surface, while least squares estimator is the
worst, and median estimator is in-between.

Finally, to investigate the asymptotic properties of three-step M-estimators, we take n =
20,40 and m = 20,30. For different combinations of (n,m) and two kinds of intra-subject
covariance structure, Table [2] compares the AMSE of three-step M-estimators with different

loss functions under normal error distribution and mixed normal error distribution, and Table
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Figure 5: The estimated surfaces of g(t,x) = ay(¢)S81(x) under different loss functions.
(a) true surface; (b) least-squares-based estimation; (¢) median-based estimation; (d)
huber-based estimation.
is the analogue for the 0.2 x t(1) and 0.5 x ¢(2) error distributions. Note that for each given
pair (n,m), the performance of the three-step M-estimator is similar to that presented in Table
[[] Moreover, as the total number of observations grows, the AMSEs of three-step M-estimators
decrease with normal error distribution, no matter which loss function is used. For non-normal
error distribution, the estimators based upon robust loss functions p2 and ps decrease, however,
the least square estimators haven’t significant improvements.
S1.2 Numerical Study of Model Identification Procedure

In this subsection, we will investigate the finite-sample performance of the proposed model

identification procedure. A VCAM with repeated measurements is given by

Yij = ao(tiz) + a1 (tij) fr(wiji) + 582(xij2) + 3as(liy)rijs + wits;) + e,

where t;;, xij1, wi, oo, a1, and the random noise e;; are the same as in Example 1 in the

manuscript, Tij2 = tfj + (;; with ¢;; independently drawn from N(0,0.5), and z,;3 are indepen-
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Table 1: AMSE based on 500 Monte Carlo replications, with (n,m) = (30, 20).

Est

Ls
Ls-O
Lad
Lad-O
Hub
Hub-O

Ls
Ls-O
Lad
Lad-O
Hub
Hub-O

6=0 0=0.5
ag a1 B1 o a1 B1
Normal Error
0.0104(0.0035) 0.0153(0.0062) 0.0108(0.0052) 0.0061(0.0026) 0.0158(0.0034) 0.0095(0.0037)
0.0100(0.0034) 0.0122(0.0045) 0.0058(0.0024) 0.0056(0.0025) 0.0147(0.0028) 0.0080(0.0034)
0.0119(0.0047) 0.0177(0.0079) 0.0145(0.0083) 0.0084(0.0037) 0.0179(0.0049) 0.0129(0.0064)
0.0115(0.0045) 0.0144(0.0061) 0.0075(0.0037) 0.0074(0.0032) 0.0163(0.0042) 0.0104(0.0054)
0.0104(0.0036) 0.0152(0.0060) 0.0101(0.0046) 0.0061(0.0026) 0.0158(0.0033) 0.0090(0.0035)
0.0101(0.0034) 0.0123(0.0045) 0.0058(0.0024) 0.0057(0.0025) 0.0147(0.0029) 0.0078(0.0033)
Mixed Normal Error
0.0910(0.0593) 0.9983(1.4442) 0.5302(0.6731) 0.0803(0.0534) 0.9467(1.4342) 0.5239(0.6722)
0.0809(0.0591) 0.0755(0.0574) 0.0814(0.0859) 0.0755(0.0565) 0.0732(0.0547) 0.0797(0.0848)
0.0143(0.0073) 0.0231(0.0130) 0.0201(0.0174) 0.0098(0.0049) 0.0158(0.0090) 0.0250(0.0248)
0.0136(0.0069) 0.0162(0.0081) 0.0101(0.0060) 0.0095(0.0047) 0.0138(0.0062) 0.0115(0.0062)
0.0141(0.0072) 0.0193(0.0089) 0.0177(0.0141) 0.0081(0.0042) 0.0135(0.0071) 0.0220(0.0260)
0.0133(0.0067) 0.0160(0.0078) 0.0102(0.0051) 0.0080(0.0042) 0.0121(0.0062) 0.0095(0.0060)

Ls
Ls-O
Lad
Lad-O
Hub
Hub-O

0.0324(0.0316)
0.0300(0.0312)
0.0119(0.0063)
0.0116(0.0056)
0.0116(0.0055)
0.0107(0.0049)

0.1650(0.6698)
0.0433(0.1317)
0.0181(0.0123)
0.0144(0.0076)
0.0178(0.0151)
0.0141(0.0080)

0.5 x t(2) Error

0.1287(0.4288)
0.0342(0.0802)
0.0191(0.0159)
0.0158(0.0083)
0.0175(0.0175)
0.0141(0.0113)

0.0316(0.0282)
0.0306(0.0301)
0.0127(0.0063)
0.0122(0.0061)
0.0129(0.0057)
0.0122(0.0051)

0.1269(0.5516)
0.0477(0.1453)
0.0193(0.0122)
0.0149(0.0093)
0.0190(0.0122)
0.0155(0.0088)

0.1020(0.3630)
0.0346(0.0859)
0.0171(0.0152)
0.0135(0.0078)
0.0166(0.0141)
0.0136(0.0115)

Ls
Ls-O
Lad
Lad-O
Hub
Hub-O

30.0323(233.7587)
12.9845(59.5655)

0.0123(0.0058)
0.0119(0.0058)
0.0146(0.0068)
0.0143(0.0069)

1.3838(1.2394)
0.5963(0.6420)
0.0220(0.0109)
0.0175(0.0098)
0.0251(0.0130)
0.0201(0.0102)

0.2 x t(1) Error

71.6044(572.1458)

2.9933(16.6641)
0.0251(0.0188)
0.0129(0.0085)
0.0222(0.0133)
0.0117(0.0071)

30.0769(233.8998)
13.0272(59.8353)

0.0172(0.0083)
0.0155(0.0075)
0.0170(0.0091)
0.0155(0.0085)

1.2757(1.2426)
0.5679(0.6370)
0.0127(0.0068)
0.0120(0.0060)
0.0143(0.0072)
0.0127(0.0065)

71.2963(570.4998)

3.0022(16.7430)
0.0183(0.0082)
0.0152(0.0150)
0.0184(0.0094)
0.0131(0.0081)
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Table 3: Comparison of AMSE under 0.2 x ¢(1) and 0.5 x #(2) error distributions

(n,m)

Fun

0=0

6=0.5

Lad

Hub

Lad

Hub

(20,20)

(20, 30)

(40,20)

(40, 30)

aq

B1

0.0728(0.1858)
0.2642(0.7724)
0.2326(0.7268)

0.0268(0.0181)
0.0399(0.0275)
0.0760(0.0472)

0.5 x t(2) Error

0.0271(0.0165)
0.0483(0.0334)
0.0800(0.0454)

0.0760(0.1934)
0.3663(1.0033)
0.2915(0.8157)

0.0299(0.0191)
0.0336(0.0238)
0.0810(0.0583)

0.0273(0.0176)
0.0334(0.0282)
0.0735(0.0556)

aq

B1

0.0345(0.0678)
0.1424(0.5916)
0.1156(0.2772)

0.0128(0.0072)
0.0215(0.0098)
0.0358(0.0270)

0.0112(0.0068)
0.0212(0.0090)
0.0263(0.0170)

0.0467(0.0529)
0.1398(0.5819)
0.1100(0.2415)

