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Abstract: In order to quickly approximate maximum likelihood estimators from

massive data, this study examines the optimal subsampling method under the A-

optimality criterion (OSMAC) for generalized linear models. The consistency and

asymptotic normality of the estimator from a general subsampling algorithm are

established, and optimal subsampling probabilities under the A- and L-optimality

criteria are derived. Furthermore, using Frobenius-norm matrix concentration in-

equalities, the finite-sample properties of the subsample estimator based on opti-

mal subsampling probabilities are also derived. Because the optimal subsampling

probabilities depend on the full data estimate, an adaptive two-step algorithm is

developed. The asymptotic normality and optimality of the estimator from this

adaptive algorithm are established. The proposed methods are illustrated and

evaluated using numerical experiments on simulated and real data sets.

Key words and phrases: Generalized linear models, massive data, matrix concen-

tration inequality.

1. Introduction

Today, massive data sets are ubiquitous in many scientific fields and prac-

tices, including astronomy, economics, and industrial problems. Extracting use-

ful information from these large data sets is a core challenge in areas such as

computer science, machine learning, statistics, and, as a result, has attracted

much attention. However, computational limitations still exist, owing to rapid

growth in the volume of data. Subsampling is a popular technique for extract-

ing useful information from massive data. Therefore, this study develops op-

timal subsampling strategies for generalized linear models (GLMs). Typically,

the maximum likelihood estimators (MLEs) are found numerically by using the

Newton–Raphson method. However, fitting a GLM on massive data is not an

easy task using the iterative Newton–Raphson method, requiring O(p2n) time in
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each iteration of the optimization procedure.

Subsampling provides an efficient way to solve this problem (e.g., see Drineas,

Mahoney and Muthukrishnan (2006)) because it essentially reduces the volume

of the data. Drineas et al. (2011) proposed performing a randomized Hadamard

transform on the data and then using the uniform subsampling to take ran-

dom subsamples to approximate the ordinary least squares estimators in linear

regression models. Ma, Mahoney and Yu (2015) and Ma and Sun ((2015) de-

veloped an effective subsampling method for linear regression models that uses

normalized statistical leverage scores of the covariate matrix as nonuniform sub-

sampling probabilities. Jia et al. (2014) studied leverage sampling for GLMs,

based on generalized statistical leverage scores. Wang, Zhu and Ma (2018) and

Yao and Wang (2019) developed an optimal subsampling procedure to minimize

the asymptotic mean squared error (MSE) of the resultant subsample-estimator,

given the full data, based on A- or L-optimality criteria in the language of op-

timal design. Wang, Yang and Stufken (2019) proposed a new algorithm, called

the information-based optimal subdata selection method, for linear regressions

on big data. The basic idea is to select the most informative data points deter-

ministically based on D-optimality, without relying on random subsampling. A

divide-and-conquer version of the algorithm is presented in Wang (2019). Recent

developments related to the big data subsampling method can be found in Wang

et al. (2016).

Methodological investigations on subsampling methods with statistical guar-

antees for massive data regression are still limited when models are complex. To

the best of our knowledge, most existing results concern linear regression models,

as in Ma, Mahoney and Yu (2015) and Wang, Yang and Stufken (2019). The

optimal subsampling methods in Wang, Zhu and Ma (2018) and Yao and Wang

(2019) are designed specifically for logistic and multinomial regression models,

respectively. However, using only linear and logistic regressions is not sufficient,

in practice (Czado and Munk (2000)). For example, we may need a Poisson

or a negative binomial distribution for count data, or need a Gamma or an in-

verse Gaussian distribution for data with nonnegative responses. In addition,

the aforementioned investigations do not consider the finite-sample properties

of the subsampled estimators. We attempt to fill these gaps by deriving the

optimal subsampling probabilities for GLMs, including those with noncanonical

link functions, thus allowing a wide range of statistical models for a regression

analysis. Furthermore, we derive the finite-sample upper bounds for the approx-

imation errors, which can be used in practice to balance the subsample size and
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the prediction accuracy. Owing to the nonnatural link, our investigation is quite

different from that of Wang, Zhu and Ma (2018). For example, the Hessian ma-

trix in the models considered in this study may be dependent on the responses.

The rest of this paper is organized as follows. Section 2 introduces the

model setup and derives the asymptotic properties for the general subsampling

estimator. Section 3 derives optimal subsampling strategies based on A- and L-

optimality criteria for GLMs. The finite-sample error bounds are also derived in

this section. Section 4 designs a two-step algorithm to approximate the optimal

subsampling procedure, and obtains the asymptotic properties of the resultant

estimator. Section 5 demonstrates the proposes method using numerical simula-

tions and real data.

2. Preliminaries

2.1. Models and assumptions

Recall the definition of the one-parameter exponential family of distributions

f(y|θ) = h(y) exp(θy − ψ(θ)), for θ ∈ Θ, as in (5.50) of Efron and Hastie (2016),

where θ is called the canonical parameter, and Θ is called the natural parameter

space. Here f(·|θ) is a probability density function for the continuous case, or

a probability mass function for the discrete case; h(·) is a specific function that

does not depend on θ; and the parameter space Θ is defined as Θ := {θ ∈
R :

∫
h(x) exp(θx)µ(dx) < ∞}, with µ being the dominating measure. The

exponential family includes most of the commonly used distributions, such as the

normal, gamma, Poisson, and binomial distributions (see Mccullagh and Nelder

(1989); Efron and Hastie (2016)).

A key tactic for a generalized linear regression model is to express θ in

the form of a linear function of regression coefficients. Let (x, y) be a pair of

random variables, where y ∈ R and x ∈ Rp. The generalized linear regression

model assumes that the conditional distribution of yi, given xi, is determined

by θi = u(βTxi). Specifically for the exponential family, it assumes that the

distribution of y|x is

f(y|β,x) = h(y) exp(yu(βTxi)− ψ(u(βTxi))), with βTx ∈ Θ. (2.1)

The problem of interest is to estimate the unknown β from the observed data. As

a special case, when u(t) = t, the corresponding models are the so-called GLMs

with canonical link functions. Typical examples include the logistic regression for

binary data, and the Poisson regression for count data. A commonly used GLM
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with a noncanonical link function is the negative binomial regression (NBR),

which is often used as an alternative to the Poisson regression when the data

exhibit overdispersion. For this model, u(t) = t − log(ν + et) and ψ(u(t)) =

ν log(ν + et), for some size parameter ν.

