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Abstract: This study provides a robust inference for a varying-coefficient additive

model for sparse or dense longitudinal/functional data. A spline-based three-step

M-estimation method is proposed for estimating the varying-coefficient component

functions and the additive component functions. In addition, the consistency and

asymptotic normality of sparse data and dense data are investigated within a unified

framework. Furthermore, employing a regularized M-estimation method, a model

identification procedure is proposed that consistently identifies an additive term

and a varying-coefficient term. Simulation studies are used to evaluate the finite-

sample performance of the proposed methods, and confirm the asymptotic theory.

Lastly, real-data examples demonstrate the applicability of the proposed methods.
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1. Introduction

Repeated-measurement data arise often in clinical, biometrical, epidemio-

logical, social, and economic research (Diggle, Liang and Zeger (1994)). Here,

longitudinal and functional data are particularly common, and have different

sampling mechanisms. Typically, data are termed functional when they are

recorded densely over time in a continuum without noise, and are termed lon-

gitudinal when the measurements are made at a few discrete time points and

include experimental error. However, in practice, functional data are analyzed

after smoothing noisy observations (Ramsay and Ramsey (2002)). A vast body

of literature considers statistical inferences for functional data that are based on

observations at discrete time points and are contaminated with measurement er-

rors, a practice that makes it possible to analyze longitudinal data and functional
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data within a unified framework (Li and Hsing (2010); Yao (2007)). Others have

studied longitudinal data using a functional principal components analysis (Yao,

Müller and Wang (2005)).

In a typical repeated-measurement-data setting, a sample of n subjects or

curves is observed at ni discrete time points. If each ni exceeds some power

of n, then the data are referred to as dense data. If each ni is bounded by a

finite positive number or follows a fixed distribution, then the data are referred

to as sparse data. Recently, Zhang and Wang (2016) considered nonparametric

estimations of the mean and covariance functions for sparse and dense functional

data within a unified framework, where they categorized the data as sparse,

dense, or ultra-dense, based on the magnitude of ni relative to n.

Many studies have investigated nonparametric regression methods for func-

tional data and longitudinal data with sparsity or/and denseness. Because of

their simplicity, flexibility, and interpretability, varying-coefficient models (VCMs)

have been used extensively to analyze longitudinal data (Hoover et al. (1998);

Xue and Zhu (2007)). Additive models (AMs) provide an alternative regres-

sion method (Carroll et al. (2009); Xue, Qu and Zhou (2010)). Here, Zhang,

Park and Wang (2013) proposed a time-varying AM for analyzing longitudinal

data to capture dynamic effects. Recently, for analyzing functional data, Zhang

and Wang (2015) proposed a novel nonparametric regression method called the

varying-coefficient additive model (VCAM), which includes the classical AMs and

VCMs as special cases. Specifically, let Y (t) be a smooth random response pro-

cess and X = (X1, . . . , Xp)
τ be a p-vector of covariates. The regression function

m(t,x) := E[Y (t)|X = x] of a VCAM has the form

m(t,x) = α0(t) +

p∑
k=1

αk(t)βk(xk), (1.1)

where αk is the varying-coefficient component function, and βk is the additive

component function.

Zhang and Wang (2015) proposed a two-step spline estimation method for

varying-coefficient component functions and additive component functions, based

upon two key assumptions: (i) each subject (smooth process or function curve)

is observed at dense time points; and (ii) each predictor is subject specific, but

independent of the observation time. The above conditions are easily satisfied

for functional data, but are restrictive for longitudinal data. Furthermore, if

conditions (i) and/or (ii) are violated, then the estimation method of Zhang and
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Wang either fails or performs poorly, as shown in Table 6 of the Supplementary

Material. In this study, we consider two real-data examples, namely, the CD4 cell

count in HIV seroconversion (Zeger and Diggle (1994)), and the cigarette data set

from the R package “phtt” (Bada and Liebl (2014)), which we investigate in the

Supplementary Material. Note that each example violates condition (i) and/or

(ii), meaning that the two-step spline estimation method proposed by Zhang and

Wang (2015) is not appropriate. One of our aims herein is to relax conditions (i)

and (ii), and to develop a general estimation method that has wider application

in practical fields.

Although much of the literature focuses on the classical mean regression

method, the method is sensitive to outliers and nonnormal error distributions.

An alternative is the M-type robust regression method, which can treat mean,

median, quantile, and more general robust-type regression methods within a

unified framework. Many scholars have considered robust regression techniques,

such as Koenker and Bassett (1978) for quantile regressions of linear models, He

and Shi (1994) and He, Zhu and Fung (2002) for M-estimators of partially linear

models, and Tang and Cheng (2008) for M-estimators of VCMs.

Here, we consider a robust inference for a VCAM for sparse and dense longi-

tudinal or functional data, allowing the predictors to be smooth processes cover-

ing condition (ii). We propose spline-based three-step M-estimators for varying-

coefficient component functions and additive component functions. The asymp-

totic properties of the newly proposed estimators are presented within a unified

framework, and we separate sparse data and dense data based on the relative

order of ni to n, which can be viewed as a generalization of Zhang and Wang

(2016) to a VCAM. Similarly to Hu, Huang and You (2019), a remarkable aspect

of our estimators is the oracle property, which implies that the iteration step

does not cause additional asymptotic errors. Furthermore, from the perspective

of model parsimony, we develop a spline-based penalized M-estimator to decide

whether the product term in (1.1) reduces to a varying-coefficient term or to an

additive term, corresponding to an additive component function of linear form

or a constant varying-coefficient component function, respectively. We also show

that an additive term and a varying-coefficient term can be selected correctly

with probability approaching unity, under mild conditions.

The remainder of the paper is organized as follows. In Section 2, we describe

the model setup and propose the spline-based three-step M-estimators for uni-

variate component functions. In Section 3, we present the asymptotic theory for

the proposed estimators. In Section 4, we introduce a robust model identification
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procedure, and in Section 5, we select the smoothing parameters. In Section 6,

we use simulation examples to investigate the finite-sample performance, and

use empirical examples to demonstrate the applicability of the proposed method.