0.0219(0.0096)
0.0176(0.0073)
0.0340(0.0213)

0.0233(0.0104)
0.0180(0.0104)
0.0297(0.0170)

@Q
aq

B1

0.0296(0.0545)
0.1897(0.7380)
0.1656(0.5006)

0.0120(0.0068)
0.0157(0.0081)
0.0343(0.0231)

0.0096(0.0053)
0.0138(0.0057)
0.0243(0.0149)

0.0314(0.0530)
0.1916(0.7405)

0.0111(0.0061)
0.0129(0.0051)
0.0271(0.0248)

0.0109(0.0061)
0.0115(0.0047)
0.0235(0.0168)

aq

B

0.0293(0.0734)
0.3434(1.0457)
0.2613(0.6881)

0.0093(0.0047)
0.0098(0.0043)
0.0194(0.0102)

0.0083(0.0042)
0.0086(0.0038)
0.0182(0.0087)

0.0292(0.0775)
0.1912(0.7483)

(
(
(
0.1691(0.4944)
(
(
0.1646(0.4902)

0.0100(0.0056)
0.0090(0.0045)
0.0231(0.0151)

0.0075(0.0037)
0.0073(0.0031)
0.0177(0.0107)

(20,20)

(20, 30)

(40,20)

(40, 30)

gy

B1

152.8847(1296.2)
1.1684(1.0295)
429.7490(3146.3)

0.0247(0.0149)
0.0397(0.0199)
0.0445(0.0219)

0.2 x t(1) Error

0.0262(0.0140)
0.0449(0.0281)
0.0467(0.0229)

152.9221(1296.5)
1.3283(1.0899)
429.6629(3144.1)

0.0309(0.0137)
0.0349(0.0191)
0.0471(0.0319)

0.0345(0.0156)
0.0470(0.0312)
0.0459(0.0321)

«aq

B1

10.3490(52.0259)
1.3966(1.2809)
51.9701(370.9491)

0.0141(0.0072)
0.0194(0.0117)
0.0432(0.0282)

0.0115(0.0061)
0.0186(0.0128)
0.0381(0.0250)

6.4800(30.3419)
1.4232(1.3723)
51.5754(367.6787)

0.0157(0.0103)
0.0290(0.0140)
0.0423(0.0271)

0.0148(0.0068)
0.0298(0.0129)
0.0384(0.0185)

«@Q
aq

B1

44.3016/(247.4062)
1.2505(1.3224)
68.2984(422.8558)

0.0101(0.0067)
0.0134(0.0060
0.0306(0.0201

0.0082(0.0041)
0.0170(0.0114)
0.0328(0.0262)

44.3580(247.7636)
1.2551(1.3329)
68.2566(422.4329)

0.0142(0.0066)
0.0139(0.0057)
0.0248(0.0229)

0.0101(0.0043)
0.0151(0.0077)
0.0274(0.0429)

aq

B1

8.1547(29.9252)
1.3795(1.0867)
22.3450(78.9040)

0.0097(0.0052

)
)
0.0083(0.0038)
)
0.0255(0.0147)

0.0062(0.0028)
0.0106(0.0103)
0.0175(0.0090)

8.1437(29.8633)
1.3418(1.0529)
22.3086(78.5702)

0.0062(0.0028)
0.0079(0.0042)
0.0163(0.0111)

0.0074(0.0033)
0.0099(0.0094)
0.0169(0.0116)
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dent copies from N(0,1.5?). Other component functions are given by as(t) = t*/ fol t2dt,

B2(xz2) = 0.2sin (rz2/2) — E[0.2sin (7 X2/2)], and

Bi(x1) = bsin (rz1/2) + 221 (1 — z1) — E[5sin (7 X1/2) + 2X:1(1 — X1)].

Based on 200 Monte Carlo replications, we compare the performance of the proposed model
identification procedure for independent and dependent intra-subject covariance structures and
three kinds of loss function used in Example 1. Table 4] lists the percentages of correct fitting
(C-F), over-fitting (O-F), and under-fitting (U-F) in the identification of additive terms (AT),
varying-coefficient terms (VCT), and true model (TM) for normal error and mixed normal error
distributions. The counterparts for the heavy-tail error distributions of 0.2 x ¢(1) and 0.5 x ¢(2)
are given in Table From the obtained results, we notice that under normal error distribution,
all of the percentage of correctly identified additive terms, varying-coefficient terms, and true
models increases as the total number of observations increases, regardless of which loss function
is adopted. In the case of small proportion outliers, the power of model identification increases as
the number of observations nm increases if we use robust loss function p2 and ps. However, the
least-square-based identification procedure exhibits very poor performance, and no significant
improvement is obtained by increasing the total number of observations. It is expected since
mean regression method is sensitive to outliers, which greatly influence the power of model
identification. Also, the influence of the intra-subject covariance structure on the power of
model identification is insignificant.

S1.3 Comparison with existing method

Note that the two-step spline estimation method proposed by |Zhang and Wang| (2015)) is
applicable when the covariates are dependent on subjects but independent of observation time.
Under this case, we compare the average MSE(AMSEs) and its standard deviation between

the two types estimators based on 500 Monte Carlo replications. We consider normal error
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distribution N(0,0.2) and mixed normal error distribution 0.95N(0,0.2) 4+ 0.05N (0, 12.5%), and
generate n = 40 subjects with sparse observations (m = 10, 20) and dense observations (m =
40). Taking p = 1, the covariates X; i.i.d. follow U([—0.5,0.5]), the observation time points
T:;(j = 1,...,m) are equidistant on [0,1], and the subject-specific random trajectory w; and

univariate component functions are same with Example 1 in the manuscript. Table |§| shows

that our estimators are superior to the two-step estimators of|Zhang and Wang| (2015)) for sparse

data and a small proportion outliers, while for dense data with normal error distribution, the
difference between them is insignificant.
S1.4 Example 2 (Continued)

For the CD4 dataset considered in the manuscript, Figure[f] presents the estimated surfaces

of bivariate functions gi (¢, zx) = ax(t)Br(zk), k = 1,2.

Figure 6: Estimated surfaces of CD4 dataset. (a) estimates g1 = ao(time)S2(age); (b)

estimates go = ag(time)Ss(cesd).