2.2. General subsampling algorithm and its asymptotic properties

In this subsection, we present a general subsampling algorithm for GLMs

and obtain some asymptotic results.

To facilitate the presentation, denote the full data matrix by Fn = (X,y),

where X = (x1, . . . ,xn)T is the covariate matrix, and y = (y1, . . . , yn)T is the

response vector. In this paper, we assume that (xi, yi)’s are generated indepen-

dently from a GLM. Let S be a set of subsamples with r data points, and define

the sampling distribution πi for all data points i = 1, 2, . . . , n, as π. Then, we

have the following general subsampling algorithm:

1. Assign a sampling distribution π such that, in each draw, the ith element

in the full data set Fn has the inclusion probability πi.

2. Sample with replacement r times to form the subsample set S := {(y∗i ,x∗i ,
π∗i ), i = 1, . . . , r}, where x∗i , y

∗
i , and π∗i denote the covariates, responses,

and subsampling probabilities, respectively, in the subsample.

3. Based on the subsample set S, calculate the weighted log-likelihood estima-

tor by maximizing the following function:

L∗(β) =
1

r

r∑
t=1

1

π∗i
[y∗i u(βTx∗i )− ψ(u(βTx∗i ))]. (2.2)

An important feature of the above algorithm is that the subsample estimator

is essentially a weighted MLE, where the corresponding weights are inverses of the

subsampling probabilities. This is analogous to the Hansen–Hurwitz estimator

(Hansen and Hurwitz (1943)) in classic sampling techniques. For an overview see

Särndal, Swensson and Wretman (1992). Although Ma, Mahoney and Yu (2015)

showed that the unweighted subsample estimator is asymptotically unbiased for β

in leveraging sampling, an unweighted subsample estimator, is in general, biased

if the sampling distribution π depends on the responses. The inverse-probability

weighting scheme removes this bias; thus we restrict our analysis to the weighted

estimator.
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Let ψ̇(t) and ψ̈(t) be the first and the second derivatives of ψ(t), respec-

tively. To characterize the asymptotic properties of the subsampled estimators,

we require the following regularity assumptions:

(H.1) : Assume that βTx lies in the interior of a compact set K ∈ Θ almost

surely.

(H.2) : The regression coefficient β is an inner point of the compact domain

ΛB = {β ∈ Rp : ‖β‖ ≤ B}, for some constant B.

(H.3) : Central moments condition: n−1
∑n

i=1 |yi − ψ̇(u(βTxi))|4 = OP (1), for

all β ∈ ΛB.

(H.4) : As n→∞, the observed information matrix

JX :=
1

n

n∑
i=1

{ü(β̂TMLExi)xix
T
i [ψ̇(u(β̂TMLExi))− yi]

+ψ̈(u(β̂TMLExi))u̇
2(β̂TMLExi)xix

T
i ]}

goes to a positive-definite matrix in probability.

(H.5) : Require that the full sample covariates have finite sixth-order moments;

that is, E‖x1‖6≤∞.

(H.6) : Assume n−2
∑n

i=1 ‖xi‖k/πi = OP (1), for k = 2, 4.

(H.7) : For γ = 0 and some γ > 0, assume

1

n2+γ

n∑
i=1

|yi − ψ̇i(u(β̂TMLExi))|2+γ‖u̇(β̂TMLExi)xi‖2+γ

π1+γ
i

= OP (1).

Assumptions (H.1) and (H.2) are used in Clémencon, Bertail and Chautru

(2014). The set in (H.2) is also called the admissible set, which, is the premise

for consistent estimators in GLMs with full data (see Fahrmeir and Kaufmann

(1985)). These two assumptions ensure that E(yi|xi) <∞, for all i. Assumption

(H.4) imposes a condition on the covariates to ensure that the MLE based on

the full data set is consistent. To obtain the Bahadur representation of the

subsampled estimator, (H.3) and (H.5) are needed. Assumptions (H.6) and

(H.7) are moment conditions on the covariates and the subsampling probabili-

ties. Assumption (H.7) is required by the Lindeberg-Feller central limit theorem.

Specifically, for uniform subsampling with πi = n−1 or, more generally, when
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maxi=1,...,n(nπi)
−1 =OP (1), (H.7) is implied by n−1

∑n
i=1 |yi − ψ̇i(u(β̂TMLExi))|2+γ

‖u̇(β̂TMLExi)xi‖2+γ = OP (1), which is guaranteed by the condition E|y|4+2γ =

O(1) when (H.1) and (H.5) are satisfied.

The theorem below presents the consistency of the estimator from the sub-

sampling algorithm to the full-data MLE.

Theorem 1. If Assumptions (H.1)–(H.6) hold, then as n → ∞ and r → ∞, β̃

is consistent to β̂MLE in conditional probability, given Fn. Moreover, the rate of

convergence is r−1/2. That is, with probability approaching one, for any ε > 0,

there exist finite ∆ε and rε, such that

P (‖β̃ − β̂MLE‖ ≥ r−1/2∆ε|Fn) < ε, (2.3)

for all r > rε.

In addition to the consistency, we derive the asymptotic distribution of the

approximation error, thus proving that the approximation error, β̃ − β̂MLE, is

asymptotically normal in conditional distribution.

Theorem 2. If Assumptions (H.1)–(H.7) hold, then as n → ∞ and r → ∞,

conditional on Fn in probability,

V −1/2(β̃ − β̂MLE) −→ N(0, I) (2.4)

in distribution, where V = J −1
X VcJ −1

X = Op(r
−1) and

Vc =
1

rn2

n∑
i=1

{yi − ψ̇(u(β̂TMLExi))}2u̇2(β̂TMLExi)xix
T
i

πi
. (2.5)

3. Optimal Subsampling Strategies

In this section, we specify the subsampling distribution π = {πi}ni=1, with

theoretical backup.

