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Abstract: Handling data with nonignorable missing responses is difficult because

of the identifiability issue caused by a nonignorable nonresponse. An effective

approach described in the literature is to impose a parametric model on the nonre-

sponse propensity (while the conditional distribution of the response, given covari-

ates, is totally unspecified). Then, use a nonresponse instrument, which is a useful

covariate vector that can be excluded from the propensity, given the response and

other covariates. However, how to find a nonresponse instrument from a given set

of covariates is not well addressed. In addition, we may want to select a para-

metric propensity model from a set of candidate models. Therefore, we propose

a simultaneous propensity model and instrument selection criterion. In the pres-

ence of a nonignorable nonresponse, the proposed method consistently selects the

most compact correct parametric propensity model and instrument from a group

of candidate models, assuming one of these candidate models is correct and an

instrument exists. Simulation results show that our proposed method works quite

well. A real-data example is presented for illustration.

Key words and phrases: Generalized method of moments, identifiability, misspeci-

fied model, nonignorable propensity, nonresponse instrument, penalized validation
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1. Introduction

Consider the problem in which a univariate outcome or response Y is sub-

ject to a nonresponse and a vector X of covariates is always observed. Here,

we wish to estimate or infer unknown quantities in FY (i.e., the distribution of

Y ), or in FY |X (i.e., the conditional distribution of Y , given X). The condi-

tional probability Pr(δ = 1|Y,X) is called the nonresponse propensity, or simply

the propensity, where δ is the indicator of observing Y . When Y can be ex-
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cluded from the propensity Pr(δ = 1|Y,X) such that the latter is a function

of X only, the propensity is ignorable and missing data are at random (Little

and Rubin (2002)). In this case, unknown quantities in FY or FY |X can be

estimated using FY |X,δ=1 and FX because FY |X = FY |X,δ=1; see, for example,

Robins (1987); Cheng (1994); Robins, Rotnitzky and Zhao (1994); Ibrahim et al.

(2005); Kim and Shao (2013), and the references therein. When Y cannot be

excluded from Pr(δ = 1|Y,X), the propensity is nonignorable, and developing a

valid estimation method is notoriously challenging. In this case, the population

parameters are, in general, not identifiable, and estimates based on an assump-

tion of ignorable nonresponses may have large biases (Fitzmaurice, Molenberghs

and Lipsitz (1995); Wang, Shao and Kim (2014)). Thus, methods very different

to those for an ignorable propensity have to be applied; see, for example, Scharf-

stein, Rotnitzkyand Robins (1999); Qin, Leung and Shao (2002); Tang, Little

and Raghunathan (2003); Kim and Yu (2011); Xie, Qian and Qu (2011); Wang,

Shao and Kim (2014); Tang, Zhao and Zhu (2014); Zhao and Shao (2015); Shao

and Wang (2016); Guan and Qin (2017), and the references therein.

When the propensity is nonignorable, the distribution of (δ, Y,X) is typically

not identifiable (Robins and Ritov (1997); Wang, Shao and Kim (2014)). Two

general and sufficient conditions for the identifiability of the distribution are the

following:

Pr(δ = 1|Y,X) = π(Y,U), X = (U ,Z),

FY |X depends on Z,
(1.1)

and

there is a parametric component in either FY |X or π(Y,U). (1.2)

Condition (1.1) means that when Y cannot be excluded from the propensity,

a sub-vector Z of X can be excluded, and Z is still a useful covariate for Y .

Wang, Shao and Kim (2014) refer to such a Z as a nonresponse instrument.

Excluding Y or Z simplifies the form of the propensity and enables us to identify

it. Although (1.1) and (1.2) are sufficient conditions, either of them missing leads

to a nonidentifiable distribution of (δ, Y,X); see Wang, Shao and Kim (2014) for

(1.1), and Robins and Ritov (1997) for (1.2).

For condition (1.2), we can impose parametric models on both π(Y,U)

and FY |X ; see, for example, Molenberghs and Kenward (2007). Several stud-

ies have attempted to derive results under semiparametric models. Tang, Little

and Raghunathan (2003) and Zhao and Shao (2015) studied a pseudo-likelihood
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method under a parametric model on FY |X , but an unspecified propensity π(Y,U),

with a given instrument Z. In contrast, as in this study, Wang, Shao and Kim

(2014) derived estimators under a parametric model on the propensity π(Y,U),

but allowed an unspecified FY |X ; that is, (1.2) is replaced by

π(Y,U) follows a parametric model but FY |X is unspecified. (1.2A)

The main technique in Wang, Shao and Kim (2014) is to use a given instrument

Z to create sufficient estimating equations to enable the estimation of the para-

metric propensity π(Y,U) in (1.2A); once the propensity is estimated, unknown

quantities can be estimated using the inverse propensity weighting method. How-

ever, two important issues related to this approach have not been studied. The

first is how to find an instrument, a sub-vector Z of X, that satisfies (1.1). The

second is how to select a parametric model for the propensity π(Y,U). Although

many works have examined model selections with ignorable missing responses, to

the best of our knowledge, only two examine model selection with nonignorable

missing responses. Fang and Shao (2016) and Zhao, Yang and Ning (2018) con-

sidered model/variable selection for FY |X when FY |X is parametric and π(Y,U)

is unspecified, which is different to (1.2A), which is the focus of our research.