For a comparison with existing literature, we now analyze another well-known CD4 dataset
from R package ‘timereg’ (2019)). It is a subset of the Multicenter AIDS Cohort

Study, which contains 1187 observations from 283 homosexual men infected with HIV during
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Table 6: Comparison of AMSEs between three-step M-estimators and Zhang’s estimators

m =10 m =20 m = 40

Fun

Ours Zhang’s Ours Zhang’s Ours Zhang’s

Normal Error

0.0149 0.0149 0.0058 0.0058 0.0027 0.0026
Qg

(0.0053) (0.0054) (0.0023) (0.0023) (0.0008) (0.0008)

0.0609 0.5809 0.0309 0.1580 0.0207 0.0800
aq

(0.0245) (0.4871) (0.0139) (0.0228) (0.0070) (0.0347)

0.0240 0.1498 0.0103 0.1093 0.0146 0.0443
B

(0.0086) 1.9450) (0.0052) (1.0199) (0.0065) (0.0135)

Mixed Normal Error

0.0580 0.1646 0.0334 0.0770 0.0274 0.0738
Qg

(0.0205) (0.0991) (0.0049) (0.0479) (0.0080) (0.0399)

0.1707 1.3124 0.1671 0.8528 0.1397 0.4184
(&3]

(0.0670) (1.2377) (0.0810) (1.8620) (0.0207) (0.2009)

0.0354 0.1313 0.0422 0.1070 0.0118 0.1144
B

(0.0203) (1.3137) (0.0103) (1.3532) (0.0042) (0.0085)

the study period between 1984 and 1991. The time variable ¢;; is the time (in years) of the j-th

measurement of the i-th individual after HIV infection; the response Y;; is the i-th individual’s

CD4 percent measured at time ¢;;. [Fan and Zhang | (2000a)); Huang, Wu and Zhou | (2002} [2004)

have analyzed this dataset using a VCM, which is a special case of our VCAM. They adopted
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three covariates: X; the smoking status of individual after his infection; X2 the centered age
at HIV infection, and X3 the centered pre-infection CD4 percent. Now, we compare a VCAM
and a VCM containing the three covariates. Note that X is attribute variable and covariates

are all time-invariant, we can write the two model as below:

VCM @ yij = ao(tiy) + a1(ti)xi1 + a(tij)i2 + as(tij)zis + wij + e, (S1.1)
and
VCAM :  yij = ao(ts;) + aa(tig)zin + catiz)Ba(wiz) + as(t;)B3(xi3) +wij + ey (S1.2)

For the VCM , Figure m gives the fitted curves (solid lines) of varying-coefficient
functions and 95% CI (dash-dotted lines). For the VCAM (SI.2)), we select the optimal num-
ber of interior knots (ﬁc,ﬁA,Kc,KA) = (2,2,3,6) and optimal tuning parameter (5\1,5\2) =
(0.01,0.01). Employing the model identification procedure, we found a2 and as are non-constant
([193 Mz, = 0.2339, |73 Msl|,, = 0.3183), B2 and Ps are nonlinear (||f2F2|,, = 0.2591,
%3 Fs]|,, = 0.3165). Figure [8| presents the three-step spline estimators (solid lines) of univari-
ate component functions in VCAM (S1.2), and 95% CI (dash-dotted lines).

Note that the fitted curves of varying-coefficient functions have similar shapes under the
two models. However, except ap the ranges of fitted curves are different since the difference
of function form of covariate effect. From the fitted curves of additive component functions in
VCAM , we can see the the linear covariates effects is not rational in the whole study
period.

In addition, the bivariate time-varying covariates effects g1 (¢, ) = a2 (t)B2(z) and g2(t, x) =
as(t)Bs(z) in VCAM (S1.2), and g1 (¢, z) = az(t)z and ga(t,z) = as(t)z in VCM are es-

timated in Figure @ which implies the VCAM (S1.2)) provides more detailed information of
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(a) ag (b) aj

(c) ag (d) ag

Figure 7: Spline estimators (solid lines) in VCM (S1.1J), and 95% CI (dash-dotted lines).
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Figure 8: Three-step spline estimators (solid lines) in VCAM (S1.2), and 95% CI (dash-

dotted lines).

change points due to the nonlinear covariate effects.

Compared with the VCM (S1.1)) of [luang, Wu and Zhou | (2002} [2004)), the residual sum

of squares (RSS) of VCAM decreases by 3% and the multiple determination coefficient
(R?) increases by 12%. Therefore, VCAM is more suitable for this real-life data.
S1.5 Example 3 (Continued)

Figure [10| gives the estimated bivariate functions gx (¢, zx) = aw(t)Bx(xx),k = 1,2,3 for
the ADNI data.

S1.6 Cigarette Data

Example 3. We continue the analysis of cigarette data referred in Section 1 in the manuscript.

Following [Baltagi and Li | (2004), we adopt covariates X1: logarithm of the average real retail

price of cigarettes; Xo: logarithm of the real disposable income per capita, and response Y:
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fme T 0 40 prededd

(a) g1 in VCAM

(b) go in VCAM
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(a) g1 in VCM (b) go in VCM

Figure 9: The estimated surfaces of time-varying covariates effects g1 (¢, ) = aa(t)f2(z)

and g>(t, ) = as(t)Bs(x) in VCAM (S1.2), whilst g1 (¢, ) = as(t)x and ga(t,z) = az(t)z
in VCM (ST.1).

1
o 2 Education

(b)

Figure 10: Estimated bivariate surfaces for ADNI data. (a) estimates g1 = a1 (¢)51(Age);

(b) estimates ga = aa(t)S2(Education); (c) estimates g3 = a3(t)S5(MMSE);
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logarithm of the sales of cigarettes (packs of cigarettes per capita).

We use the following VCAM

2

yie = aot) + > ax(t)B(@ik), i =1,...,46; t =1, ..., 30.

k=1
Under huber loss function given in Example 1, we obtain that the optimal knots in Step I
estimation are (hc,ia) = (2,2), and smoothing tuning parameters in model identification pro-
cedure are (A1, A2) = (6.31,0.01), We then obtain the penalized estimators and conclude both

a1 and a are time-invariant. In a word, a more parsimonious model is given by
yir = ao(t) + Bi(zier) + P2(zire), i =1,...,46; t =1,...,30. (S1.3)
The estimated component functions are given in Figure from which we see that:
e g decreases before 1980, and ascends until 1990, and then decreases;
e Cigarettes consumption decreases as the Cigarettes price increases;

e Cigarettes consumption increases as the income grows until X is larger than 4.8.

a6 o8
160 1965 170 1975 1980 1985 1990 1995 06 05 04 03 02 01 0 01 02 03 04 36 38 4 42 44 46 48 5 52
t log Price log Income

(a) ag (b) B1 (c) B2

Figure 11: Reduced model (S1.3) for cigarette data set. Solid line: three-step estimator,

and dash-dot lines: 95% CI.

S2 Proofs
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We start with the properties of B-spline basis. Let {b1,...,br} be standardized version of

B-spline basis defined on [a, b]. Then, it holds that:
(1) bi(xz) >0 for any = € [a,b], 1 <1< L;
(2) o5, bi(z) = 1 for any = € [a, b];

(3) for any vector a = (a1, ...,ar)7,

laf? < /01 {ialbl(m)}de < Jaf?. (S2.1)

S2.1 A Proposition

To prove the main results, we start with the following proposition, which gives the con-
vergence rates of the initial estimators of varying-coefficient component functions. Let h =
ha A Be and h = ha V hic be the minimum and maximum of ks and hc, respectively, and

Nu= (30, n;l)fl is the harmonic average of sequence {n;}.