3.1. Optimal subsampling strategies based on optimal design criteria

Based on the A-optimality criterion in the theory of experiment design (see

Pukelsheim (2006)), optimal subsampling selects subsampling probabilities such

that the asymptotic MSE of β̃ is minimized. This idea was proposed in Wang,

Zhu and Ma (2018). Here, we say the resulting subsampling strategy is mV-

optimal.
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Theorem 3. A subsampling strategy is mV-optimal if the subsampling probability

is chosen such that

πmV
i =

|yi − ψ̇(u(β̂TMLExi))|‖J
−1
X u̇(β̂TMLExi)xi‖∑n

j=1 |yj − ψ̇(u(β̂TMLExi))|‖J
−1
X u̇(β̂TMLExj)xj‖

, i = 1, 2, . . . , n. (3.1)

The optimal subsampling probability πmV has a meaningful interpretation

from the viewpoint of the optimal design of experiments (Pukelsheim (2006)).

Note that, under a mild condition, the “empirical information matrix” J eX =

n−1
∑n

i=1[yi − ψ̇(u(β̂TMLExi))]
2u̇2(β̂TMLExi)xix

T
i and JX converge to the same

limit, namely, the Fisher information matrix of model (2.1). This means that

J eX −JX = oP (1). Thus, JX can be replaced by J eX in πmV, because Theorem 2

still holds if JX is replaced by J eX in (2.5). Let ηxi
= [yi−ψ̇(u(β̂TMLExi))]

2u̇2(β̂TMLE

xi)xix
T
i be the contribution of the ith observation to the empirical information

matrix, and let J eXxiα
= (1− α)J eX + αηxi

, which can be interpreted as a move-

ment of the information matrix in a direction determined by the ith observation.

The directional derivative of tr(J eX
−1) through the direction determined by the

ith observation is Fi = limα→0+ α
−1{tr(J eX

−1)− tr(J eXxiα
−1)}. This directional

derivative is used to measure the relative gain in estimation efficiency under the

A-optimality after adding the ith observations to the sample. Thus, the optimal

subsampling strategy prefers to select data points with large values of direc-

tional derivatives, that is, data points that will result in a larger gain under the

A-optimality.

The optimal subsampling strategy derived from the mV-optimality criterion

requires that we calculate ‖J −1
X u̇(β̂TMLExi)xi‖, for i = 1, 2, . . . , n, which takes

O(np2) time. To reduce the computing time, Wang, Zhu and Ma (2018) proposed

a modified optimality criterion to minimize tr(Vc). This criterion is essentially the

L-optimality criterion in optimal experimental design (see Pukelsheim (2006)),

which aims to improve the estimation quality of JX β̃. It is easy to see that only

O(np) time is needed to calculate the optimal sampling probabilities. We say the

resulting subsampling strategy is mVc-optimal.

Theorem 4. A subsampling strategy is mVc-optimal if the subsampling proba-

bility is chosen such that

πmVc
i =

|yi − ψ̇(u(β̂TMLExi))|‖u̇(β̂TMLExi)xi‖∑n
j=1 |yj − ψ̇(u(β̂TMLExj))|‖u̇(β̂TMLExj)xj‖

, i = 1, 2, . . . , n. (3.2)

Note that in order to calculate ‖J −1
X u̇(β̂TMLExi)xi‖, for i = 1, 2, . . . , n, we
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need O(np2) time, but we only need O(np) time to evaluate ‖u̇(β̂TMLExi)xi‖.
Here, JX and Vc are nonnegative definite, and V = J −1

X VcJ −1
X . Simple matrix

algebra yields tr(V ) = tr(VcJ −2
X ) ≤ σmax(J −2

X )tr(Vc), where σmax(A) denotes

the maximum singular value of matrix A. Because σmax(J −2
X ) does not depend

on π, minimizing tr(Vc) minimizes an upper bound of tr(V ). In fact, for two

given subsampling strategies π(1) and π(2), if Vc(π
(1)) ≤ Vc(π(2)) in the sense of

Loewner-ordering, then it follows that V (π(1)) ≤ V (π(2)). Thus, the alternative

optimality criterion greatly reduces the computing time, without losing too much

in terms of estimation accuracy.

The score function for the log-likelihood means that πmVc
i in Theorem 4

is proportional to ‖{yi − ψ̇(β̂TMLExi)}u̇(β̂TMLExi)xi‖, the norms of the gradients

of the log-likelihood at individual data points, evaluated at the full-data MLE.

Here, we are trying to identify the subsample that best approximates the full

data score function at the full-data MLE.

We now illustrate Theorem 3 and Theorem 4 using some commonly used

GLMs. Note that u(·) is the identity function for GLMs with natural link func-

tions, such as the logistic and Poisson regressions. For the logistic regression,

πmV
i =

|yi − pi|
∥∥J −1

X xi
∥∥∑n

j=1 |yj − pj |
∥∥J −1

X xj
∥∥ , πmVc

i =
|yi − pi| ‖xi‖∑n
j=1 |yj − pj | ‖xj‖

,

with pi = exp(β̂TMLExi)/{1 + exp(β̂TMLExi)} and JX = n−1
∑n

k=1 pk(1−pk)xkxTk .

These are the same as the results in Wang, Zhu and Ma (2018). For the Poisson

regression,

πmV
i =

|yi − λi|
∥∥J −1

X xi
∥∥∑n

j=1 |yj − λj |
∥∥J −1

X xj
∥∥ , πmVc

i =
|yi − λi| ‖xi‖∑n
j=1 |yj − λj | ‖xj‖

,

with λi = exp(β̂TMLExi) and JX = n−1
∑n

k=1 exp(β̂TMLExk)xkx
T
k . The NBR does

not have a canonical link function, and the conditional distribution of the re-

sponse is modeled by the two-parameter distribution

f(yi|ν, µi) =
Γ(ν + yi)

Γ(ν)yi!

(
µi

ν + µi

)yi ( ν

ν + µi

)ν
, i = 1, 2, . . . , n,

where the size parameter ν can be estimated as a nuisance parameter. The

optimal subsampling probabilities for NBR with size parameter ν are

πmV
i =

|yi − µi|
∥∥J −1

X (νxi/(ν + µi))
∥∥∑n

j=1 |yj − µj |
∥∥J −1

X (νxj/(ν + µj))
∥∥ ,
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πmVc
i =

|yi − µi| ‖(νxi/(ν + µi))‖∑n
j=1 |yj − µj | ‖(νxi/(ν + µj))‖

with µi = exp(β̂TMLExi) and JX = n−1
∑n

k=1{ν(ν + yi)µi}/(ν + µi)
2xkx

T
k .