Furthermore, they do not consider how to search for an instrument.

This study proposes a method that simultaneously searches for an instrument

satisfying (1.1) and selects a parametric model for the propensity from a set of

available models. We formulate this search for an instrument and propensity

model within a single model selection framework. Our key idea is to construct

and compare two estimators of FX , the cumulative distribution function of the

covariate vector X. Because X is always observed, a simple consistent estimator

that does not depend on a model and instrument is the empirical cumulative

distribution function F̂X , based on X data. On the other hand, for a candidate

parametric propensity model k on π(Y,U), with a possible instrument Z, we

construct an inverse propensity estimator F̂k of FX using Y data, X data, and

the model information in the presence of nonignorable missing Y data. Because

only a correct candidate model and a correct instrument can produce a consistent

estimator F̂k close to F̂X , we select a model from a group of candidate models

and an instrument by minimizing the distance between the two estimators F̂X
and F̂k. Because some propensity models may be correct, but overfitted, we add

a penalty term in our model selection criterion, following the general principle of

the well-known BIC model selection.
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When an instrument exists and the group of candidate models contains at

least one correct propensity model, our theory shows that, with probability tend-

ing to one as the sample size increases to infinity, while the dimension of X

remains fixed, the proposed method simultaneously selects the most compact

correct parametric propensity model and a correct instrument. Consequently,

parameter estimators using the inverse propensity weighting approach based on

the selected model and instrument are consistent and asymptotically normal.

Simulation studies and a real-data example demonstrate the effectiveness of the

proposed method.

2. Methodology and Theory

Under conditions (1.1) and (1.2A), we would like to select sub-vectors Z

and U such that X = (U ,Z), where Z is an instrument and π(Y,U) is the

propensity. Choosing different components of X as Z and U can be viewed as

selecting different models. Thus, the instrument and propensity model selection

can be combined into a general model selection problem.

To illustrate, consider three-dimensional X = (X1, X2, X3) and π(Y,U , θ),

which are logistic in a linear combination of Xj and Y . Then, we have the

following seven models:

π0(Y,U0, θ0) =
1

{1 + exp(α0 + γ0Y )}
,

πj(Y,Uj , θj) =
1

{1 + exp(αj + βjXj + γjY )}
, j = 1, 2, 3,

π4(Y,U4, θ4) =
1

{1 + exp(α4 + β41X1 + β42X2 + γ4Y )}
, (2.1)

π5(Y,U5, θ5) =
1

{1 + exp(α5 + β51X1 + β52X3 + γ5Y )}
,

π6(Y,U6, θ6) =
1

{1 + exp(α6 + β61X2 + β62X3 + γ6Y )}
,

where U0 = 0; Uj = Xj , for j = 1, 2, 3; U4 = (X1, X2); U5 = (X1, X3); and U6 =

(X2, X3). The model with U = X is excluded because we assume the existence

of an instrument. These seven models correspond to selecting a propensity and

an instrument, because if model k is selected, then the selected instrument is Zk,

which contains components in X in the propensity, but not in Uk. If we need to

select between a logistic and another model (e.g., a probit model), then replacing

1/{1 + exp(·)} with another function results in an additional seven models, and
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the total number of models becomes 14. Alternatively, we may want to add a

nonlinear term, such as Y 2, to the linear combination of the logistic model, which

results in a total of 3 × 7 = 21 models, because we may have a Y term only, a

Y 2 term only, or both Y and Y 2 terms.

Let K be the total number of candidate models under all combinations of U

and Z decompositions, and let

M = {πk(Y,Uk,θk), k = 1, . . . ,K}

be the collection of all K parametric models, where Uk is the vector U under

model k, πk is a known function of (Y,Uk,θk), and θk is an unknown parameter

vector with dimension dk under model k. If model k is selected, then Zk with

X = (Uk,Zk) is selected as an instrument, and model πk(Y,Uk,θk) is the se-

lected propensity model. We say that model k is correct if and only if Zk is an

instrument satisfying (1.1) and πk(Y,Uk,θk) is a correct propensity. Under this

framework, finding an instrument and selecting a propensity model is the same

as selecting a model from M.

For simplicity, we now consider a fixed model k; note that we omit the

subscript k in U and Z in the following discussion. Let Z = (Zc,Zd), where

Zc is a continuous covariate vector, and Zd is a Jk-dimensional vector in which

the jth component is the indicator of a discrete covariate, for j = 1, . . . , Jk.