Finally, Section 7 concludes the paper. All technical proofs and additional nu-

merical studies are relegated to the Supplementary Material.

2. Model and Estimation Method

2.1. Model assumptions

Let Y (t) be a smooth response process and X(t) = {X1(t), . . . , Xp(t)}τ be a

p-vector of smooth processes of covariates, where the superscript τ denotes the

transpose of a vector or matrix. Without loss of generality, we assume that the

response and covariates from a subject are L2-integrable stochastic processes on

the interval [0, 1]. The relationship between the response and the covariates is

modeled by a VCAM, as follows:

Y (t) = α0(t) +

p∑
k=1

αk(t)βk(Xk(t)) + U(t), (2.1)

where U(t) is the stochastic component of response process Y (t), independent of

covariate process X(t), with mean function E[U(t)] = 0 and auto-covariance func-

tion γ(t, s) = E[U(t)U(s)]. To uniquely identify univariate component functions,

we impose the identification conditions
∫ 1
0 αk(t)dt = 1 and E[βk(Xk(t))] = 0, fol-

lowing common practice for nonparametric regressions (Zhang and Wang (2015);

Wang and Yang (2007); Vogt (2012); Hu, Huang and You (2019)).

In practical applications, the process Y is not observable, but can be mea-

sured at any given time with random error e, such that E(e) = 0, Var(e) = σ2e .

We sample n subjects independently, and observe subject i at ni time points

(ti1, . . . , tini
), denoting yij and xij = (xij1, . . . , xijp)

τ as the observations of the

response and the vector of covariates at time tij , respectively. Then, the sample

version of VCAM (2.1) can be written as

yij = α0(tij) +

p∑
k=1

αk(tij)βk(xijk) + Uij + eij , (2.2)

where Uij = Ui(tij) is a realization of the subject-specific random trajectory

Ui(t) at observation time tij , and eij are independent and identical copies of

the random measurement error e. As in Zhang and Wang (2015), we ignore
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the intra-subject covariance structure, and instead incorporate the covariance of

{Uij , j = 1, . . . , ni} into the random error term, denoted as εij = Uij + eij .

Remark 1. The product term αk(t)βk(xk) in VCAM (2.1) reduces to an additive

term if αk is a constant, and to a varying-coefficient term if βk is a linear function.

In other words, a VCAM is more flexible than either an AM or a VCM, and can

greatly reduce the systematic bias of modeling.

2.2. Three-step M-estimation method

The spline method is a useful tool for fitting smooth nonparametric func-

tions, and the B-spline basis is preferred for its computational stability. Let

{b̃1(x), . . . , b̃K+m(x)} be a normalized m-order B-spline basis with K interior

knots (De Boor (1978)). The scaled version of b̃k(x) is given by bk(x) =
√
K +m

b̃k(x), the favorable properties of which are presented in the Supplementary Ma-

terial. Furthermore, similarly to Wang and Yang (2007), we construct a cen-

tralized version, represented as {B1(x), . . . , BK+m−1(x)}. Under the assumption

that both αk(·) and βk(·) are r(≤ q)-order smooth, we adopt a q-order B-spline

function to fit a univariate nonparametric function. For any t ∈ [0, 1] and x

in the domain of βk(·), we use the B-spline bases bC(t) = {b1(t), . . . , bJC
(t)}τ

to approximate the varying-coefficient component function αk(t); then, we use

Bk,A(x) = {Bk1(x), . . . , BkJA
(x)}τ to approximate the additive component func-

tion βk(x) for each k = 1, . . . , p, where JC and JA denote a sum of smooth degree

r and the number of interior knots, respectively. The tensor product of Bk,A(xk)

and bC(t) is defined as Tk(t, xk) = Bk,A(xk) ⊗ bC(t), where ⊗ represents the

Kronecker product of matrices or vectors.

Now, we propose a spline-based three-step M-estimation method. Specifi-

cally, we first obtain estimators for the varying-coefficient component functions.

Then, we obtain an approximated AM and VCM by substituting the resultant

estimators into VCAM (2.2). In this way, we estimate the varying-coefficient

component functions and additive component functions.

Step I: Initial M-estimators of varying-coefficient component functions

In this step, we assume that B-spline bases have ~C and ~A interior knots for

αk and βk, respectively. Using the tensor product of B-spline bases, the bivariate

function gk(t, xk) = αk(t)βk(xk) can be approximated as gk(t, xk) ≈ γτkTk(t, xk),
where γk is a {(q + ~C)(q + ~A − 1)}-vector. Assume that γ̂ = (γ̂τ0 , . . . , γ̂

τ
p )τ is

determined by the following minimization problem:
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min
γ

n∑
i=1

1

ni

ni∑
j=1

ρ

(
yij − γτ0bC(tij)−

p∑
k=1

γτkTk(tij , xijk)

)
, (2.3)

where ρ is a given loss function and γ = (γτ0 , . . . , γ
τ
p )τ .

For each given k, we find a point (tk0, xk0), such that gk(tk0, xk0) 6= 0; then,

ξk(t|tk0) = gk(t, xk0)/gk(tk0, xk0) = αk(t)/αk(tk0) is well defined and depends on

the selection of tk0. Denoting ĝk(t, xk) = γ̂τkTk(t, xk), we approximate ξk(t|tk0) as

ξ̂k(t|tk0, xk0) = ĝk(t, xk0)/ĝk(tk0, xk0), which depends on the selection of tk0 and

xk0. Together with the identification conditions of αk, we obtain the spline-based

initial M-estimator of αk(k = 0, . . . , p) as

α̂0,I(t) =γ̂0
τbC(t), α̂k,I(t|tk0, xk0) =

ξ̂k(t|tk0, xk0)∫ 1
0 ξ̂k(t|tk0, xk0)dt

, (2.4)

where the subscript “I” denotes the initial estimator of αk.