Proposition 1. Under Assumptions A1-A5, M1-M2 or N1-N2, if h* = o(nNwu), h*"/n — C1,

h*" 2 /(nNu) — Ca, and h®/Ng — Cs as n — oo, where 0 < C) < 00, 0 < Ca,Cs < co. Then,

we obtain the convergence rates

_ h? 1
N 2 2r
lldo1 — aollz, = Op (ﬁ + e + 5)7 and
h? 1
~ 2 —2r
ll &k, 1 (tt ko, TRo) — s (B)]]7, = Op(ﬁ + Y + ﬁ)
in the Ly norm sense, and
1 o=, 2 _a h? 1
— ti;) — ao(tiy)] = O (h rp 7), d
N ;; [0‘0,1( ) — o JH p\ L + nNu + n an
i ii [@k 1(t¢j|tk0 xko) — Oék(tij)]z = Op (h72r + L—Z + l)
N =1 = ! ’ . nNu n

in the MSE sense.
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1
T

Remark 1. From Proposition we see that if Ng/n* — 0, and h =< (n]\_fH)ﬁ, then
n~' = o(h/ (nNu)) and the asymptotic variance obtains the rate of bivariate nonparametric
function. When NH/n% — C and h =< na= yield n7! =< B/ (nNH); and NH/n% — oo and
h = o(n2r) imply h/ (nNu) = o(n™"), that is, the asymptotic variance has a parametric rate.
Thus, we can split data as sparse or dense according to whether NH/n% — 0 or NH/n% — C,

where 0 < C < oco. The result is slightly different from Remark 5 in the manuscript since we

now estimate bivariate nonparametric function and require larger sample size.

According to Corollary 6.21 and Theorem 12.7 of |Schumaker| (1981)) and Assumption (A3),
there exists positive constants Do, ..., Dp, such that ag(t) = &o(t) + Ro(t) = Agbc(t) + Ro(t)

and gi(t, zx) = gr(t, xx) + R (t, zk) = YL Ti (¢, xk) + Ri(t, z1) satisfy

sup |Ro(t)| < Dohg” and  sup |Ri(t,zk)| < De(he" +hy"), fork=1,...,p. (S2.2)
t€[0,1] (t,x)

Denote Rij = Ro(ti;) + > %_, Ri(tij, zijk), then (52.2) implies
max |Ri;j| < Dihc" + D3h" < D*h™", (S2.3)
i

where D* = DY V Ds.
Let m(t,x) = {b&(t), T (t,x1), ..., Ty (t,2p)}7, mi5 = 7(tij, xi;) and 7i; = Sy, ', where
Sp=%nr, L >ty miymi. Denote ¢ = Su(v — ), ¢ = S.(% —4). Then, the minimizing

problem (2.3) can be rewritten as

T , T .
argmin > - > oy — i) = argmin > - > ples — 75¢ + Rij)
i=1 j=1 i=1 j=1

- n 1 n; .
= argé“ﬂlnz — > [p(eis = #5¢ + Rig) — pleis + Ri)] -
i=1 =1

ng ©
3=
Denote I',,(¢) be the objective function above, ®,(¢) = E[['»({)|J], and An({) = I'n({) —

Pn () + 201 n% 7;1 77;6¢(€i;). Then

T(C) = ®n(¢) = D

=1

LS ALCH(en) + Anl0). (524)
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The following lemmas are useful to prove Proposition

Lemma 1. Under Assumption A1 and A2, there exists positive constants L1 and Lo, it holds
that L1 < S2/n < Lol, except on an event whose probability tends to zero, where I is l-order

identity matriz, with | = Jc + pJcJa, Jo = q+ hc, and Ja = q+ ha — 1.

Proof. Let G = {g(t,x) = v n(t,x),y = (0, ..,7p)" € R'} be a family of functions defined
ont € [0,1], and x = (z1,...,2p)" € [[1_,[ax, bx]. For any g®, ¢ e G, define the theoretical

inner product and empirical inner product are <g<1),g<2)) = E[g<1)(T, X)g(Q)(T, X)] and

1y (2 1 1
(g™, g?) fg_zn—z (tiss %i5)9" (ti %i5).

The induced theoretical norm and empirical norm are denoted as ||g|| and ||g||, , respectively.

For any g = v"n(t,x) € G, according to Assumption (Al), (A2) and Lemma 1 of [Stone

(1985)), we have

lgl* = E[E[{dbe(T) + > v Ta(T, X2) }*T]]

k=1

:/01 E[{~+bc(T) + Z%:WC(T, Xk)}QIT =t] fr(t)dt

k=1

> d / {(abe(®)? + S BTt Xu)IT = 1]} fr(t)dt

where d; is some positive constant.

On the other hand, there exists a positive constant d2 (> d1) such that

P

lgl* < dz/ {(36be(®)? + > E{ Ta(t, Xi) Y*|T = )} fr(t)dt

k=1
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By Assumption (A2) and (S2.1)), we obtain that

/0 B[ T (t, X0)IT = t)fr(t)dt
Jo  Ja

/ / Z Z bii, (t) Briy () Vi, 1112] Ixpir (@ t) fr(t)dzydt

I1=11p=1
Jan  Jo

- 2
= RURAPY

lo=11y=1

which yields ||g||* = |7|2.

Along the line of Lemma A.2 of |[Huang, Wu and Zhou | (2004), we can show ||g||> < ||g/|®

for any g € G. Therefore, v S2 /ny = Hg 12| gH2 = |/ O

Similar to the procedure of Lemma 3.2 of [He and Shi | (1994), we have the next lemma.

Lemma 2. Suppose that Assumptions A1-A5 and M1-M2 hold. Then for any L satisfying

it holds that sup ¢\ <r, |k 1AL (KY2¢)| = 0,(1), where

1
1< L <hio forsome()<n<2r+21,

k=h?/Ng+1—N;g'.

Lemma 3. Under the assumptions of Proposition

inf gij — ¢+ Rl > — €ij + Rij) | — 1, S2.5
<<>L\anzzp ! ’ 2 ;m;p( ’ J)) (522

Proof. We will show ([S2.5|) for convex loss function and non-convex loss function, respectively.

Assume the convex loss function p(-) satisfies conditions A5, M1 and M2. Notice that
H}%X“”ﬁZ—jCHQ < H}%Xﬁff?ﬁinCHQ = O, (kh*[IC]1*/n) = o(1),

which implies max;_ (| Ri;| 4+ &'/2|7(ti;)7¢]) = 0p(1). In combination with Lemmaand (S2.4),

we can show (52.5) along the lines of Theorem 1 of [Tang and Cheng | (2008]).

For the non-convex loss function p(-), we assume that conditions A5, N1 and N2 hold.
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Notice that
—VER] ;¢
KT (VAQ) _,{12 Z/ " Bess + u)du
B i fmjc
1 Z 2 / {6(e0) + ¢/ (ex)u+ [B(e1s + ) — blew) — &' (i) } du
=1 + Ir + Is,
where
LION 1 & R VERLC
nentSo 0 Z/R ble1s)du,
i —VER; C
Ih=kr"" Z / ’ ’ ¢'(eij)udu, and
. 1 & [Rij—VER]C
fo=r 'LZ n; Z/R [0(eij +u) — d(eij) — ¢'(eij)u] du.
Similar to the proof of Theorem 1 of Tang and Cheng | (2008), we can show
_ LR, Qs .
|L| = k12 Z;ZM%)MC = Op(II<Il /V/w) (52.6)
i=1 " j=1
by Assumption A4. After direct computations, we obtain that
LI LN ez 2= s o
= 5 ; a ggb (Eij)(ﬂ—ijc) — K ; E ];d) (€ij)Rij7Tij< =: 121 —+ 122.
Note that 37, & S (77,¢)? = [I¢[1%, we have
_r c
b= 23 LSS )+ o )50 > S Il (82.7)
i=1 " Jj=1
and
22| = 571/ Zn S 6u(t)(1 + 0, (1) R | = Oplvian87" €]) (52.8)

=1 j=1

from Assumption A5 and (S2.3). According to Assumption N2, we derive that

. n 1 n; R s T )
K ; - Z:/R E[Sgp\qﬁ(fij +u) = ¢(eiz) — ¢'(eij)ullti; = t]du

ng

‘1ZmZ o (|Ris| + [Vra"¢l)
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which implies that |I3] = o(\/ﬁﬁflmﬁfr <11 + of <) ).