3.2. Non-asymptotic properties

Here, we derive some finite-sample properties of the subsample estimators

based on the optimal subsampling probabilities πmV and πmVc. The results are

presented in the form of the excess risk when approximating the mean responses

and they hold for fixed r and n, without requiring any quantity to go to infinity.

These results may identify the factors that affect the approximation accuracy.

Because ψ̇(u(xTi β)) is the conditional expectation of the response yi, given

xi, we aim to characterize the quantity of β̃ in the prediction by examining

‖ψ̇(u(XT
d β̂MLE))− ψ̇(u(XT

d β̃))‖. This quantity is the distance between the esti-

mated conditional mean responses based on the full-data, and that based on the

subsamples. Intuitively, it measures the goodness of fit when using a subsample

estimator to predict the mean responses. Note that we can always improve the

accuracy of the estimator by increasing the subsample size r. Here, we examine

the effects of different quantities such as the covariate matrix, data dimension,

and the effect of subsample size r, on approximation accuracy.

Let σmax(A) and σmin(A) be the maximum and minimum nonzero singu-

lar values, respectively, of matrix A, where κ(A) := σmax(A)/σmin(A). Denote

ψ̇(u(XTβ)), a vector with the ith element equals to ψ̇(u(xTi β)), and define

u̇(XTβ) := diag{u̇(xT1 β), . . . , u̇(xTnβ)}. For the estimator β̃ obtained from the

algorithm in Section 2 based on the subsampling probabilities, πmV and πmVc,

the following theorem holds.

Theorem 5. Let X̃ denote the design matrix consisting of the subsample covari-

ates, with each sampled element rescaled by 1/
√
rπ∗i . Assume that σ2

min(u̇(XT β̃)

X̃) ≥ 0.5σ2
min(u̇(XT β̃)X), and both σmax(u̇(XT β̃)X)/

√
n and σmin(u̇(XT β̃)X)

/
√
n are bounded. For any given ε ∈ (0, 1/3), with probability at least 1 − ε, we

have

‖ψ̇(u(XT β̂MLE))− ψ̇(u(XT β̃))‖

≤ 2Cu̇

[
1 +

4α
√

log(1/ε)√
r

]
√
pκ2(u̇(XT β̃)X)‖[y − ψ̇(u(XT β̂MLE))]‖, (3.3)

where α = κ(J −1
X ) for πmV, α = 1 for πmVc, and Cu̇ = supr∈K⊂Θ |u̇(r)|.
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Theorem 5 indicates that the accuracy increases with the subsample size r,

which agrees with the results in Theorem 1. In addition, it enables us to examine

the effects of various quantities such as the covariate matrix, data dimension, and

the effect of subsample size r, on the approximation accuracy. Heuristically, the

condition number of u̇(XT β̃)X measures the collinearity of the covariates in

the full-data covariate matrix, p shows the curse of dimensionality, and ‖y −
ψ̇(u(XT β̂MLE))‖ measures the goodness of fit of the underlying model on the

full data.

The result in (3.3) also indicates that we should choose r ∝ p to control the

error bound; hence, it seems reasonable to choose the subsample size as r = cp.

This agrees with the recommendation by Chapman et al. (1994) and Loeppky,

Sacks and Welch (2009) of choosing a sample size as large as 10 times number

of covariates for designed experiments. However, in such designed experiments,

the covariate matrices are often orthogonal, or close to orthogonal, in which

case, κ(u̇(XT β̃)X) is equal or close to one. Here, we consider that the full data

may not be obtained from well-designed experiments, in which case, u̇(XT β̃)X

may vary substantially. Thus, κ(u̇(XT β̃)X) should also be considered when

determining the required subsample size for a given level of prediction accuracy.

The constant 0.5 in Theorem 5’s condition σ2
min(u̇(XT β̃)X̃) ≥ 0.5σ2

min(u̇(XT

β̃)X) can be replaced by any constant between 0 and 1. Here, we follow the set-

ting of Drineas et al. (2011), and choose 0.5 for convenience. This condition

indicates that the rank of u̇(XT β̃)X̃ is the same as that of u̇(XT β̃)X. Further

details and interpretations about this condition can be found in Mahoney (2012).

Using a similar argument to that in the proof of Theorem 5, we prove that

this condition holds with high probability.

Theorem 6. Let u̇(XT β̃)X̃ denote the design matrix consisting of subsamples,

with each sampled element rescaled by 1/
√
rπ∗i . Assume that |yi−ψ̇(u(β̂TMLExi))|

‖u̇(β̂TMLExi)xi‖ ≥ γ‖xi‖, for all i, and that σmax(u̇(XT β̃)X)/
√
n, and σmin(u̇(

XTβ)X)/
√
n are bounded. For any given ε ∈ (0, 1/3), let cd ≤ 1 be a constant

depending on u̇(XT β̃)X, Cu̇ = supr∈K⊂Θ |u̇(r)| , and r > 64c2
dC

2
u̇ log(1/ε)σ4

max(

X)p2/(α2δ2σ4
min(u̇(XT β̃)X)), where δ is some constant depending on γ, and

‖y − ψ̇(u(XT β̂MLE))‖. Then, with probability at least 1− ε:

σ2
min(u̇(XT β̃)X̃) ≥ 0.5σ2

min(u̇(XT β̃)X),

where α = κ(J −1
X ) for πmV and α = 1 for πmVc.
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4. Practical Consideration and Implementation

For practical implementation, the optimal subsampling probabilities {πmV
i :

i = 1, . . . , n} and {πmVc
i : i = 1, . . . , n} cannot be used directly, because they

depend on the unknown full-data MLE, β̂MLE. As suggested in Wang, Zhu and

Ma (2018), in order to calculate πmV or πmVc, a pilot estimator of β̂MLE has

to be used. Let β̃0 be a pilot estimator based on a subsample of size r0. This

can be used in place of β̂MLE in πmV or πmVc, which then can be used to derive

more informative subsamples.