Step II: M-estimators of additive component functions

Substituting (2.4), the initial M-estimator of αk obtained in the Step-I es-

timation, into VCAM (2.2), we obtain the approximated AM yij ≈ α̂0,I(tij) +∑p
k=1 α̂k,I(tij |tk0, xk0)βk(xijk) + εij , which gives a spline-based M-estimator of

βk. Denote the number of interior knots of the B-spline basis as KA. Let

θ = (θτ1 , . . . , θ
τ
p)τ , with θk a (q + KA − 1)-vector, such that θ̂ = (θ̂τ1 , . . . , θ̂

τ
p)τ

minimizes the following problem:

n∑
i=1

1

ni

ni∑
j=1

ρ

(
yij − α̂0,I(tij)−

p∑
k=1

α̂k,I(tij |tk0, xk0)θτkBk,A(xijk)

)
. (2.5)

Then, the spline-based M-estimators β̂k, for k = 1, . . . , p, of the additive compo-

nent functions are given by

β̂k(xk) = β̌k(xk)−
1

N

n∑
i=1

ni∑
j=1

β̌k(xijk), (2.6)

where β̌k(xk) = θ̂τkBk,A(xk) and N =
∑n

i=1 ni.

Step III: Updated M-estimators of varying-coefficient component functions

Substituting (2.6) into (2.2), we obtain an approximated VCM, yij ≈ α0(

tij) +
∑p

k=1 αk(tij)β̂k(xijk) + εij . Let KC be the number of interior knots of the

B-spline basis fitting αk. Denote h = (hτ0 , . . . , h
τ
p)τ , with hk a (q + KC)-vector,
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such that ĥ = (ĥτ0 , . . . , ĥ
τ
p)τ minimizes

n∑
i=1

1

ni

ni∑
j=1

ρ

(
yij − hτ0bC(tij)−

p∑
k=1

β̂k(xijk)h
τ
kbC(tij)

)
. (2.7)

Then the updated M-estimators of αk, for k = 0, . . . , p, are given by

α̂0(t) = ĥτ0bC(t), α̂k(t) =
ĥτkbC(t)∫ 1

0 ĥ
τ
kbC(t)dt

.

Common convex loss functions include the quadratic function ρ(u) = u2, the

check function ρ(u) = |u| + (2τ − 1)u, with τ ∈ (0, 1), and the Huber function

ρ(u) = 0.5u2I|u|<δ, where δ is a prespecified threshold value and IA denotes the

indictor function of a nonempty set A. Our method also allows for a noncon-

vex loss function, such as those of Hampel and Tukey. Note that the proposed

estimation method has a wide range of applications, because the spline approx-

imations in the three estimation steps are valid for both sparse data and dense

data, allowing the covariates to depend simultaneously on the observation time.

A simulation example given in Section S1.3 of the Supplementary Material com-

pares our estimation method with that of Zhang and Wang (2015) when the

covariates are independent of the observation time. Table 6 in the Supplemen-

tary Material shows that our estimators are superior to Zhang’s estimators for

sparse data and a small proportion of outliers, and perform similarly for dense

data with a normal error distribution.

3. Asymptotic Results

In this section, we construct the consistency and asymptotic normality of

the proposed M-estimators. Note that the asymptotic properties are considered

for sparse data and dense data within a unified framework, which can be viewed

as a generalization of Zhang and Wang (2016) to a VCAM. The assumptions

necessary for deriving the asymptotic results are given in the Appendix.

3.1. Consistency of three-step M-estimators

Let N̄H =
(∑n

i=1 n
−1
i /n

)−1
be the harmonic average of sequence {ni}, and

let h̄ = ~A ∨ ~C be the maximum of ~A and ~C. Denote J = {(xij , tij) :

, i = 1, . . . , n; j = 1, . . . , ni}. Theorem 1 presents the rate of convergence for

the additive component function βk in the sense of the L2-norm and the mean
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squared errors (MSEs).

Theorem 1. Under Assumptions A1–A5, M1 and M2, or N1 and N2, if h̄ =

O(KA), h̄2K2r
A = o(nN̄H), K2

A = o(nN̄A), K2r
A /n → C1, K

2r+1
A /(nN̄H) → C2,

and KA/N̄H → C3, where 0 ≤ C1 < ∞, 0 ≤ C2, C3 ≤ ∞, then we have the

convergence rates ∥∥∥β̂k − βk∥∥∥2
L2

= Op

(
K−2rA +

KA

nN̄H
+

1

n

)
in the L2-norm sense, and

1

N

n∑
i=1

ni∑
j=1

[
β̂k(xijk)− βk(xijk)

]2
= Op

(
K−2rA +

KA

nN̄H
+

1

n

)
in the MSE sense.

Remark 2. It is easy to show the following

(i) 1/n = o
(
KA/(nN̄H)

)
if (N̄H/n)1/(2r) → 0 and KA �

(
nN̄H

)1/(2r+1)
;

(ii) 1/n =� KA/(nN̄H) if (N̄H/n)1/(2r) → C and KA � n1/(2r);

(iii) KA/(nN̄H) = o(1/n) if (N̄H/n)1/(2r) →∞ and KA = o(n1/(2r)).

That is, the order of the variance term KA/(nN̄H) + 1/n has either a paramet-

ric rate of convergence 1/n or a nonparametric rate of convergence KA/(nN̄H),

depending on the magnitude of (N̄H/n)1/(2r).

Theorem 2 is the analogue of Theorem 1 for the varying-coefficient function

αk.

Theorem 2. Under Assumptions A1–A5, M1 and M2, or N1 and N2, if KAK
2r
C =

o(nN̄H), KA = O(KC) or KA = o(KC), K2r
C /n→ C1, K

2r+1
C /(nN̄H)→ C2, and

KC/N̄H → C3, where 0 ≤ C1 <∞, 0 ≤ C2, C3 ≤ ∞, then we have

‖α̂k − αk‖2L2
= Op

(
K−2rC +

KC

nN̄H
+

1

n

)
in the L2-norm sense, and

1

N

n∑
i=1

ni∑
j=1

[
α̂k(tij)− αk(tij)

]2
= Op

(
K−2rC +

KC

nN̄H
+

1

n

)
in the MSE sense.
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A remark similar to that for Theorem 1 can be made for M-estimators of

varying-coefficient functions. Based upon these statements, we say that the data

are

• sparse if (N̄H/n)1/(2r) → 0, which yields a nonparametric rate; or

• dense if (N̄H/n)1/(2r) → C, with 0 < C ≤ ∞, which yields a parametric

rate.