In combination with (52.6)), (52.7) and (52.8)), we have that

i¢li=L

P( inf k7T, (VRC) > gLQ > 0) 1,

which yields (S2.5). O

Proof of Proposition 1.

Proof. From Lemma we have ||| = Op(x'/?), which implies
19 =41 = & =" Sa (& =3)/n = ¢ |I* /n = Op(k/n) = 0p(1)
from Lemma Employing approximation theories of spline functions and (S2.1)), we have

1 by
gk — grl2, = / / [90(t 21) — g (t, 22)] 2dtda
0 ay
1 by )
j/ / (9% (t, z1) — Gie(t, zx)] "dtdzy, + (D*)?R 2"
(0] ay
! bk 2 2 2
- / / (G — 38)7 Ta(t, 20) 2dtda, + (D)2h >
0 ay
=14k — 3&l* 4+ (D*)*h 2"

= Op(k/n+ ﬁ727ﬂ)>

which implies [|gx (t|zx) — gk (tzx)|7, = [ Gt an) — gu(t, z1)]2dt = Op(k/n+ h™2").

Then, Cauthy-Schwartz inequality means

[lgw )l g, = Ngr(tlae)lly, | < ge(tler) = gr(tlzn)ll,, = Op(VE/n+h7"), (52.9)
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where [|f||,, = [ f(z)dz. Using the identification condition [ax||,, = 1, we have
k1 (ttko, ko) — ck(£)]|7,

:/1( Ee(tltro,mr0)  Ek(tltro) >2dt—/1( gt zeo)  gr(t, ko) >2dt
o et Tt o \Toeao)ls, ~ Mool

1

1

1 R

SQ/ Gk (t,zr0) — gk (t, zr0))* dt
o llgr(tlzro)llz,

! 1 1 :
+2/ gi(t, iy | — - dt
o TR\ Nak(ano)ll,,  llgr(tlero)lly,

=O0,(k/n+h"%") =0, (fLZ/(nNH) +1/n+h"%).

The derivation of fol [G0.1(t) — ao(t)]?dt = Op(k/n +h™?") is straightforward, and omitted
the details. Finally, we show the convergence rate in the mean squared error sense. Similar to

Lemma we can show the largest eigenvalues of
1 n  ng . 1 n  ng .
N ZZmﬁrij and i ZZﬁ(tij,wko)ﬁ (tij, Two)
i=1 j=1 i=1 j=1
are bounded, which to yield
1 n  ng R ) o
w D> (@i, mign) — grltis, wagr)]” = Op(i/n+h~2"),
i=1 j=1

g

1< _
N S5 [gr(ti, 2x0) — gr(tis, wro)]* = Op(r/n +h™>").
i=1 j=1

Again from (S2.9), we obtain that

1 n n; A .
N ZZ @1t |tro, o) — i (tij]tko, 2x0)]” = Op(r/n +h™°"),

i=1 j=1

which completes the proof. O
S2.2 Proof of Theorem 1

Under Assumption (A3), there exists positive constants cx,a (kK =1,...,p) such that

Br(z1) = Br(xx) + ra(zk) = 05 Bra(zr) + r1,a (zh),

sup  [re,a(ze)| < ek a KL
zk €lag, byl
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Let ri5,a = Y 0 _q &k1(tijltro, Tho) 7k a(Tijx), then
max |rij a| = Op(Ky") (52.10)
¥

from Proposition [I| and Assumption (A3).

Let \i[ij = {12}{(2:”1), ...,&;(mijp)}T and \I/qjj = S,;’IA\ilij, where SZ,A =>", n% i \IIZJ\I/”
and g (zijx) = du1(tij|tko, ko) B, (zijk). Denote ¥ = S, A (6 —6) and 9 = S, A (6 — 6), and
Ay = doa(tiy) — aoltiy) + D0, [dk,l(tij|tk07l‘k0) - ak(tij)]ﬁk(xijk). Then, the minimizing
problem (2.5) can be rewritten as

1
argmmz . Z pleij — \11”19 +7rija — DNij) — p(eij + rija — Aij)].
i=1 v

Denote I'y,a (1) be the objective function above,

n

1
Apa(®) =Ty a(¥) — )+ — — Z UL 9¢(ei5).
i—1 7 .:

Then,

L a(9) = Pna(9) — Z ni Z d(eij) + An(9). (S2.11)

Lemma 4. Under Assumption A2 and A3, except on an event whose probability tends to zero,

the eigenvalues of S,QMA/n has positive lower bound L1 A and upper bound Lo .

Proof. Let Ga, = {g(x]t) = Y ¥ _, &r1(t|tro, Tr0)0iBr,a(zk)} be a family of functions defined
on [P _,[ax,bx] for any given t € [0,1]. For any g1, g2 € Ga,, i.e.,
P P
A T 1 ~ T 2
gr(x[t) =" i 1(tltro, zko)BRa (z)05,  g2(x[t) =Y di1(tltro, zo)BF a (zk)05
k=1 k=1
define theoretical inner product
P

P
(91,92)A = E[{ Z@k,l(ﬂtko,liko)BZ,A(Xk)@;il)}{ Gk, 1(T|tro, ka)B;,A(Xk)el(f)}‘T = t],

k=1 k=1
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and empirical inner product

p
(91, 92)n.a = Z - Z { 1(t[tko, Txo)BE A (wijn )0 )}{ > ana(tltro, xko)BZ,A(xijk)G,(f)}-
v j=1 k=1

i=1

Denote the induced theoretical norm and empirical norm as ||g||, and ||g||, 5, respectively.

Then, for any g € Ga,,

p
lgllz =B[{ Zdk,I(T\tkmxko)BZ,A(Xk)Hk}2|T =t
k=1

by P
_ / (" G (tlteo, 7o) BLa (Xi)00) 2 fxr (x[t)dx = 0.
Ak k=1

Furthermore, under Assumption (A2), we can show [|g||2 , < [|g||3 for any g € Ga,, which
yields 0757 40/n = ||gl; » < llgl} =< 10]>. 0

Along the lines of Lemma 3.2 of [He and Shi | (1994)), we can derive the following lemma.

Lemma 5. Suppose that Assumptions A1-A5 and M1-M2 hold. Then for any L satisfying

n r— 1 ~
1 <L < KR for some 0 < n < 2T+21, it holds that sup g <p |KA nA(K}X/Qﬂ)! = op(1).

where Ka = KA/]\_/’HJrlngl.

Lemma 6. Under Assumptions A1-A5, M1-M2 or N1-N2, it follows that

n n; n ng
. 1 = 1
p < inf P > " pleis — U0 + i — Ay) >y - > pleij +Tija — Aij)) -1,
v =1 i=1 " j=1

1/2
lo>L&,/? i

(S2.12)

Proof. It can be shown for the convex and non-convex loss function, respectively.

e For the convex loss function p(-), assume that the conditions A5, M1 and M2 hold.