From the expression of πmV or πmVc, the approximated optimal subsampling

probabilities are both proportional to |yi− ψ̇(u(β̃T0 xi))|. Thus, a data point with

yi ≈ ψ̇(u(β̃T0 xi)) has a very small probability of being selected, and the data

point with yi = ψ̇(u(β̃T0 xi)) will never be included in a subsample. On the other

hand, if these data points are included in the subsample, they may dominate the

weighted log-likelihood function in (2.2). As a result, the subsample estimator

may be sensitive to these data points. Ma, Mahoney and Yu (2015) also noticed

that some extremely small subsampling probabilities may inflate the variance of

the subsampling estimator in the context of leveraging sampling.

To protect the weighted log-likelihood function from being inflated by these

data points in practice, we propose setting a threshold, say δ, for |yi−ψ̇(u(β̃T0 xi))|;
that is, use max{|yi − ψ̇(u(β̃T0 xi))|, δ} in place of |yi − ψ̇(u(β̃T0 xi))|. Here, δ is a

small positive number, say 10−6. Setting a threshold δ in the subsampling prob-

abilities truncates the weights of the subsample weighted log-likelihood. Trun-

cating the weight function is commonly used in practice to ensure a robust es-

timation. Note that, in practice, an intercept should always be included in the

model, so it is typical that ‖u̇(β̂TMLExi)xi‖ and ‖J −1
X u̇(β̂TMLExi)xi‖ are bounded

away from zero, and do not need a threshold. Let Ṽ be the version of V with

β̂MLE substituted by β̃0. It can be shown that

tr(Ṽ ) ≤ tr(Ṽ δ) ≤ tr(Ṽ ) +
δ2

n2r

n∑
i=1

1

πi
‖J̃ −1

X u̇(β̂TMLExi)xi‖2.

Thus, minimizing tr(Ṽ δ) is close to minimizing tr(Ṽ ) if δ is sufficiently small.

The threshold δ makes our subsampling estimator more robust, without com-

promising too much on estimation efficiency. Here, we can also approximate

JX using the pilot sample. Specifically, the JX in mV is approximated by J̃X =

(r0)−1
∑r0

i=1 {ü(β̃Tx∗i )x
∗
ix
∗T
i [ψ̇(u(β̃Txi

∗))−yi∗]+ψ̈(u(β̃Txi
∗))u̇2(β̃Txi

∗)xi
∗x∗Ti ]},

based on the first-stage subsamples {(x∗i , y∗i ) : i = 1, . . . , r0}.
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For transparent presentation, we combine the aforementioned practical con-

siderations in the following two-step algorithm:

1. Run the general subsampling algorithm with π = πUNIF and r = r0 to

obtain the pilot subsample set S̃r0 and a pilot estimator β̃0.

2. Use β̃0 to calculate the approximated subsampling probabilities π̃opt =

{π̃mV
i }ni=1 or π̃opt = {π̃mVc

i }ni=1, where π̃mV
i is proportional to max(|yi −

ψ̇(u(β̃T0 xi))|, δ)‖J̃
−1
X u̇(β̃T0 xi)xi‖s and π̃mVc

i is proportional to max(|yi −
ψ̇(u(β̃T0 xi))|, δ)‖u̇(β̃T0 xi)xi‖.

3. Sample with replacement r times based on π̃opt to obtain the subsample

set Sr∗ := S̃r0 ∪ {(y∗i ,x∗i , π̃∗i ), i = 1, . . . , r}.

4. Maximize the following weighted log-likelihood function to obtain the esti-

mator β̆:

L∗(β) =
1

r + r0

∑
i∈Sr∗

1

π̃∗i
[y∗i u(βTx∗i )− ψ(uβTx∗i ))]. (4.1)

The following theorems describe the asymptotic properties of β̆.

Theorem 7. Under Assumptions (H.1)–(H.5), if r0r
−1 → 0 as r0 →∞, r →∞,

and n→∞, then for the estimator β̆ obtained from the two-step algorithm, with

probability approaching one, for any ε > 0, there exist finite ∆ε and rε, such that

P (‖β̆ − β̂MLE‖ ≥ r−1/2∆ε|Fn) < ε,

for all r > rε.

The asymptotic normality is presented in the following theorem.

Theorem 8. Under assumptions (H.1)–(H.5), if r0r
−1 → 0, then for the esti-

mator obtained from the two-step algorithm, as r0 → ∞, r → ∞, and n → ∞,

conditional on Fn,

V
−1/2
opt (β̆ − β̂MLE)→ N(0, I), (4.2)

where Vopt = J −1
X Vc,optJ −1

X ;

Vc,opt =
1

r

1

n

n∑
i=1

{yi − ψ̇(u(β̂TMLExi))}2u̇2(β̂TMLExi)xix
T
i

max(|yi − ψ̇(u(β̂TMLExi))|, δ)‖u̇(β̂TMLExi)xi‖
(4.3)

× 1

n

n∑
i=1

max(|yi − ψ̇(u(β̂TMLExi))|, δ)‖u̇(β̂TMLExi)xi‖
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when subsampling probabilities based on π̃mVc
i , and

Vc,opt =
1

r

1

n

n∑
i=1

{yi − ψ̇(u(β̂TMLExi))}2u̇2(β̂TMLExi)xix
T
i

max(|yi − ψ̇(u(β̂TMLExi))|, δ)‖J
−1
X u̇(β̂TMLExi)xi‖

× 1

n

n∑
i=1

max(|yi − ψ̇(u(β̂TMLExi))|, δ)‖J −1
X u̇(β̂TMLExi)xi‖

when subsampling probabilities based on π̃mV
i .