We generalize the way we split sparse data and dense data in that our conclusions

reduce to those of Zhang and Wang (2016) when r = 2.

3.2. Asymptotic normality of three-step M-estimators

In this subsection, we present the asymptotic distribution of the M-estimators.

First, we introduce the following notation:

Wn,A =

n∑
i=1

1

ni

ni∑
j=1

$(tij)ΨijΨ
τ
ij , Un,A =

n∑
i=1

Ψτ
iGiΨi

n2i
,

Wn,C =

n∑
i=1

1

ni

ni∑
j=1

$(tij)ΦijΦ
τ
ij , Un,C =

n∑
i=1

Φτ
iGiΦi

n2i
,

where

Ψi = {Ψi1, . . . ,Ψini
}τ , Ψij =

{
ψ1(xij1)

τ , . . . , ψp(xijp)
τ
}τ
,

ψk(xijk) = αk(tij)Bk,A(xijk),

Φi = {Φi1, . . . ,Φini
}τ , Φij = {1, β1(xij1), . . . , βp(xijp)}τ ⊗ bC(tij).

Theorem 3 presents the asymptotic distribution for the additive function βk.

Theorem 3. Under the conditions of Theorem 1, if K2r
A K̃A/n→∞,

max
(
K

3/2
A

∑n
i=1 1/n2i ,K

1/2
A

∑n
i=1(ni − 1)/n2i ,

∑n
i=1(ni − 1)(ni − 2)/n2i

)
(
∑n

i=1(KA − 1)/ni + n)3/2
→ 0,

and the largest eigenvalue of KABk,A(x)Bk,A(x)τ is bounded, then given J , it

follows that β̂k(x)− βk(x)
D−→ N(0, Dn,A(x)), where

Dn,A(x) = Ak(x)τW−1n,AUn,AW
−1
n,AAk(x), (3.1)

and Ak(x) = {0, . . . ,Bτ
k,A(x), . . .0}τ is a {pJA}-dimensional vector, with Bk,A(x)

in its {(k − 1)JA}th to {kJA}th positions, and zeros in the rest.
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Theorem 4 is the analogue of Theorem 3 for the varying-coefficient function

αk.

Theorem 4. Under the conditions of Theorem 2, if K2r
C K̃C/n→∞,

max
(
K

3/2
C

∑n
i=1 1/n2i ,K

1/2
C

∑n
i=1(ni − 1)/n2i ,

∑n
i=1(ni − 1)(ni − 2)/n2i

)
(
∑n

i=1(KC − 1)/ni + n)3/2
→ 0,

(3.2)

and the largest eigenvalue of KCbC(t)bC(t)τ is bounded, then given J , it follows
that α̂k(t)− αk(t)

D−→ N(0, Dn,C(t)), where

Dn,C(t) = Ck(t)
τW−1n,CUn,CW

−1
n,CCk(t), (3.3)

and Ck(t) = {0, . . . ,bτC(t), . . .0}τ is a {(p+1)JA}-dimensional vector, with bC(t)

in its {kJC}th to {(k + 1)JC}th positions, and zeros in the rest.

Now, we build a consistent estimate for the asymptotic variance given in

(3.1) and (3.3). Let Ĝi = φ(ε̂i)φ(ε̂i)
τ , with φ(ε̂i) = {φ(ε̂i1), . . . , φ(ε̂ini

)}τ and

ε̂ij = yij − α̂0(tij)−
∑p

k=1 α̂k(tij)β̂k(xijk). Set

Ŵn,A =

n∑
i=1

1

ni

ni∑
j=1

$(tij)Ψ̂ijΨ̂
τ
ij , Ûn,A =

n∑
i=1

Ψ̂iĜiΨ̂i

n2i
,

Ŵn,C =

n∑
i=1

1

ni

ni∑
j=1

$(tij)Φ̂ijΦ̂
τ
ij , Ûn,C =

n∑
i=1

Φ̂iĜiΦ̂i

n2i
,

where Ψ̂ij and Φ̂ij are the counterparts of Ψij and Φij , respectively, after re-

placing αk with α̂k,I and replacing βk with β̂k. Then, the natural estimates of

Dn,A(x) and Dn,C(t) are

D̂n,A(x) = Ak(x)τŴ−1n,AÛn,AŴ
−1
n,AAk(x) and

D̂n,C(t) = Ck(t)
τŴ−1n,CÛn,CŴ

−1
n,CCk(t).

Theorem 5 shows that the estimates of the asymptotic variances are consis-

tent.

Theorem 5. Suppose that supt∈[0,1] E(φ4(εij)|tij = t) <∞.

(i) Under the conditions of Theorem 3, if KA = o(h̄r), K2
A = o(nN̄H), maxi niK

2
A

= o(nN̄H), and K4
A maxi ni = o(n4), then it holds that D̂n,A(x)

p−→ Dn,A(x).
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(ii) Under the conditions of Theorem 4, if KC = o(KA), K2
C = o(nN̄H), K2

C maxi
ni = o(nN̄H), and K4

C maxi ni = o(n4), then it holds that D̂n,C(x)
p−→

Dn,C(x).

In combination with Theorems 3–5, the (1 − α)% confidence intervals of

univariate component functions are given by

α̂k(t)± zα/2
{
D̂n,C(t)

}1/2
and β̂k(x)± zα/2

{
D̂n,A(x)

}1/2
. (3.4)

3.3. Quantile regression

Let 0 < τ < 1 and loss function ρ(u) = |u| + (2τ − 1)u; then, the proposed

M-estimators reduce to τth quantile estimates. Denote α̂k,τ (t) and β̂k,τ (x) as

the τth quantile estimates of αk and βk, respectively. We impose the following

additional assumptions:

(Q1) P (εij ≤ 0|xij , tij) = τ .