From Proposition [I} we have that

P
Wij = > ahltijlteo, 7o) > Biua(wisn)
k=1 ]

p
< pEa+sup Y | r(tisltro,eg,) — ar(ti)] + o(s.0.) = O(Ka),
©J k=1
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which yields
max Ka (V;9)° < max KaW],¥i;[9)1> = Op (KaKa |9 /n) = o(1). (S2.13)
V)

4,9

Similar to the proof of Theorem 1 of Tang and Cheng | (2008), we can derive that
f(;l(bn A K1/2’l9 Z Z¢ t” [ ) — f(;l/Qq/Zj'l?(?”ij,A — A”)] + Op(l)

c - _ 1 & X
> S Iol* - K3 > DBt V9 (riga — Asg) + 0p(1)
i=1 " j=1

from Assumption M1 and (S2.13|). Furthermore, noticing that

72
sup ‘Tij,A - Aij|2 < K;%ﬂ +h" 2r + + h O(K;QT)
0,7 ’fLNH
by Proposition [T} we obtain that
19IeL _1/2‘2 n Z¢ ti) WO (rij.a — Aij)| = Op (K /2Ky VnL).
i=1 " Jj=1

On the other hand,
Var ( Z Z\I/Uﬂqb €ij)) < CE| Z o Z =C|9|?
implies that sups<y, R’;lﬂl Sy n% PO \I/Zj19¢(€ij)| = Op(l?gl/QL) =0, (1).

Hence, from ([S2.15)), Lemma [5| and the convexity of p, we can show (S2.12)).

e For the non-convex loss function p(-), assume that the conditions A5, N1 and N2 hold.

Note that
o1 ~1/2 L R RN TN S T
Ki'Tua(KY?9) = K} Z*Z/ d(eij + u)du
— M4 — s A=A
i=1 j=1 15, A ij
n AP o Uk S

{#(cij) + ¢'(eij)u

_ 1
DS
=1 j=17rija—Bij

+ [B(eis +u) — d(ei) — ¢ (ei5)u] }du

=1 + I + I,
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where
- n 1 n; -
I = — KA1/2 Z o Z¢(€ij)\11ijl9,
1

i=1 i]’:
1e~1
L= =
2 2;77,7‘]

Mg Mg

o (ti;)(1 + 0;7(1))(‘1’177"‘9)2 - IN{XI/2 Z ni

i=1 " j=

e (ti) U0
1

(rija — Aij) (1 +0p(1)),

and

I A L L /
Is=K'y P Z/ [p(eij +u) — dleij) — ¢/ (gij)u] du.
1t j=1Y"

i= j=177ij, A= Dij

From Proposition [I} we have that

p
U705 = > aia(tilteo, oro) Y Bina(®ie)
k=1 l

P
<pKa+ S}IPZ |6k,1 (ti [tho,200) — k(tiz)| + 0(s.0.) = O(Ka),
“) k=1

and
1 h?

sup |ri; fAi~2:O(K72T+h72T+*+ =
”p| JA il p\ A 1 n ' niNa

) =05 (K2™).
Similar to the proof of Proposition 1, we can show that
L] = 0p(KX2191) and T3] = o(vnE 2 Ka |9]]) +o(|19]%),

and Iz > 3 9] + O(\/ﬁf(XI/QK;T |9 ). Therefore, for any sufficient large L, (S2.12)

holds. O

Proof of Theorem 1

Proof. By Lemma@ we have that |9 = O(I?/i/ ?). Furthermore, Lemma gives

16 —6]* = (6~ 8)757.4(8 — 6)/n = [9]*/n = Op(Ka/n) = 0p(1).
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Employing Cauchy-Schwartz inequality, we have % > Z;L;1 [Bk(az”k) — /Bk(l'ijk)]Q =<

Il + 12 + 13, where

I :% ZZ [Br(@ijr) — Brlwin)]?,

oy L R S e -]
1 n
Iy =— ;Z[ 225’“ x”’“]'

Since E[Bx(X1)] = 0, we have I3 = O,(N™1). Tt is sufficient to deal with I;.
Under Assumption A2, we can show the largest eigenvalue of & > >t Br(@ige)Bi (zijn)

is bounded, which leads

n n;

1 2y A \T T A > —op
I, = ~ Z Z(ek — 0k) B (x45)Br (Tiji ) Ok — Ok) + cua K3
i=1 j=1
Ka 1 —2r
=0, —=—+—-+K .
P (nNH * n T Ra )

Hence the rate of convergence in the sense of MSE.
Next, we show Lo convergence rate of M-estimators of f;. Again by Cauchy-Schwartz

inequality,

Hﬁk —ﬂkH = 1Bx _BkHLz N ZZ Bre(ijn) — Br(zin)]” + ‘N Zﬁk (Tijn ‘ .

=1 j=1 =1 j=1

It is sufficient to deal with ||Bk — ﬁ’“”; . From (S2.1)), we get
- 2 oo 2
181 = Bell, = / [Br(zx) — Br(zx)] "day
0
Lo s 2
< / [0k — 0%) " Bra(z)] day + coa K32
0
=16k = 0k + cra K3
= Op(Ka/n+ K3™),

which to lead ||B — Br||2, = Op(Ka/n + K32"). -
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S2.3 Proof of Theorem 2

Under Assumption (A3), there exists positive constants di,c (k =0, ...,p), such that

Oék(t) = &k(t) + T)cyc(t) = ﬁ;bc(t) + T)c’c(t),

sup |rr,c(t)] < dp,cKc"
te[0,1]

Let rij,c = To,c(tij) + Zi:l Tk,c(tij)ﬁk(l’ijk), then
max |rijc| = Op(Kg") (52.14)
i,]

by Theorem 1 and Assumption A3.
Let 0y = 30 an(tiy) [Br(ije) — Br(@isn)], @ij = {1, B1(ij1), -y Bo(ijp)} ® bo(tiy)7.
and ®;; = S, &y with Sp o = Y0, LY &,;87,. Denote ¢ = Spco(h — h) and & =

S,.c(h — h). The minimizing problem (2.7) can be equivalently written as

=1 )=

. n 1 ng -
argmmz o Z [p(sij — 6 +rijc — 5”) — p(sij + rijc — 5ij)].
S 2 =1

Denote I'n,c(s) be the objective function above, ®n.c(s) = E[I'nc(s)|7], and Anc(s) =

T,o(s) = Pno(s) + 30, = 30, @Fsé(ei). Then,

i=1 n;
Pua(S) = Duals) = D - 3 8T60(e0) + Anls). (52.15)
1 j:l

i=1

Similar to Lemma we have the following lemmas.

Lemma 7. Under Assumption A1 and A3, except on an event whose probability tends to zero,

the eigenvalues of Siﬁc/n has positive lower bound Li,c and upper bound Lo c.

Lemma 8. Suppose that conditions A1-A5 and M1-M2 hold. Then for any L satisfying 1 <

/N rT— . r-— r
L < K&° for some 0 < n < 5%, it holds that sup )<, KclAn’c(Ké/zﬁﬂ = op(1), where

IN(C :Kc/NH-i-].—NI;l.