In order to obtain the standard error of the corresponding estimator, we

estimate the variance-covariance matrix of β̆ by V̆ = J̆ −1
X V̆cJ̆ −1

X , where

J̆X =
1

n(r0 + r)
×{

r0∑
i=1

ü(β̆Tx∗i )x
∗
ix

T
i [ψ̇(u(β̆Tx∗i ))− y∗i ] + ψ̈(u(β̆Tx∗i ))u̇

2(β̃T0 x
∗
i )x
∗
ix

T
i

π∗i0

+

r∑
s=1

ü(β̆Tx∗s)x
∗
sx

T
s [ψ̇(u(β̆Tx∗s))− y∗s ] + ψ̈(u(β̆Tx∗s))u̇

2(β̆Tx∗s)xsx
T
s

π̃∗s

}
,

V̆c =
1

n2(r0 + r)2

{
r0∑
i=1

{yi − ψ̇(u(β̆Tx∗i ))}2u̇2(β̆Tx∗i )x
∗
i (x
∗
i )
T

(π̃∗i0)2

+

r∑
i=1

{y∗i − ψ̇(u(β̆Tx∗i ))}2u̇2(β̆Tx∗i )x
∗
i (x
∗
i )
T

(π̃∗i )
2

}
,

π∗i0 is the subsampling probability used in the first stage, and π̃∗i = π̃mV∗
i or

π̃mVc∗
i , for i = 1, . . . , r.

5. Numerical Studies

5.1. Simulation studies

In this section, we use simulations to evaluate the finite-sample performance

of the proposed method for a Poisson regression and a NBR. Computations are

performed in R (R Core Team (2018)). The performance of a sampling strategy π

is evaluated using the empirical mean squared error (eMSE) of the resultant esti-

mator: eMSE = K−1
∑K

k=1 ‖β
(k)
π − β̂MLE‖, where β

(k)
π is the estimator from the

kth subsample with subsampling probability π, and β̂MLE is the MLE calculated

from the whole data set. We set K = 1,000 throughout this section.
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Poisson regression. Full data of size n = 10,000 are generated from model

y|x ∼ P(exp(βTx)), where the true value of β is a 7 × 1 vector of 0.5. We

consider the following four cases to generate the covariates xi = (xi1, . . . , xi7)T .

Case 1: The seven covariates are independent and identically distributed (i.i.d.)

from the standard uniform distribution, namely, xij
i.i.d.∼ U([0, 1]), for

j = 1, . . . , 7.

Case 2: The first two covariates are highly correlated. Specifically, xij
i.i.d.∼

U([0, 1]), for all j except that xi2 = xi1 + εi, with εi
i.i.d.∼ U([0, 0.1]).

For this setup, the correlation coefficient between the first two covari-

ates is about 0.8.

Case 3: This case is the same as the second, except that εi
i.i.d.∼ U([0, 1]). For

this case, the correlation between the first two covariates is close to 0.5.

Case 4: This case is the same as the third, except that xij
i.i.d.∼ U([−1, 1]), for

j = 6, 7. For this case, the bounds for each covariates are not all the

same.

We consider both π̃mV
i and π̃mVc

i , and choose δ = 10−6. For compari-

son, we also consider uniform subsampling with πi = 1/n for all i, and the

leverage subsampling strategy in Ma, Mahoney and Yu (2015), in which πi =

hi/
∑n

j=1 hi = hi/p, with hi = xi(X
TX)−1xi. Here hi is the leverage score for

the linear regression. For GLMs, the leverage scores are defined by using the ad-

justed covariate matrix, namely, h̃i = x̃i(X̃
T X̃)−1x̃i, where X̃ = (x̃1, . . . , x̃n)T ,

x̃i =
√
−E{∂2 log f(yi|θ̃i)/∂θ2}xi, and θ̃i = β̃Txi, with an initial estimate β̃0

(see Lee (1987)). In this example, simple algebra yields x̃i =
√

exp(β̃T0 xi)xi. For

the leverage score subsampling, we considered both hi and h̃i. We compare the

following methods: UNIF, uniform subsample; mV, πi = π̃mV
i ; mVc, πi = π̃mVc

i ;

Lev, leverage sampling based on hi; and Lev-A, adjusted leverage sampling based

on h̃i.

We first consider the case in which the first step sample size is fixed. We let

r0 = 200, and the second step sample size r be 300, 500, 700, 1,000, 1,200, and

1,400. When subsampling probabilities that do not depend on unknown param-

eters, these are implemented with a subsample size r + r0, for fair comparisons.

Figure 1 shows the eMSEs. For all four data sets, the subsampling methods

based on π̃mV and π̃mVc always result in a smaller eMSE than that of the uniform

subsampling, which agrees with the theoretical result that they aim to minimize
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Figure 1. The eMSEs for a Poisson regression with different second step subsample size
r and a fixed first step subsample size r0 = 200. The distributions of the covariates are
listed at the beginning of Section 5.

the asymptotic eMSEs of the resultant estimator. If the components of x are

independent, π̃mV and π̃mVc exhibit similar performance. However, they may

perform differently if some covariates are highly correlated because π̃mVc reduces

the impact of the data correlation structure, because we replaced ‖J̃ −1
X xi‖2 in

π̃mV with ‖xi‖2 in π̃mVc.

For Cases 1, 3, and 4, the eMSEs are small. This is because the condition

number of Xd is quite small (≈ 5), and a small subsample size r = 100 produces

satisfactory results. However, for Case 2, the condition number is large (≈ 40);

therefore, a larger subsample size is needed to approximate β̂MLE accurately.

This agrees with the conclusion in Theorem 5.

Theorem 8 also enables inferences on β. Note that in the subsampling set-

ting, r is much smaller than the full data size n. If r = o(n), then β̂MLE in

Theorem 8 can be replaced by the true parameter. As an example, we take β2 as

a parameter of interest and construct 95% confidence intervals for it. Here the

estimator given by V̆ = J̆ −1
X V̆cJ̆ −1

X is used to estimate the variance-covariance

matrices based on selected subsamples. For comparison, the uniform subsampling

method is also implemented.
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Table 1. Empirical coverage probabilities and average lengths of confidence intervals for
β2. The first step subsample size is fixed at r0 = 200.

method mV mVc UNIF

r Coverage Length Coverage Length Coverage Length

case 1

300 0.954 0.2037 0.955 0.2066 0.952 0.2275

500 0.954 0.1684 0.945 0.1713 0.942 0.1924

1,000 0.946 0.1254 0.938 0.1281 0.953 0.1471

case 2

300 0.961 1.9067 0.946 2.0776 0.950 2.2549

500 0.958 1.5470 0.948 1.7263 0.947 1.9082

1,000 0.954 1.1379 0.948 1.2919 0.945 1.4559

case 3

300 0.959 0.1770 0.953 0.1816 0.939 0.2000

500 0.942 0.1451 0.949 0.1507 0.942 0.1693

1,000 0.954 0.1082 0.954 0.1132 0.939 0.1291

case 4

300 0.955 0.2097 0.951 0.2179 0.953 0.2402

500 0.951 0.1721 0.956 0.1803 0.942 0.2033

1,000 0.957 0.1276 0.960 0.1347 0.943 0.1552

Table 1 reports the empirical coverage probabilities and average lengths for

the Poisson regression model over the four synthetic data sets, with the first step

subsample size fixed at r0 = 200. It is clear that π̃mV and π̃mVc exhibit similar

performance and are uniformly better than the uniform subsampling method.