Following Wang, Shao and Kim (2014), in order to estimate the parameter θk,

we define the vector-valued function

gk(Y,X, δ,θk) = hk(X)

{
δ

πk(Y,U ,θk)
− 1

}
, (2.2)

where hk(X) is a known vector-valued function of X with dimension Lk ≥ dk,

which is the dimension of θk. For example, we can use hk(X) = (U ,Zc,Zd)

when the dimension of (U ,Zc) plus Jk is greater than or equal to dk. If the

dimension of (U ,Zc) plus Jk is smaller than dk, we add Z̃ to (U ,Zc,Zd), where

the components of Z̃ are higher moments of Zc, such that the dimension of

(U ,Zc,Zd, Z̃) is not smaller than dk. The efficiency of the estimation based on

(2.2) depends on the choice of hk(X). Several approaches for choosing hk(X)

have been proposed by Morikawa, Kim and Kano (2017) and Ai, Linton and

Zhang (2020). However, because we focus on model and instrument selection, we

assume a fixed function hk(X) in (2.2).

If model k is correct and θ0
k is the unique true parameter value of θk, then
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it can be verified that, under Pr(δ = 1|Y,X) = π(Y,U) and the first part of

condition (1.1),

E{gk(Y,X, δ,θ0
k)} = 0. (2.3)

Thus, the function gk in (2.2) provides an estimating equation for θk. The

second part of condition (1.1) ensures that the estimation equations in (2.3) are

not linearly dependent; thus, we have sufficient equations to estimate θk.

Throughout, model selection is based on a random sample of size n, (Xi, Yi,

δi), for i = 1, . . . , n, taken from the distribution of (X, Y, δ), where Xi is always

observed and Yi is observed if and only if δi = 1. Because Lk may be larger

than dk, we apply the generalized method of moments (GMM) to estimate θk,

based on (2.2)–(2.3). Specifically, let Ḡkn(θk) = n−1
∑n

i=1 gk(Yi,Xi, δi,θk), θ̃k =

argminθk Ḡkn(θk)
>Ḡkn(θk), where a> is the transpose of a, and let Ŵkn =

n−1
∑n

i=1 gk(Yi,Xi, δi, θ̃k)gk(Yi,Xi, δi, θ̃k)
>. Then, the GMM estimator of θk is

θ̂k = argmin
θk

Ḡkn(θk)
>Ŵ−1

kn Ḡkn(θk). (2.4)

For simplicity, we denote the cumulative distribution function of X by F =

FX . Once we have θ̂k in (2.4), an inverse propensity weighting estimator of F (x)

is given by

F̂k(x) =
1

n

n∑
i=1

δiI(Xi ≤ x)

πk(Yi,Ui, θ̂k)
,

where I(Xi ≤ x) is the indicator function of Xi ≤ x and, for vectors a and b,

a ≤ b means that all components of b− a are nonnegative.

If model k is correct, then it can be shown that, as the sample size n→∞, θ̂k
is consistent for θ0

k and F̂k(x) is consistent for F (x). On the other hand, if either

Z is not an instrument or πk(Y,U ,θk) is incorrect, then F̂k(x) is inconsistent.

Without using a model, a consistent estimator of F (x) is the empirical cu-

mulative distribution function F̂ (x) = n−1
∑n

i=1 I(Xi ≤ x). We then use the

closeness between F̂ and F̂k to validate model k. Define the following model

validation criterion:

VC(k) =
1

n

n∑
i=1

|F̂k(Xi)− F̂ (Xi)|. (2.5)

As we show later, if model πk(Y,U ,θk) with the corresponding instrument is

correct, then VC(k) → 0 in probability as n → ∞. Otherwise, VC(k) does

not converge to zero. Thus, correct and incorrect models can be detected using
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VC(k).

A correct model may be an overfitted model that includes some redundant

parameters. For example, suppose X = (S,R,T ), (R,T ) is an instrument and

π(α+γY +β>S) is a correct propensity, where α, γ, and β are unknown. Then,

T is also an instrument and π(α + γY + β>S + 0>R) is a correct propensity

containing a redundant R, where 0 is a vector of zeros. A more compact propen-

sity model may result in a propensity and other parameter estimators that are

more efficient (see the simulation results in Section 3). Thus, we define the best

model as the most compact correct propensity model in M, and penalize the

model dimension, following the well-known BIC; that is, we choose a model by

minimizing the following penalized validation criterion (PVC):

PVCλ(k) = VC(k) + λ log(dk),

k̂ = argmin
1≤k≤K

PVCλ(k),
(2.6)

where dk is the dimension of θk, and λ ≥ 0 is a penalization factor that may

depend on n and the sample data. The selected instrument is Zk̂ with X =

(Uk̂,Zk̂), and the selected model is πk̂(Y,Uk̂,θk̂). Quantities of interest can be

estimated using the inverse propensity weighting with the estimated propensity

πk̂(Y,Uk̂, θ̂k̂). For example, the population mean µ = E(Y ) can be estimated by

µ̂pvc =
1

n

n∑
i=1

δiYi

πk̂(Yi,Uk̂i, θ̂k̂)
. (2.7)

We now present several asymptotic properties of the proposed method for

instrument and model selection. If Z is an instrument and πk(Y,U ,θk) is correct,

as shown in Wang, Shao and Kim (2014), θ̂k obtained by (2.4) is consistent for

θ0
k, and is asymptotically normal under some regularity conditions. When either

Z or πk(Y,U ,θk) is incorrect, the following lemma shows the property of θ̂k
under a misspecified model.