Proof of Theorem 2.
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Proof. In the same vein of Theorem 1, we can show that, for sufficiently large L,

n 1 23 B n 1 g
P( inf Z—Zp(z—:ij *‘I);erJrrij,C*(sij) > Z*Zp(gijJF”"ii,C *527')) -1
Isll>LRy? = ™ 5 =1 o

which implies that [|s|| = O(K{?). Furthermore, Lemma 7| gives

A = Rl = (h— R)"S2 c(h — B)/n = [[s|*/n = O,(Kc/n) = 0,(1).

Denote &r = du/ [|cx| ,,, where dp = bZ(t)hr. Then, by the identification condition

fol ai(t)dt =1 and triangular inequality, we have

2 2
N & . & .
e — awllz, = ’ T~ || <2060 -l +2’ Taal,,
k Ly Lo k Ly Lo
2
1= e
~ 2 ~ 2 2 L
=2 — anl}, +4 (6w = awllf, ++ llowll?,) | =t
el
« 1. «
Note that | okl ,, — 1| = ‘fo {ak(t) — ak(t)}dt‘ <|lar — axll,, and
e —anll7, < 2l — axl7, +2dr,cKe™ = Op(Kc/n+ Kc™), (S2.16)

we have ||a, — ozk||2L2 = Oy(Kc/n+ Kg*").
It is not difficult to show the largest eigenvalue of & >, 3274, be(tij)bg(ti;) is bounded,

which implies

n  n;

% 22 [dolty) - ao(ti;)]” = Op(Ko/n+ K5™).
i=1 j=1
Furthermore,
% ii [k (ti5) — aun(ti)]* = Wi+ Wa + W,
i=1 j=1
where

e S -y

i=1 j=1

e L3 Sty (o)

= = i (ti . ,
Ni:1j=1 Y e ll 1,

n n; i e ,
W3:%ZZ{dk(tij)—ak(t,.j)} (lle1> -

=1 j—1 Hdknh
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It is easy to derive that Wy = Op(f(c/n + ng). Again by , we can complete the
proof. O
S2.4 Proof of Theorem 3 and 4
Proof. Let Wy o = S;;Wn,AS;k and ¥ = W;}\ > n% >t U;;¢(ei;). From Assumption
M1 and Lemma we can show WnyA is invertible and its smallest eigenvalue is positive. Using

Assumption A5, Proposition [1| and Lemma |4} we obtain that ||9]|> = O,(K4). Notice that

D, A(9) = 9™W, na®and > s ;L;l \ilfjﬁqﬁ(sij) =9 ~n,A19, we have
Ky'Tna(9) = Ky {97 Waa9/2 =9 Woa® + Ana(¥)} +0,(1),

since K3 Ka /n — oo. Similar to the proof of Lemma 3 of Tang and Cheng |(2008)), we can derive
that K /%93 = 0,(1), which implies [§—6-5; 19| = O, (||0—9||/v/n) = 0p({Ka/n}""?)

from Lemma[d] Therefore,
6 6=59+o0p({Ka/n}""?)
= nAZ Z\I/UQS E€ij +WnAZ Z - d(eij) + 0p(1).

Employing Proposition [T] and the conditions of Theorem 3, we get

[H Z n; g i (517) 2}
PIe ZE[H% )
= E[i % i[dk,[(ti]’) - ak(tij)]Q ZBlzk,A(tij)]
i=1 % j=1 .

=0, (Ka/h”" + Kah?/(nNu) + Ka/n) = o,(1),

which implies ||W, A A nll (W — ‘Pij)¢(5ij)||2 = o0p(1).

Jj=1
Hence, for any vector h, it follows that

[ n

WO =nwLY Z%Ww +0,(1) = 37 v () + 0,(1),

i=1 "
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where v; = hTWn_,L > Wijo(eis)-

Denote ti,i;; as the [-th element of vector ¥ (x;5,) and we suppressed the subscript ‘k’ for
the sake of compact notation. By Assumption A4 and the properties of B-spline functions, we
have E[ Y10 ijitpignd®(ei3)] = O(na), BLY i ijithijnd(eij)d(eir)] = O(ni(ni — 1)/Ka)

and B[ tijitbij d(eiz)dleizr)] = O(ni(ni — 1)/ Ka), which yields

var(g:l L) - Z—zhf HAZE[ZWW e Z%aﬁ )] Wihh
_ m(é nQL@hT(Wn,A/n)*Qh)O(m i (s — 1)/Ka)
> 0(75%{ + l).
Furthermore, we write 7" | E| 7,,Z| =T + Iz + I3, where

) Z 3 ZE [ (Waa/n) " Wy ee)|],

L=13 Z Z [[B7 (Waa/n) "0 iid’(fii)’Q W (Wia/n) " W5 ¢(ei5)]],  and

i=1 1 g

= n3 Z Z HhT(WnyA/”) %1(;5 €ij1 ’ ‘h n,A/n)_l'l/Jij2¢(€ij2)’~

Z J1#J2#53

[h™(Wa,a/n) ™ Pigad(eis)]]-

Notice that ||h™ (W a/n)7!|| < C, E[f6° (i) = O(K)/?) and B2 w0| = O(KY?),
we obtain

n 3/2
I = 1 i?o(Kj’;/Q) -0 (Z KA2> . (82.17)

L~ n3n?
=1
Next, from the fact that E|1/ijl1pij/l| = O(K 1/2) E|1/)”11/J”w| = ( 1/2) and E|v 0050 | =

O(K;'"?), we have

11 1
L= > —ma(ni - NO(KY?) =0 <Z (i — 1)K;/2> : (S2.18)
=1

It is easy to see that I3 = O( >, ——5(ni —1)(n; — 2)). Combining with (S52.17) and (S2.13),

i=1 n3n2
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we get

n 1 3 n Ki/Q n 1 12 n 1
;EEW =0 ZW+;W(TLP1)KA +;n3n?(mfl)(ni72) :

i=1
Obviously, the condition given in (3.2) of the main body implies the Lyapunov conditions hold,

and hence
n 1
i—1 Vi
27,71 n; L N(O, 1)
Var (Z?zl n%’/l)

from Lyapunov central limit theorem. Under Assumption A5, we derive that
- 1 T -1 = 1 T —1
Var <; m”) =h"W, \ ; F‘I' G:%;W, ,h

Let h = Ay (x), we have the asymptotic distribution By (z) — Bk () N N(0, Dy a(x)). O

Theorem 4 can be proceeded in the sam vein of Theorem 3, and we omit the details here.
S2.5 Proof of Theorem 5
Proof. We only give the proof of part(i), and (ii) can be proceeded similarly.

Let 0] = Ak(x)Tan}%\i'Z, we can write Dy a(z) = S0, 7712 TG = I + Lo + I3 + I,

where

I11 = Z %VZT(GZ — éi)yi7 and 112 = Z %I/:(Gl — Gl)l/l

i=1 ¢ i=1 ¢
Similar to the proof of Theorem 3 in |Tang and Cheng | (2008), we have

- . 1,
Var(I12|J) < leaxu,- Vi Z ?I/i V.

i=1 "t
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Since vjv; = S5 Ap(z)T(Waa/n) " BT (Wya/n) " Ax(z) and ¥7¥; = Doy Wi, it s

straight to derive that | W] ¥;||,. = O(y/n:Ka) and ||v]vs|| < /KR /n®. Therefore,
Var(I12|7) < Cmax v/n; Ka/n* - Ka/(nNu) = 0,(1)

under the conditions of Theorem 5(i).