As r increases, the lengths of the confidence intervals decrease uniformly, which

echoes the results of Theorem 8. The confidence intervals in Case 2 are longer

than those in other cases with the same subsample sizes. This is because the

condition number of Xd in Case 2 is bigger than that of Xd in other cases. This

indicates that we should select a larger subsample when the condition number of

the full data set is bigger, which echoes the results discussed in Section 3.2.

Negative Binomial Regression. Next, we perform a simulation for the nega-

tive binomial regression with n = 100,000; the results are summarized in Figure

2. Here, we assume yi|xi ∼ NB(µi, ν), where µi = exp(βTxi) and ν = 2. The

other simulation settings are the same as the Poisson regression example. Note

that, compared with the Poison regression, the eMSEs are lager for the NBR

when r is the same. This agrees with Theorem 5, because Cu̇ > 1 for NBR. The

result for the 95% confidence intervals of β2 are reported in Table 2.

Now, we investigate the effect of different sample size allocations between

the two steps. Because the Poisson regression and the NBR exhibit similar

performance, we report the results for the Poisson regression only, for brevity.

Here, we calculate the eMSEs for various proportions of the first step subsamples,
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Figure 2. The eMSEs for the NBR with different second step subsample size r and a
fixed first step subsample size r0 = 200. The distributions of the covariates are listed at
the beginning of Section 5.

Table 2. Empirical coverage probabilities and average lengths of the confidence intervals
for β2 in the NBR with ν = 2. The first step subsample size is fixed at r0 = 200.

method mV mVc UNIF

r Coverage Length Coverage Length Coverage Length

case1

300 0.952 0.2122 0.955 0.2147 0.947 0.2354

500 0.952 0.1758 0.954 0.1776 0.946 0.1991

1,000 0.951 0.1305 0.933 0.1331 0.940 0.1520

case2

300 0.947 2.0228 0.963 2.2160 0.943 2.3913

500 0.953 1.6468 0.952 1.8423 0.946 2.0225

1,000 0.957 1.2065 0.947 1.3849 0.942 1.5439

case3

300 0.950 0.1878 0.950 0.1925 0.942 0.2110

500 0.949 0.1546 0.954 0.1595 0.944 0.1786

1,000 0.953 0.1150 0.957 0.1197 0.943 0.1361

case4

300 0.956 0.2288 0.953 0.2366 0.953 0.2573

500 0.968 0.1876 0.963 0.1956 0.936 0.2176

1,000 0.950 0.1396 0.952 0.1469 0.940 0.1662
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Figure 3. The eMSEs vs. the proportions of the first step subsample, with fixed total
subsample sizes r + r0, in the Poisson regression.
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Figure 4. The eMSEs vs δ ranging from 10−6 to 1 with fixed total subsample sizes r+ r0
in Poisson regression. Logarithm is taken on δ for better presentation.

with fixed total subsample sizes. The results are given in Figure 3, with total

subsample size r0 + r = 800 and 1,200. Because the results are similar in all

cases, we present the results for Case 4 only. Note that the two-step method

outperforms the uniform subsampling method in all four cases, for both the

Poisson regression and the NBR, when r0/r ∈ [0.1, 0.9]. This indicates that the

two-step approach is more efficient than the uniform subsampling. The two-step

approach works best when r0/r is around 0.2.

To explore the influence of δ in π̃mV
i and π̃mVc

i , we calculate the eMSEs for

various δ, ranging from 10−6 to 1, with fixed total subsample sizes. Because the

results for the Poisson regression and the NBR are similar, we report the results

for the Poisson regression only. Figure 4 presents the results for Case 4, with a

total subsample size r0 + r = 800 and 1,200. Figure 4 shows that the eMSE is

not sensitive to the choice of δ when δ is not large, say δ = 1.

To evaluate the computational efficiency of the subsampling strategies, we

record the computing time of each (uniform, πmV, πmVc, leverage score and
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Table 3. Computing time (in seconds) for the Poisson regression in Case 4, with different
r and fixed r0 = 400.

r FULL UNIF mV mVc Lev Lev-A

1,000 0.187 0.003 0.020 0.016 0.024 0.031

1,500 0.195 0.005 0.022 0.017 0.022 0.033

2,000 0.193 0.007 0.021 0.018 0.026 0.036

2,500 0.194 0.004 0.027 0.022 0.024 0.036

Table 4. Empirical MSE for the Poisson regression in Table 3. The numbers in paren-
theses are standard errors.

r UNIF MV MVc Lev Lev-A

1,000 0.0091 (0.0065) 0.0064 (0.0041) 0.0088 (0.0051) 0.0088 (0.0065) 0.0095 (0.0068)

1,500 0.0071 (0.0054) 0.0047 (0.0034) 0.0049 (0.0038) 0.0067 (0.0049) 0.0070 (0.0051)

2,000 0.0056 (0.0043) 0.0037 (0.0026) 0.0040 (0.0031) 0.0054 (0.0041) 0.0054 (0.0040)

2,500 0.0045 (0.0032) 0.0030 (0.0021) 0.0033 (0.0025) 0.0044 (0.0034) 0.0047 (0.0036)

adjusted leverage score), using the Sys.time() function in R to record the start

and end times. Each subsampling strategy is evaluated 50 times. All methods

are implemented in the R programming language. Computations are performed

on a desktop computer running Windows 10, with an Intel I7 processor and 32

GB memory. Table 3 shows the results for Case 4 with different r and a fixed

r0 = 400. The computing time for the full data set is also given for comparison.