(Q2) There exist positive constants c5 and C6 such that the conditional density

function g(x|t) of εij , given tij = t, satisfies |g(x|t) − g(0|t)| ≤ C6|x|, for

all x ∈ [−c5, c5] and t ∈ [0, 1], and g(0|t) is bounded away from zero and

infinity uniformly over [0, 1].

Noting that ρ(u) is convex and φ(u) = ρ′(u) = 2τI(u > 0) + 2(τ − 1)I(u <

0), it is easy to show that Assumption M2 holds. If Assumption Q1 holds,

then Eφ(εij) = 0 and Assumption M1 holds with $(t) = 2g(0|t). Employing

Theorems 1 and 2, we obtain the following corollary.

Corollary 1. Suppose that conditions Q1 and Q2 hold.

• Under the conditions of Theorem 1, we have∥∥∥β̂k,τ − βk∥∥∥2
L2

= Op

(
K−2rA +

KA

nN̄H
+

1

n

)
.

• Under the conditions of Theorem 2, we have

‖α̂k,τ − αk‖2L2
= Op

(
K−2rC +

KC

nN̄H
+

1

n

)
.

Remark 3. Let $(t) = 2g(0|t) in Wn,A and Wn,C. If conditions Q1 and Q2 hold,

then we can present the asymptotic distributions of β̂k,τ (x) and α̂k,τ (t) under the

conditions of Theorems 3 and 4, respectively.
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4. Model Identification Procedure

The VCAM (2.1) is a flexible nonparametric regression method. However,

parsimony is always preferable when several potential options are available. To

this end, we propose a model identification strategy based on the penalized M-

estimators for identifying additive terms and varying-coefficient terms.

The assumption of continuous covariates means that Xk 6= 0 almost surely,

for k = 1, . . . , p, and model (2.2) can be rewritten as

yij = α0(tij) +

p∑
k=1

xijkαk(tij)β
∗
k(xijk) + εij ,

where β∗k(x) = βk(x)/x. Employing the tensor product of B-spline bases, the

bivariate function g∗k(t, xk) = αk(t)β
∗
k(xk) can be approximated as

g∗k(t, xk) ≈{1,Bτ
k,AP(xk)} ⊗ {1,Bτ

CP(t)}ηk
= η00,k + ητ·0,kBCP(t) + η01,kBk1(xk) + ητ·1,kBk1(xk)⊗BCP(t)

+ · · ·+ η0JAP,kBkJAP
(xk) + ητ·JAP,kBk,JAP

(xk)⊗BCP(t),

where ηk={η00,k, ητ·0,k, η01,k, ητ·1,k, . . . , η0JAP,k, η
τ
·JAP,k

}τ , η·j,k={η1j,k, . . . , ηJCPj,k}τ ,

and JAP and JCP are the cardinalities of the B-spline bases Bk,AP(xk) and

BCP(t), respectively, for βk and αk, in the model identification procedure.

Let Mk(t, xk) = {0,Bτ
CP(t), 0, Bk1(xk)⊗Bτ

CP(t), . . . , 0, BkJAP
(xk)⊗Bτ

CP(t)}τ

and Fk(t, xk) = {0τJCP+1,B
τ
k,AP(xk)⊗(1,Bτ

CP(t))}τ , where 0l denotes the l-vector

of zeros. Then, we can say that gk reduces to

• an additive term if and only if ητkMk(t, xk) = 0, and

• a varying-coefficient term if and only if ητkFk(t, xk) = 0,

for any (t, x) ∈ [0, 1]× [ak, bk], where [ak, bk] is the domain of βk(·).
We now propose a regularized M-estimation method in which we penalize

the L2-norm of M τ
k ηk and F τk ηk, for k = 1, . . . , p. Denote the numbers of interior

knots for αk and βk in the model identification procedure as ~CP and ~AP, respec-

tively. Let η = (ητ0 , . . . , η
τ
p )τ , where η0 is a {q+~CP}-vector and ηk(k = 1, . . . , p)

is a {(q + ~CP)(q + ~AP − 1)}-vector. Suppose η̂ = (η̂τ0 , . . . , η̂
τ
p )τ minimizes the

following problem:

n∑
i=1

1

ni

ni∑
j=1

ρ

(
yij − ητ0bC(tij)−

p∑
k=1

xijk{1,Bτ
k,AP(xk)} ⊗ {1,Bτ

CP(t)}ηk

)
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+n

p∑
k=1

pλ1
(‖M τ

k ηk‖L2
) + n

p∑
k=1

pλ2
(‖F τk ηk‖L2

). (4.1)

The product term αk(t)βk(xk) in (1.1) then becomes an additive term if ‖M τ
k η̂k‖L2

is close to zero (e.g., no larger than 10−4), and becomes a varying-coefficient term

if ‖F τk η̂k‖L2
is close to zero.

There are various ways to specify the penalty function pλ(·) (Tibshirani

(1996); Fan and Li (2001); Zou (2006)). We adopt the smoothly clipped absolute

deviation (SCAD) penalty function, and use the locally quadratic approximation

(LQA) algorithm proposed by Fan and Li (2001).

Let IA and IV be the index sets of additive terms and varying-coefficient

terms, respectively, in VCAM (2.1). Denote %n = ~−rP +
√
κP/n, with ~P =

~AP ∧ ~CP and κP = ~2P/N̄H.

Theorem 6 demonstrates the consistency of the model identification proce-

dure.

Theorem 6. Suppose that Assumptions A1–A5, M1 and M2, or N1 and N2

hold.

(i) If λ1 → 0,
√
%n/λ1 → 0, and lim infn→∞ lim infw→0+ p

′
λ1

(w)/λ1 = 1, then

M τ
k (t, xk)η̂k = 0 ∀k ∈ IA with probability approaching unity.