On the other hand, it follows that

n n

E(Z LQVZT(GZ' - éz‘)l/z’|«7) < maxn; sup E ([¢(€i;)d(€ir) — d(ei)pea)[|T) X > %V@TW

i 45t i=1 ¢

n

=0p(1) max n;Op (% Z ”;3/2)

=1

= op(maxmKﬁ/(nNH)),

op(1).

which yields that I1 = Dn a(z) + 0p(1).
Furthermore, note that Iy = o(l2), it remains to bound Iz, which can be written as

Iy = I>1 + Iz with

n n

1. . 1. A
[21 = Z ?(Vl — I/Z‘) Gﬂ/i and 122 = Z F(l/z — l/i) (Gl — GZ)Z/Z
i=1 i=1

On the one hand, it holds that [vi]| = L [|Ak(z)] - H(Wn,A/n)le ] = O(y/niKa/n).

Moreover, we can write
(0] — )T = Ap(x) W, A U7 — A(x) W, A7

= Ak(:v)wal (‘i’z — \I’Z)T + Ak(.’E)T(WT;IA — Wﬂ:}\)‘l’l + 0(5.0.)4

n,

It is easy to see that

p n; Ja

i - Z Z Z [k 1(tij — ok (tij)]2 Bl%,l,A(l‘ijk)

k=1j=11=1

= O(niKA<E‘2*+ R + l))

nNyg n

o
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We also have || Wy = 325_, 3574, @i (ti) Bf 1,4 (wij1) = O(Ka) and

P JaA

i = Z Z [Gre1(tij — o (tij)]Q BZ,Z,A (Tijn)

k=11=1

o -

o(ma(h e Ly 1Y),

nNu n

~ A 2 ~
Since H\I/,]\If:] — \IJZJ\I/ZTJ - S H\IJ” — \I/ij

2 ~
+ 2 ||\111JHF . H\I/U — \I/“)TH , wWe obtain that
F F

0¥~ = 0 (a5 + 1Y) =

which implies (W,.a/n)"' 25 (W,.a/n)~". Therefore,

"1 K% (- _,. R? 1
I < — ||Vi — Vi - ||Vil| = = h —_ + = = 1).
I £ 3 =il il = 00 (e (W77 + J +1) ) = o)

In the same vein, we can show ||I22]| = 0p(1), which completes the proof of part (i). O
S2.6 Proof of Theorem 6
Proof. We only give the proof of (i), and (ii) can be proceeded in a similar way. Without loss

of generality, we assume the first [ terms are additive terms, i.e.,

P

!
mo(t,x) = ao(t) + > cxBrl(mr) + Y ar(t)Belar).

k=l+1

According to the proposed model identification procedure, the approximation space of mg
is given by Mo = {p(t,x;n) = nybep(t) + ch:l mkn,:]\;[k + Zi:lJrl xkngzk(t,xk)}, where
M;, = {LO}CP, 1,000, 1,0}CP}T, and Z(t7 zi) = My (t,z) + M. Let Mnp,0 be any function
in Mo with [|mn0 —moll,, = Op(en), v(t,x) = x.M](t,z)n. satisties 0 < ||[v]|,, < con for
some positive constant ¢, where 1, # 0 and ¢ is any element of Z.

It is sufficient to show that Q(mn,0) < Q(Mmn,0 + v), where @ is the objection function of

(3.1). For the sake of convenience, we denote mo,;; = mo(tij, Xij), Mn,ij = Mn,0(tis, Xi;) and
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vij = v(tij, ij.). Employing mean value theorem, we have

Q(mn,0) — Q(mn,0 +v)

1
=)~ Z P(Yis — Mnij) = p(Yis — Mnis — vig)] —npay (IV]],)
i=1 T ,:
n{ Z . qu i + Mo = iz + 0vig)ig — oy (7], ) }

Jj=1

=n{h + L —px (Ivl,,)}

where 6 € [0,1], [ = + 37", n% > [#(eij + mo,ij — Minij + 6vij) — ¢(ei;)]viz, and Iy =
i e ok blEi)vis

By Assumption A4, I = o(1). Employing Cauthy-Schwartz inequality and Assumption
M2, we obtain that

2 1/2 ¢ 1 1 1/2
Il < { Z i Z 51] +m0 43 T mn 19 +5V1]) ¢)(El])} } {ﬁ ; VZQJ}

i—1 =1 i=1 j=1

<{ Zmz;mw mmﬁa%y}l“{%gnig Vit op(1).

j=1

It is routine to show X > " L Z] N ||1/||L2 (1 + 0p(1)). Furthermore, the square of

the first term in the last inequality can be bounded by

*Zn Zlmo i = M| + [vij| < ([[mno0 —moll, + [I¥ll,,) (1 + 0p(1)) = Op(en).

i=1 j=1

Therefore,

Op(v/e,) v
Q(min0) — Q(mno +v) < nAi ||v]|,, { P >\\1[ pALI'I'y”IILg } <o,
Lo

which completes the proof. O
S3 Algorithm

We now formulate the algorithm for optimization problem (4.1) in the main text. Following
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the LQA procedure introduced by [Fan and Li | (2001)), we have

/ 7.0
. 105, ([[MEmR] ) - oon2
pM(HNanm&);:pM(HAL&ﬁHLQ)+.§4JHEZ§£ﬂ;flf(HAﬂﬁMHiz—HALHﬁHLQ)

Lo Fe,,)

FT 2 _ FT 0112 >’
2 [l (|| wellz, — [[FonR]

pra (1FT e, ) & paa (| R, ) +

where 7} is a given initial estimate of 1, such that HM,IWQ > 0 and HF,Q],?HL2 > 0 for each

[
k =1,...,p. Moreover, we approximate the first term of (4.1) as

plyi; — Z5m™)

2
(yij — Z7m©)? ’

plyis — Zim) = (yij — Z{m)* = wi; (yi; — Zim)

where Zi; = {b&(ti;), ij1 T (tig, @ig1), o Bigp Ty (i, Tijp) }T, with Ty (¢, 2) = {1, B} sp(7)} ®
{1, BEp(1)} and wi; = p(yi; — 250 ")/(yis — Zim @)

T

Furthermore, let Y = (y1,...,y5)" with yi = (i1, ..o, Yin;)", Z2 = (27, ...,Z7)" with Z; =
(Zity oy Zin,)T, and W = diag(Wh, ..., W) with W; = n;ldiag(wil, <esyWin; ). Denote

P, ([T e, ) i, (Mg, )

Q) =di (o, MM, ..., MMT),
e T, I, —7
/ F‘r 0 / FT 0
Qo :diag(O, MP&FL “es MFPF;)'
||F1771HL2 HF1I7710>||L2

We can then approximate Q(n) in (4.1), up to a constant, as
QM A1, x) = (¥ — Zn)" W(Y — Zn) + 5nm" (1 + Q2)n,

which implies that the minimizer of (4.1) can be derived by iteratively computing the estimator

7= (Z"WZ+ in{Q: + Qg})AZTWJJ until convergence.
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