It is not surprising to observe that the uniform subsampling algorithm re-

quires the least computing time, because it does not require an additional step

to calculate the subsampling probability. The algorithm based on πmV requires

a longer computing time than that of the algorithm based on πmVc, which agrees

with the theoretical analysis in Section 4. The leverage score sampling takes

nearly as long as the mV method, because the leverage scores are computed

directly, by definition. Note that p = 7 is not sufficiently large to use the fast

computing method of Drineas et al. (2011). For fairness, we also consider the case

with p = 80, and n = 100,000, for which it is suitable to use the fast computing

method for the Lev and Lev-A methods. The first seven variables are generated

as in Case 4, and the rest are generated independently from U([0, 1]). Here, r0

is also selected as 400, and the corresponding results are reported in Table 5. In

order to see the estimation effects, we also present the eMSEs in Tables 4 and 6.

From Table 5, it is clear that the subsampling algorithms all take signif-

icantly less computing time than the full data approach does. The Lev and
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Table 5. Computing time (in seconds) for the Poisson regression with n = 100,000,
dimension p = 80, different values of r, and a fixed r0 = 400.

r FULL UNIF mV mVc Lev Lev-A

1,000 11.738 0.129 0.638 0.218 0.475 0.557

1,500 11.659 0.163 0.689 0.253 0.514 0.595

2,000 11.698 0.203 0.725 0.296 0.552 0.637

2,500 12.005 0.240 0.777 0.339 0.602 0.681

Table 6. Empirical MSE for the Poisson regression in Table 5. The numbers in paren-
theses are standard errors.

r UNIF MV MVc Lev Lev-A

1,000 0.1003 (0.0174) 0.0786 (0.0135) 0.0782 (0.0136) 0.1011 (0.0172) 0.1021 (0.0192)

1,500 0.0729 (0.0121) 0.0582 (0.0100) 0.0579 (0.0101) 0.0722 (0.0125) 0.0732 (0.0127)

2,000 0.0562 (0.0095) 0.0472 (0.0085) 0.0470 (0.0085) 0.0565 (0.0094) 0.0577 (0.0099)

2,500 0.0466 (0.0079) 0.0392 (0.0070) 0.0395 (0.0067) 0.0463 (0.0078) 0.0471 (0.0078)

Lev-A methods are faster than the mV method because the fast algorithm runs

in O(pn log n) time to obtain the subsampling probabilities, as opposed to the

O(p2n) time required by the mV method. However, the mVc method is faster

than the Lev and Lev-A methods, because the time complexity is just O(pn)

when computing the subsampling probabilities. As the dimension increases, the

computational advantage of πmVc becomes even more significant.

5.2. Real data studies

In the following, we demonstrate the methods described in Section 4 by

applying them to a data set from musicology. This data set contains 1,019,318

unique users’ music play counts in the Echo Nest, which is available at http://

labrosa.ee.columbia.edu/millionsong/tasteprofile. One of the challenges

with this data set is to build a music recommendation system. As a basic step,

it is interesting to predict the play counts using the song information collected

in the Million Song Dataset (Bertin-Mahieux et al. (2011)). Because the major

mode and minor mode usually express different feelings, the play counts may

perform differently under the two modes. Thus, we only focus on the major

mode in this example. In addition to the mode of the music, the following six

features are selected to describe the song characteristics: x1, the duration of

the track; x2, the overall loudness of the song; x3, tempo in BPM; x4, artist

hotnesss; x5, song hotnesss; x6, the hotness of the album, which is selected as

http://labrosa.ee.columbia.edu/millionsong/tasteprofile
http://labrosa.ee.columbia.edu/millionsong/tasteprofile
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Figure 5. Empirical MSEs for different second step subsample size r with the first step
subsample size being fixed at r0 = 400.

the maximum value of the song hotnesss in the album. Here, x1, x2, and x3 are

features of a specified song, and x4, x5, and x6 are features of the artist, audience,

and album, respectively. The last three features are subjective assessments by

The Echo Nest, and all are expressed on a scale between zero and one. Because

the first three variables in the data set are on different scales, we normalize

them first. In addition, we drop the NA values in the data set. After cleaning

the data, we have n = 205,032 data points. As a first attempt to capture the

relationship between the play counts and all regressors described above, we fit

the basic Poisson regression model, and the results are shown in Figure 5a.

Another way of modeling count data is to use a NBR. For comparison, we

also report the results from a NBR in Figure 5b, with the size parameter set as

θ = 1.4, which indicates overdispersion of the data.

Similarlly to the synthetic data sets, we compare our method with the uni-

form subsampling and leverage score subsampling methods, and report the re-

sults for r varying from 600 to 2,800. The empirical MSEs are reported in Figure

5. It is clear that as r increases, the eMSE decreases quickly for all methods.

Moreover, πmV and πmVc perform similarly, and are uniformly better than the

uniform subsampling and leverage score subsampling methods for larger values of

r. Note that the eMSE in the NBR is less than the Poisson regression. This may

because the ratio of the squared Winsorized mean to the Winsorized variance of

y is around 1.4, which implies the data is overdispersed. This echoes the results

in Theorem 5, which advise us to include additional subsamples to improve the

goodness of fit.
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Supplementary Material

All technical proofs and additional simulation results are included in the

online Supplementary Material.

Acknowledgements

The authors sincerely thank the editor, associate editor, and two referees for

their valuable comments. The authors would like to thank Prof. Jinzhu Jia for

his helpful suggestions and discussions. Ai’s work was supported by NNSF of

China grants 11671019 and LMEQF. Wang’s work was partially supported by

NSF grant 1812013 and an UConn REP grant.

References

Bertin-Mahieux, T., Ellis, D. P., Whitman, B. and Lamere, P. (2011). The million song dataset.

In Proceedings of the 12th International Conference on Music Information Retrieval (IS-

MIR 2011).

Chapman, W. L., Welch, W. J., Bowman, K. P., Sacks, J. and Walsh, J. E. (1994). Arctic sea

ice variability: Model sensitivities and a multidecadal simulation. Journal of Geophysical

Research Oceans 99, 919–935.
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