Lemma 1. Assume the following regularity conditions:

C 1. (a) The dimension of X, p, and the number of candidate models, K, re-

main fixed when the sample size n → ∞; (b) The parameter space A for

θk is a compact set of Rdk , and θ∗k is the unique minimizer of ‖Gk(θk)‖
over θk, where Gk(θk) = E{gk(Y,X, δ,θk)} and ‖ · ‖ is the l2-norm; (c)

supθk ‖gk(Y,X, δ,θk)‖ < ∞; (d) The matrix Γk(θ
∗
k) = E{hk(X)>δ[∂π−1

k

(Y,U ,θ∗k)/∂θk} is of full rank, and the matrix Wk(θ
∗
k) = E{gk(Y,X, δ,θ∗k)
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gk(Y,X, δ,θ∗k)
>} is positive definite;

C 2. (a) πk(Y,U ,θk) is twice differentiable with respect to θk; (b) πk(Y,U ,θ
∗
k)

≥ C > 0, for k = 1, . . . ,K; (c) ∂πk(Y,U ,θk)/∂θk is uniformly bounded.

Then, as n→∞,

n1/2(θ̂k − θ∗k)→ N(0, {Γk(θ∗k)>W−1
k (θ∗k)Γk(θ

∗
k)}−1) in distribution.

In the presence of misspecification, the proposed θ̂k consistently estimates

θ∗k by minimizing the population version of the empirical generalized moment

discrepancy. If model πk(Y,U ,θk) is correct, then θ̂k is consistent for the true

parameter vector θ0
k.

Define

Fk(x) = E

{
δI(X ≤ x)

πk(Y,U ,θ
∗
k)

}
= E

[
E

{
π(Y,U)

πk(Y,U ,θ
∗
k)

}
I(X ≤ x)

]
.

Because θ̂k → θ∗k in probability, it can be verified that F̂k(x)→ Fk(x) in proba-

bility. Define

∆k = E|Fk(X)− F (X)|.

Then, VC(k), defined in (2.5), converges in probability to ∆k. If πk(Y,U ,θk)

is a correct model and Z is an instrument, then Fk(x) = F (x) and ∆k = 0. If

∆k > 0 for any incorrect model k, then we can distinguish between an incorrect

and a correct model.

The order of λ tending to 0 as n → ∞ determines the asymptotic behavior

of the proposed model selection procedure. Without loss of generality, we as-

sume that the most compact correct model is π1(Y,U ,θ1). The model selection

procedure is consistent as n→∞ if and only if

Pr{PVCλ(k) > PVCλ(1)} → 1 (2.8)

holds for any model k with k > 1. Suppose that ∆k > 0 when πk(Y,Uk,θk) is

an incorrect model. To achieve (2.8), we need λ satisfying λ(log d1 − log dk) <

VC(k) − VC(1); because VC(k) − VC(1) → ∆k > 0 and dk may be smaller

than d1, we need λ → 0 as n → ∞. Next, let πk(Y,Uk,θk) be a correct model

that is overfitted, such that dk > d1. In this case, we need to find λ such

that λ > {VC(1) − VC(k)}/(log dk − log d1) with probability tending to one.

Because both VC(1) and VC(k) converge to zero under correct models, we need

to choose λ that converges to zero at a rate slower than that of VC(1)−VC(k).
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The following lemma, proved in the Appendix, provides the convergence rate of

VC(1)−VC(k).

Lemma 2. Under the conditions in Lemma 1, if π1(Y,U ,θ1) is the most com-

pact correct model and πk(Y,U ,θk) is an overfitted correct model, then VC(1)−
VC(k) = Op(n

−1/2).

This result and the previous discussion establish the following result about

the consistency of the proposed propensity and instrument selection method.

Theorem 1. Assume that M contains a correctly specified propensity model for

π(Y,U), with an instrument Z satisfying (1.1). Under the regularity conditions

in Lemmas 1 and 2, if λ in (2.6) is chosen such that λ → 0 and n1/2λ → ∞,

then (2.8) holds; that is, Pr(k̂ = 1)→ 1 as n→∞, where model 1 is assumed to

be the most compact correct model.

In practice, we propose using λ = Cn−1/2(log log n)1/2, with a constant

C chosen using cross-validation (CV). Specifically, we randomly split the set

{1, . . . , n} into J nonoverlapping subsets {S1, . . . , SJ} of roughly equal size,

n1, . . . , nJ . For each j = 1, . . . , J and a given C, using all data from i /∈ Sj ,

we compute

PVC−j(k) = (n− nj)−1
∑
i/∈Sj

|F̂k(Xi)− F̂ (Xi)|+ λ log(dk),

k̂−j = argmin
1≤k≤K

PVC−j(k).