(ii) If λ2 → 0,
√
%n/λ2 → 0, and lim infn→∞ lim infw→0+ p

′
λ2

(w)/λ2 = 1, then

F τk (t, xk)η̂k = 0 ∀k ∈ IV with probability approaching unity.

5. Implementation Issues

In this section, we address several practical problems related to the selection

of smoothing parameters and tuning parameters in our methods. As is common

practice in the spline literature, we select the number of interior knots using a

data-driven method (i.e., the Bayes information criterion; BIC), and position the

knots at equal intervals on the sample quantiles.

• Selecting the optimal number of interior knots (~C, ~A).

The optimal number of interior knots (~̂C, ~̂A) in the Step-I estimation

minimizes the following BIC function:

BIC1(~C, ~A) = log

(
1

n

n∑
i=1

1

ni

ni∑
j=1

ρ(σ̂ij,1)

)
+

logN

2N
N1,
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where σ̂ij,1 = yij − γ̂τ0bC(tij)−
∑p

k=1 γ̂
τ
kTk(tij , xijk) and N1 = (q + ~C)(1 +

p(q + ~A − 1)).

• Selecting the optimal number of interior knots (KA,KC).

The optimal number of interior knots (K̂A, K̂C) in Steps II and III minimizes

BIC2(KA,KC) = log

(
1

n

n∑
i=1

1

ni

ni∑
j=1

ρ(σ̂ij,2)

)
+

logN

2N
N2,

where σ̂ij,2 = yij− α̂0(tij)−
∑p

k=1 α̂k(tij)β̂k(xijk) and N2 = p(q+KA−1)+

(p+ 1)(q +KC).

• Selecting the optimal tuning parameters (λ1, λ2).

We use the optimal number of interior knots (~̂C, ~̂A) and the optimal tuning

parameters (λ̂1, λ̂2) that minimize the following BIC:

BIC3(λ1, λ2) = log

(
1

n

n∑
i=1

1

ni

ni∑
j=1

ρ(σ̂ij,3)

)
+

logN

2N
N3,

where σ̂ij,3 = yij− η̂τ0bCP(tij)−
∑p

k=1 xijk{1,B
τ
k,AP(xijk)}⊗{1,Bτ

CP(tij)}η̂k
and N3 = mL + {q + ~̂C}{mC + 1}+mA{q + ~̂A − 1}+ {q + ~̂C}{q + ~̂A −
1}{p−mL−mC−mA}, with mL linear terms, mA additive terms, and mC

varying-coefficient terms.

6. Numerical Studies

Simulation examples are used to investigate the finite-sample performance

of the proposed three-step M-estimation method and model identification proce-

dure. Empirical examples are then presented to illustrate the usefulness of our

method in practice.

6.1. Simulation studies

Example 1. A VCAM with repeated measurements is generated as follows:

yij = α0(tij) + α1(tij)β1(xij) + wi(tij) + eij , i = 1, . . . , n; j = 1, . . . ,m,

where tij are independent and identically distributed (i.i.d.) copies from U(0, 1),

and xij = 0.8t2ij+ηij , with ηij drawn independently from N
(
0, (1+tij)/(2+tij)

)
.

The subject-specific random trajectories wi(i = 1, . . . , n) are independent copies
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of a zero-mean stationary Gaussian process with covariance function γ(u) =

0.35θ|u|, where θ = 0 and 0.5. The random noise eij are i.i.d. from four error

distributions: the normal distribution N(0, 0.2), the mixed normal distribution

0.95N(0, 0.2) + 0.05N(0, 12.52), and the scaled t distributions of 0.5 × t(2) and

0.2 × t(1). The univariate component functions are given by α0(t) = cos (2πt),

α1(t) = {2t sin (2πt) + 1}/
∫ 1
0 {2t sin (2πt) + 1}dt, and β1(x) = 1.5 sin (πx/2) −

x(1− x)− E[1.5 sin (πX/2)−X(1−X)].

Three loss functions are considered: the quadratic function ρ1(x) = x2, the

absolute value function ρ2(x) = |x|, and the Huber function ρ3(x) = 0.5x2I|x|<δ,

with δ = 1.345. We evaluate the performance of the three-step M-estimator using

the MSE, which is defined as

MSE(g) =
1

nm

n∑
i=1

m∑
j=1

[
ĝ(tij)− g(tij)

]2
,

where g is either αk or βk. To obtain an intuitive impression of the robustness

of the M-estimators, we define the weighted average squared error (WASE) as

WASE =
1

nm

n∑
i=1

m∑
j=1

{
[α̂0(tij)− α0(tij)]

2

[range(α0)]2
+

[α̂1(tij)− α1(tij)]
2

[range(α1)]2

+
[β̂1(xij)− β1(xij)]2

[range(β1)]2

}
,

where range(f) denotes the range of a given function f .

For n = 30 and m = 20, based upon 500 Monte Carlo replications, Figure 1

shows the average WASE of the three-step M-estimators with the four error

distributions and two types of intra-subject covariance structure. In this figure,

1, 2, and 3 denote the least-squares estimator, median estimator, and Huber

estimator, respectively. We also compare the average MSE (AMSE) in Table 1

of the Supplementary Material. The results show that the Huber estimator and

the median estimator perform similarly, regardless of which error distribution

is adopted. In terms of performance, they are comparable to the least-squares

estimators under normal error distributions, and are superior to the least-squares

estimators under nonnormal error distributions. In addition, the influence of the

intra-subject covariance structure is nonsignificant.

Furthermore, we provide a graphical representation of the iterative Huber

estimator under a mixed normal error distribution. Figure 2 shows the pointwise
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Figure 1. Box plot for the average WASE (AWASE) based on 500 Monte Carlo replica-
tions; 1, 2, and 3 denote least-squares estimator, median estimator, and Huber estimator,
respectively.