For a fixed C, we compute the error on the validation set Sj as

ej(C) =
1

nj

∑
i∈Sj

|F̂k̂−j
(Xi)− F̂ (Xi)|,

and then choose the value C as Ĉ that minimizes the average error over all

subsets; that is,

Ĉ = argmin
C

1

J

J∑
j=1

ej(C). (2.9)

The collection M may include all possible decompositions of X = (U ,Z),

which means we have at least K = 2p − 1 models when the dimension of X is p.

The grid search over all models may be computationally infeasible for a moderate

p, for example p ≥ 7. For the purpose of searching for a correct propensity and
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an instrument, however, it is not necessary to perform a grid search. Here, we

propose a forward instrument selection procedure that can handle a moderate p.

Consider the p-dimensional covariates X = (X1, . . . , Xp) and a fixed parametric

function π(Y,U , θ) (e.g., a logistic function). Then, we proceed as follows:

(i) Start with p models with Z = Xj and U = (Xt : t 6= j), for j = 1, . . . , p.

Select the model with the lowest PVC, yielding Z∗1 = X1∗ and U∗1 = (Xt :

t 6= 1∗).

(ii) Consider the next p − 1 models with Z = (X1∗ , Xj) and U = (Xt : t 6=
j, t 6= 1∗), for j = 1, . . . , p, j 6= 1∗. For these, select the model with the

lowest PVC. If this PVC value is higher than that in step 1, then stop,

and the model selected is π(Y,U∗1 , θ). Otherwise, set Z∗2 = (X1∗ , X2∗) and

U∗2 = (Xt : t 6= 1∗, t 6= 2∗), and continue to the next step.

(iii) At the kth step, consider p− k+ 1 models with Z = (X1∗ , . . . , X(k−1)∗ , Xj)

and U = (Xt : t 6= j, t 6= 1∗, . . . , t 6= (k − 1)∗), for j = 1, . . . , p, j 6=
1∗, . . . , j 6= (k − 1)∗. For these, select the model with the lowest PVC. If

this PVC value is higher than that in step k − 1, then stop, and the model

selected is π(Y,U(k−1)∗ , θ). Otherwise, continue until k = p.

The number of models considered in this procedure is at most p+ (p− 1) +

· · ·+2+1 = p(p+1)/2. Furthermore, if we want select π(Y,U , θ) between logistic

and probit models or add a nonlinear term Y 2 to the linear combination of Xj and

Y , we can apply the previous idea and establish a similar multi-step procedure.

An asymptotic result similar to that in Theorem 1 can also be established.

3. Simulation Studies

Under assumptions (1.1) and (1.2A), we use a simulation to examine the

finite-sample performance of the proposed method in terms of the rate of selecting

the most compact correct model. We also examine the bias and root mean

squared error (RMSE) of the resulting inverse propensity weighting estimator

µ̂pvc, defined in (2.7). All results are based on 1,000 simulation replications.

In simulation 1, we select a model from the seven models in (2.1). Here

X = (X1, X2, X3) is generated from a three-dimensional normal distribution

with mean one and covariance Cov(Xj , Xj′) = 0.5, for 1 ≤ j < j′ ≤ 3, and

Var(Xj) = 1 and Y = X2
1 + X2

2 + X2
3 + ε, where ε is drawn from N(0, 2),

and is independent of X. For convenience, we denote the seven models in (2.1)

by M0, M1(X1), M1(X2), M1(X3), M2(X1, X2), M2(X1, X3), and M2(X2, X3),
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respectively, where the subscript s in Ms(U) is the dimension of U ; for example,

M0 is the model with U = 0 and Z = (X1, X2, X3), and M2(X1, X3) is the model

with a two-dimensional U = (X1, X3) and Z = X2.

Given (Y,X), we generate δ from a Bernoulli distribution using the logistic

function in (2.1) as the probability and the parameter vector θ0 = (−0.4,−0.3)

for M0; in addition, θ0 = (−0.8, 1.2,−0.3) for M1(Xj), with j = 1, 2, 3, and

θ0 = (−0.8, 1.2, 1.2,−0.3) for M2(Xj , Xj′), with 1 ≤ j < j′ ≤ 3. The coefficients

in the propensity models are chosen such that the unconditional rates of missing

data are between 20% and 40%. As in Wang, Shao and Kim (2014), we use

hk(X) = (1,U ,Z) in (2.2) and (2.4) to obtain the GMM estimator θ̂k.

If the true propensity π(Y,U) = M1(X1), then Z = (X2, X3) is an instru-

ment; models M0, M1(X2), M1(X3), and M2(X2, X3) are incorrect; M2(X1, X2)

and M2(X1, X3) are also correct propensity models, with Z = X3 and Z = X2 as

instruments, respectively. Because both M2(X1, X2) and M2(X1, X3) are over-

fitted, the penalty term in (2.6) forces us to choose M1(X1) more frequently.

The discussion is similar if M1(X2) or M1(X3) is correct. If the true propensity

π(Y,U) = M2(X1, X2), then M2(X1, X2) is the only correct propensity model,

and Z = X3 is the only correct instrument. Finally, if π(Y,U) = M0, then all

models are correct, and M0 is the most compact model with Z = X.

For n= 300, 500, and 1,000, we implement the PVC in (2.6), using a 10-fold

CV method to determine the tuning parameter λ (see the end of Section 2),

where the range for the minimization in (2.9) is (0.1, 20). Table 1 reports the

rates for 1,000 Monte Carlo replications, in which each model is selected using

the proposed PVC under different best models (i.e., the most compact correct

models). The results show that the proposed method selects the best model most

of the time; that is, the simulation rates when selecting the best model are very

high when the sample size n = 300, and are close to one when n = 500 or 1,000.

Following the model and instrument selection, we can estimate µ = E(Y ),

using the proposed estimator µ̂pvc, defined in (2.7), based on the selected and

estimated propensity. By way of comparison, we also include three other estima-

tors: Ȳ = n−1
∑n

i=1 Yi, the sample mean when there is no missing data, which

is used as a benchmark; µ̂cc =
∑n

i=1 δiYi/
∑n

i=1 δi, the sample mean of observed

Y data, which is a biased estimator; and the inverse propensity weighting esti-

mators µ̂k =
∑n

i=1 δiYi/πk(Yi,Ui, θ̂k), for k = 0, . . . , 6, which differs from µ̂pvc
in (2.7) because µ̂k uses a fixed propensity without model selection, and may be

biased when the propensity model is incorrect. The mean, µ, is 6 in all cases.

Owing to symmetry, the simulation results when M1(X2) or M1(X3) are best
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Table 1. Simulated probability (÷1000) of selecting each model in simulation 1.

n Best model
Selected model

M0 M1(X1) M1(X2) M1(X3) M2(X1, X2) M2(X1, X3) M2(X2, X3)

300 M0 996 2 1 1 0 0 0

M1(X1) 33 945 1 0 11 10 0

M1(X2) 29 0 956 0 9 0 6

M1(X3) 37 1 0 942 0 11 9

M2(X1, X2) 0 22 20 0 958 0 0

M2(X1, X3) 0 23 0 19 0 959 1

M2(X2, X3) 0 0 18 22 0 0 960

500 M0 996 1 2 1 0 0 0

M1(X1) 1 975 0 0 11 13 0

M1(X2) 0 0 980 0 15 0 5

M1(X3) 0 0 0 976 0 9 15

M2(X1, X2) 0 1 2 0 997 0 0

M2(X1, X3) 0 3 0 2 0 995 0

M2(X2, X3) 0 0 4 3 0 0 993

1,000 M0 1,000 0 0 0 0 0 0

M1(X1) 0 988 0 0 4 8 0

M1(X2) 0 0 987 0 7 0 6

M1(X3) 0 0 0 989 0 8 3

M2(X1, X2) 0 0 0 0 1,000 0 0

M2(X1, X3) 0 0 0 0 0 1,000 0

M2(X2, X3) 0 0 0 1 0 0 999

are similar to those when M1(X1) is best, and the results when M2(X1, X3) or

M2(X2, X3) are best are similar to those when M2(X1, X2) is best. Hence, we

present only those results when M0, M1(X1) and M2(X1, X2) are best. Table 2

shows the biases and RMSEs of the point estimators based on different methods.

In terms of bias and RMSE, when M0 is best, we find that the proposed PVC

estimator and the estimator based on the seven propensity models are compara-

ble. When M1(X1) is the best, it can be seen that the proposed PVC estimator

and the estimator based on M1(X1) are comparable, both of which exhibit neg-

ligible bias and a slightly larger RMSE than that of Ȳ in all cases; as expected,

the estimators based on M1(X1, X2) and M1(X1, X3) are also unbiased, but less

efficient. Lastly, the estimators based on observed Y values and other propensity

models have larger biases and RMSEs, supporting our theory. Similar results

are obtained when M2(X1, X2) is best. In this case, because only M2(X1, X2)

is correct, we find that µ̂k based on the incorrect models have much larger bi-
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Table 2. Simulated bias and RMSE when estimating E(Y ) in simulation 1.