95% confidence intervals (CIs) of the Huber estimator based on the central limit

theorem (CLT) (dotted lines), and the 95% CIs based on 500 wild bootstrap sam-

plings (dash-dotted lines). The true component function (solid line) and Huber

M-estimator (dashed line) are also given. The figures show that the two types of

CIs are not significantly different, which motivates our claim that the bootstrap

method is sound. However, we do not investigate the theoretical justification for

that claim to avoid straying from the primary aim of this study. However, note

that the true curves and the Huber estimators are very close, and both fall into

the 95% CIs, indicating the rationality of the proposed estimation method. Un-

der a normal error distribution, the least-squares-based CIs are shown in Figure 1

of the Supplementary Material.

We also investigate the average experience coverage probability (AECP) of

the three-step M-estimator with a normal error distribution and a mixed normal

error distribution in Figures 2 and 3, respectively, of the Supplementary Material,

which show that the pointwise CLT-based CI performs well, even in the presence

of a small proportion of outliers. In addition, Figure 4 in the Supplementary

Material compares the AECP of the component functions under a more general

sampling plan, namely, that of sparse observations for some subjects, and dense

observations for other subjects. The results show that the more general sampling
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Figure 2. Three-step M-estimators under mixed normal error distribution. Solid line:
true component function; dashed line: three-step M-estimator; dotted lines: 95% CIs
based on (3.4); dash-dotted lines: 95% CIs based on 500 wild bootstrap resamplings.

plan and a small proportion of outliers have no significant influence on the AECP

of the component functions.

Tables 2 and 3 in the Supplementary Material also compare the average

of MSE (AMSEs) of the iterative M-estimator under different combinations of

(n,m), with n = 20, 40 and m = 20, 30. We conclude that, as the total num-

ber of observations grows, the AMSE decreases for a normal error distribution,

regardless of which loss function is used. For nonnormal error distributions, the

AMSEs of the estimators based on the loss functions ρ2 and ρ3 decrease, but the

least-squares estimator shows no significant improvement as the total observation

size grows.

The numerical example considered in Section S1.2 of the Supplementary

Material investigates the finite-sample performance of the model identification

procedure. As expected, the results given in Tables 4 and 5 of the Supplementary

Material verify our asymptotic theories and demonstrate the robustness of the

model identification.

6.2. Analysis of real data

Example 2. We now apply our method to CD4 data from the Multicenter AIDS

Cohort Study, which contain 2,376 observations from 369 men infected with HIV.

Zhang, Park and Wang (2013) analyzed this data set using the time-varying AM

yij = µ0(tij)+
∑2

k=1 µk(tij , xijk)+wij +eij . Following their work, we choose two

covariates: X1 (age), the age at seroconversion (time-invariant variable); and X2

(cesd), the level of depression, which is recorded over time (in years).

Employing the separability test proposed by Hu, Huang and You (2019),
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we obtain a p-value of 0.84, which means the VCAM (2.2), a submodel of the

time-varying AM introduced by Zhang, Park and Wang (2013), is sufficient for

this data set. Under loss function ρ3 in Example 1, we select optimal knots

(~̂C, ~̂A, K̂C, K̂A) = (2, 2, 4, 3) using the BIC given in Section 5. Then, we obtain

the optimal tuning parameters (λ̂1, λ̂2) = (3.06, 1.56), which are selected from

[0.01, 5], with spacing 0.05. Based on the resulting optimal parameters, we obtain

the penalized estimators. Thus, we conclude that α1 and α2 are time-variant and

that β1 and β2 are nonlinear.

The Huber estimator and the 95% CIs of the univariate component functions

are presented in Figure 3, from which we conclude that the overall mean functions

α0 and α1 for X1 (age) are monotonically decreasing, and that α2 for X2 (cesd)

is a bimodal function. For a fixed time, the effect of age on the CD4 count

increases until around age = 12, after which it decreases. However, the effect of

depression on the CD4 count decreases rapidly before cesd = 5, then increases

until around cesd = 25, after which it decreases. The plot of the residuals in

Figure 3(f) shows that our regression method is appropriate for this data set.

Figure 6 in the Supplementary Material shows the estimated surfaces of the

bivariate function gk(t, xk) = αk(t)βk(xk), for k = 1, 2.

Example 3. In this example, we consider a real diffusion-weighted imaging data

set, with n = 213 subjects collected from the NIH Alzheimer’s Disease Neu-

roimaging Initiative (ADNI) study. The observed response process is a fractional

anisotropy (FA) curve at all 83 grid points along the skeleton of the midsagittal

corpus callosum. Here, we want to explore the relationship between FA (Y ) and

three covariates: (i) the age of the subject (X1); (ii) their educational level (X2);

and (iii) the result of the ADNI Mini-Mental State Exam (X3). Luo, Zhu and

Zhu (2016) and Li et al. (2017) analyzed this data set using a single-index VCM

and a functional varying-coefficient single-index model, respectively. The two

models both assume linear covariate effects with varying coefficients and/or non-

linear covariate effects only through the linear combination of the covariates with

varying coefficients. However, the linear effect is a somewhat strict constraint in

practical applications. Furthermore, we are interested in the function effect of

each predictor on the response process, including the linear effect as its special

case. Therefore, we apply a VCAM to this data set.

Employing the proposed model identification procedure, we claim that the

varying-coefficient functions are all time-variant, and that the additive functions

are all nonlinear. Figure 4 shows the Huber estimators of the univariate com-

ponent functions and the 95% pointwise CIs based on (3.4). Figure 4(e)–(g)
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Figure 3. Three-step M-estimators for CD4 data set. Solid line: three-step M-estimators;
dash-dotted lines: 95% CIs based on (3.4); (f) plots the scaled residuals relative to the
fitted values.

show how the covariates affect the response process: the effect of age increases

initially, then decreases before the average age, and subsequently increases; the

effect of educational level increases gently before the average educational level,

then decreases, and finally increases; the effect of the ADNI Mini-Mental State

Exam decreases until nearly the average value, and then increases. The esti-

mated bivariate functions gk(t, xk) = αk(t)βk(xk), for k = 1, 2, 3, are presented

in Figure 10 of the Supplementary Material, which shows the dynamic effects of

the covariates. The Q–Q plot shows that our regression method is appropriate

for this data set.