Best model Method
n = 300 n = 500 n = 1,000

Bias RMSE Bias RMSE Bias RMSE

M0 PVC -0.022 0.357 -0.035 0.273 0.002 0.199

FULL -0.001 0.337 -0.022 0.261 0.006 0.188

CC 0.815 0.899 0.785 0.837 0.814 0.841

M0 -0.021 0.357 -0.034 0.272 0.002 0.199

M1(X1) -0.017 0.376 -0.032 0.283 0.006 0.204

M1(X2) -0.008 0.380 -0.032 0.285 0.005 0.204

M1(X3) -0.020 0.376 -0.029 0.280 0.002 0.205

M2(X1, X2) 0.005 0.429 -0.032 0.319 0.010 0.224

M2(X1, X3) -0.013 0.423 -0.027 0.322 0.004 0.226

M2(X2, X3) -0.002 0.438 -0.024 0.322 0.002 0.226

M1(X1) PVC -0.004 0.368 -0.028 0.279 -0.006 0.206

FULL -0.001 0.337 -0.025 0.261 0.001 0.192

CC 0.789 0.893 0.766 0.831 0.795 0.829

M0 0.096 0.382 0.090 0.296 0.083 0.231

M1(X1) -0.007 0.368 -0.027 0.279 -0.006 0.207

M1(X2) 0.502 0.882 0.450 0.710 0.447 0.665

M1(X3) 0.503 0.868 0.439 0.681 0.476 0.700

M2(X1, X2) 0.005 0.517 -0.014 0.443 -0.010 0.247

M2(X1, X3) 0.008 0.497 -0.035 0.360 -0.011 0.243

M2(X2, X3) 1.816 2.056 1.924 2.115 2.127 2.334

M2(X1, X2) PVC 0.018 0.453 -0.030 0.356 -0.008 0.251

FULL -0.001 0.337 -0.025 0.261 0.001 0.192

CC 0.309 0.618 0.253 0.469 0.291 0.414

M0 0.611 0.923 0.626 0.840 0.692 0.804

M1(X1) 0.458 0.783 0.477 0.668 0.507 0.585

M1(X2) 0.478 0.884 0.465 0.648 0.501 0.592

M1(X3) 2.633 2.826 2.756 2.912 2.922 3.072

M2(X1, X2) -0.012 0.476 -0.033 0.364 -0.008 0.251

M2(X1, X3) 2.807 3.088 2.941 3.205 3.139 3.371

M2(X2, X3) 2.922 3.225 3.026 3.297 3.039 3.244

ases and RMSEs than those of the method based on observed Y values, which is

consistent with the findings of Shao and Wang (2016), and is our motivation for

studying model and instrument selection.

Simulation 2 evaluates the performance of the proposed method in select-

ing Y or Y 2 in the logistic propensity model; that is, in addition to the seven

candidate models in (2.1), we include the following seven candidate models:



660 WANG, SHAO AND FANG

M̃0 =
1

{1 + exp(α+ γY 2)}
, θ = (α, γ)

M̃1(Xj) =
1

{1 + exp(α+ βXj + γY 2)}
, θ = (α, β, γ)

M̃2(Xj , Xj′) =
1

{1 + exp(α+ β1Xj + β2Xj′ + γY 2)}
, θ = (α, β1, β2, γ),

with θ0 = (0.8,−0.1) for M̃0, θ0 = (−0.8, 2,−0.3) for M̃1(Xj), and θ0 =

(−0.8, 1.5, 1.5,−0.1) for M̃2(Xj , Xj′) in the simulation, for 1 ≤ j ≤ j′ ≤ 3.

If the true propensity π(Y,U) = M0, X is an instrument and Z = sub-

vectors of X under all other models are correct instruments, even though M0 is

the most compact model. Furthermore, models M1(Xj) and M2(Xj , Xj′) are

correct, but M̃0, M̃1(Xj) and M̃2(Xj , Xj′) are incorrect, owing to their use

of Y 2 instead of Y ; the discussion is similar if M̃0 is correct. If π(Y,U) =

M1(X1), only models M1(X1), M2(X1, X2), M2(X1, X3), M̃1(X1), M̃2(X1, X2),

and M̃2(X1, X3) give correct instruments Z = X2, X3, or (X2, X3). However,

M̃1(X1), M̃2(X1, X2), and M̃2(X1, X3) are incorrect models, and M2(X1, X2) and

M2(X1, X3) are correct, but overfitted. The discussion is similar if M1(Xj) or

M̃1(Xj) is correct. If π(Y,U) = M2(X1, X2), only M2(X1, X2) and M̃2(X1, X2)

give correct instrument Z = X3, but M̃2(X1, X2) is incorrect. The discussion is

similar if M2(Xj , Xj′) or M̃2(Xj , Xj′) is correct.

The model selection probabilities and estimation results for µ = E(Y ) are

shown in Figure 1 and Table 3, respectively. Figure 1 shows that our proposed

method performs well in terms of selecting the best propensity model and instru-

ment simultaneously. The results in Table 1 show that the selection rates for the

best model decrease slightly when M0 or M1(Xj) is best, but are close to one

when n = 1,000.

For the seven propensity models using Y , the results are symmetric; thus,

we present only those results when M0, M1(X1), or M2(X1, X2) are best. Table

3 shows the biases and RMSEs of the point estimators based on different meth-

ods. The results show that when M0 is best, the proposed PVC estimator and

the estimator based on the seven propensity models using Y are comparable.

When M1(X1) is best, the proposed PVC estimator and the estimators based

on M1(X1) and M̃1(X1) are comparable, exhibiting negligible bias and slightly

larger RMSEs than those of Ȳ in all cases. The estimators based on M2(X1, X2),

and M2(X1, X3) are also unbiased, but M̃2(X1, X3) and M̃2(X1, X2) have much

larger RMSEs, owing to their use of Y 2. The estimators based on observed Y
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Table 3. Simulated bias and RMSE when estimating E(Y ) in simulation 2.