An analysis of the cigarette data mentioned in Section 1 shows that a reduced

VCAM is preferable. Details are given in Section S1.6 of the Supplementary

Material.

7. Conclusion

The VCAM proposed by Zhang and Wang (2015) is a flexible structural

nonparametric regression method that includes the classical VCM and AM as

special cases. In this study, we developed an M-type robust regression method



792 HU, HUANG AND YOU

0  0.2  0.4  0.6  0.8 1 
0.572

0.576

0.58

0.584

0.588

α 0

t

(a) α0

0  0.2  0.4  0.6  0.8 1
t

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

α 1
(b) α1

0 0.2 0.4 0.6 0.8 1
t

-0.2
0

0.2
0.4
0.6
0.8
1

1.2
1.4

α 2

(c) α2

0  0.2  0.4  0.6  0.8 1
t

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

α 3

(d) α3

-3 -2 -1 0 1  2
-0.2

-0.15
-0.1

-0.05
0

0.05
0.1

0.15
0.2

0.25
0.3

β 1

Age

(e) β1

-2.5 -1.5 0.5 1.5-0.5
Education

-0.1
-0.08
-0.06
-0.04
-0.02

0
0.02
0.04
0.06
0.08

β 2
(f) β2

-2.5 -1.5 -0.5 0.5 
MMSE

-0.04
-0.02

0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16

β 3

(g) β3

-5   5-3 -1    1  3 
-0.8
-0.6
-0.4
-0.2

0

Q
ua

nt
ile

s o
f I

np
ut

 S
am

pl
e

0.8

0.6
0.4
0.2

 QQ Plot of Sample Data versus Standard Normal

Standard NormalQuantiles

(h) Q-Q plot

Figure 4. Estimated univariate component functions for ADNI data. Solid line: three-
step M-estimator; dash-dotted lines: 95% CIs based on (3.4).

for this VCAM to enable analyses of longitudinal data and functional data, which

may include sparse or dense repeated measurements for the selected subjects, and

both the response and the covariates may be smooth processes that depend on

the observation time.

We have proposed spline-based three-step M-estimators for varying-coefficient

component functions and additive component functions. The asymptotic proper-

ties are considered for sparse and dense data within a unified framework, which

separates these data based on the relative order of ni to n. Similarly to Hu, Huang
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and You (2019), the proposed estimation method exhibits the oracle property in

that the iterative estimation procedure does not cause additional asymptotic

errors.

To select as parsimonious a model as possible, we have also developed a model

identification procedure based on the SCAD penalty function. Here, we showed

that the proposed model identification method correctly selects an additive term

and a varying-coefficient term with probability approaching unity.

Supplementary Material

The online Supplementary Material includes additional numerical studies,

an iterative algorithm for penalized M-estimators, and proofs of the asymptotic

results.
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Appendix

A. Appendix

Let Cr[a, b] be the space of all functions m(x) defined on [a, b] such that the

(r − 1)-order derivative m(r−1)(·) is continuous over [a, b], and∣∣m(r−1)(x)−m(r−1)(x′)
∣∣ ≤ C|x− x′|, ∀ x, x′ ∈ [a, b],

where C is a positive constant. The necessary conditions for the asymptotic

results are listed below.

• Basic assumptions.

(A1) The time points {tij} are independent copies of T , whose probability

density function fT (·) is uniformly bounded away from zero and infinity.

(A2) The marginal density function fk(·) of Xk is uniformly bounded away
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from zero and infinity over the support set Sk of Xk. The joint density

fX,T (x, t) of X and T is uniformly bounded away from zero and infinity

on (x, t) ∈
∏p
k=1 Sk × [0, 1].

(A3) αk ∈ Cr[0, 1] and βk ∈ Cr[ak, bk], where 1 ≤ r ≤ q and ak, bk are finite

real numbers for k = 1, . . . , p.

(A4) The function φ(·) = ρ′(·) satisfies E[φ(εij)|tij = t] = 0 and E[φ2(εij)|tij =

t] ≤ C1 for any t ∈ [0, 1], where C1 is a positive constant.

(A5) There exists some positive constant λ̃ such that the smallest eigenvalue

λi1 of Gi = E[φ(εi)φ(εi)
τ |J ] satisfies λi1 ≥ λ̃ > 0.

• Assumptions for convex loss function.

(M1) The loss function ρ(·) is convex, and there exist some function $(t)

and positive constants c1 and C2 such that

|E[φ(εij + u)|tij = t]−$(t)u| ≤ C2u
2

for any |u| ≤ c1 and t ∈ [0, 1]. Moreover, $(t) satisfies 0 < c$ ≤
mint∈[0,1]$(t) ≤ maxt∈[0,1]$(t) ≤ C$ <∞.

(M2) There exist positive finite constants c2, C3, and C4 such that

E[{φ(εij + u)− φ(εij)}2|J ] ≤ C3|u|

and |φ(u+ v)− φ(v)| ≤ C4 for any |u| ≤ c2, t ∈ [0, 1], and v ∈ R.

• Assumptions for non-convex loss function.

(N1) The function φ(·) is continuous and has a derivative φ′(·) almost ev-

erywhere. Furthermore, φε(t) = E[φ′(εij)|tij = t] is positive and con-

tinuous at t.

(N2) E
[

sup‖z‖≤δ |φ(εij + z)− φ(εij)− φ′(εij)z|tij = t
]

= o(δ) as δ → 0.

Remark 4. Assumptions A1 and A2 relate to the distributions of time points

tij and covariates xij . Assumption A3 specifies the degree of smoothness of

varying-coefficient component functions and additive component functions. As-

sumptions A4, M1, and M2 are standard assumptions about the score function φ

of a convex loss function; see He, Zhu and Fung (2002); Tang and Cheng (2008)

for details. Assumptions N1 and N2 are necessary for a non-convex loss function;

see Fan and Jiang (2000); Jiang and Mack (2001).
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