Best model Method
n = 300 n = 500 n = 1,000

Bias RMSE Bias RMSE Bias RMSE

M0 PVC -0.029 0.349 0.000 0.285 0.003 0.195

FULL -0.020 0.336 0.003 0.274 0.005 0.188

CC 0.791 0.878 0.814 0.869 0.819 0.846

M0 -0.037 0.349 -0.005 0.285 0.001 0.196

M1(X1) -0.021 0.359 -0.002 0.297 0.002 0.203

M1(X2) -0.036 0.359 -0.003 0.292 0.001 0.202

M1(X3) -0.034 0.364 -0.005 0.299 0.002 0.202

M2(X1, X2) -0.006 0.412 0.002 0.342 0.001 0.223

M2(X1, X3) -0.006 0.411 0.003 0.335 0.002 0.227

M2(X2, X3) -0.013 0.415 -0.001 0.328 0.001 0.226

M̃0 -0.017 0.345 0.015 0.282 0.020 0.195

M̃1(X1) -0.014 0.356 0.018 0.291 0.023 0.200

M̃1(X2) -0.018 0.354 0.018 0.286 0.021 0.199

M̃1(X3) -0.013 0.359 0.016 0.294 0.022 0.199

M̃2(X1, X2) 0.011 0.399 0.020 0.312 0.015 0.223

M̃2(X1, X3) 0.014 0.397 0.011 0.330 0.017 0.232

M̃2(X2, X3) -0.019 0.399 0.014 0.321 0.017 0.222

M1(X1) PVC -0.005 0.354 -0.007 0.287 0.000 0.205

FULL 0.003 0.329 0.004 0.269 0.006 0.190

CC 0.790 0.894 0.794 0.861 0.797 0.832

M0 0.097 0.382 0.101 0.308 0.114 0.240

M1(X1) -0.004 0.357 -0.004 0.288 0.002 0.206

M1(X2) 0.516 0.891 0.492 0.815 0.464 0.684

M1(X3) 0.510 0.866 0.455 0.679 0.468 0.648

M2(X1, X2) 0.003 0.490 -0.011 0.391 0.011 0.296

M2(X1, X3) -0.009 0.444 0.000 0.351 -0.006 0.245

M2(X2, X3) 1.836 2.071 1.957 2.175 2.103 2.284

M̃0 0.096 0.397 0.092 0.323 0.109 0.265

M̃1(X1) -0.026 0.376 -0.029 0.304 -0.022 0.220

M̃1(X2) 0.575 1.038 0.549 1.017 0.520 0.982

M̃1(X3) 0.589 1.063 0.595 1.053 0.505 0.993

M̃2(X1, X2) -0.026 0.527 -0.026 0.451 0.016 0.520

M̃2(X1, X3) -0.011 0.560 -0.009 0.537 0.024 0.577

M̃2(X2, X3) 1.973 2.247 2.218 2.473 2.465 2.694
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Figure 1. Heat map of true selection rates in simulation 2. The model numbers
{1, 2, . . . , 13, 14} denote models {M0,M1(X1), . . . ,M1(X2, X3), M̃0, M̃1(X1), . . . , M̃1(X2,
X3)}, respectively, in the second column in Table 3.

values and other propensity models have larger biases and RMSEs, supporting

our theory. When M2(X1, X2) is best, the proposed PVC estimator and the

estimator based on M2(X1, X2) are comparable, exhibiting negligible bias and

slightly larger RMSEs than those of Ȳ in all cases. Furthermore, the µ̂k based

on the incorrect models have much larger biases and RMSEs than those of the

method based on observed Y values. For the seven propensity models using Y 2,

the conclusions are similar and, hence, the results are omitted.

Our final simulation examines the forward instrument selection procedure

discussed in Section 3 when the dimension of X is 10. As in simulation 1,

X = (X1, X2, . . . , X10) is generated from a 10-dimensional normal distribution

with mean one and covariance Cov(Xj , Xj′) = 0.5 for 1 ≤ j < j′ ≤ 10 and
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Table 3. Continued.

Best model Method
n = 300 n = 500 n = 1,000

Bias RMSE Bias RMSE Bias RMSE

M2(X1, X2) PVC -0.010 0.448 -0.023 0.353 -0.001 0.247

FULL 0.005 0.338 -0.005 0.267 0.002 0.189

CC 0.282 0.595 0.280 0.497 0.290 0.412

M0 0.599 0.894 0.651 0.826 0.698 0.818

M1(X1) 0.473 0.838 0.479 0.689 0.534 0.811

M1(X2) 0.487 0.859 0.475 0.655 0.513 0.594

M1(X3) 2.662 2.864 2.853 3.076 2.918 3.055

M2(X1, X2) -0.034 0.482 -0.033 0.378 0.000 0.248

M2(X1, X3) 2.863 3.122 3.018 3.301 3.074 3.336

M2(X2, X3) 2.914 3.231 3.109 3.423 3.099 3.321

M̃0 0.632 1.174 0.591 1.193 0.627 1.287

M̃1(X1) 0.959 1.363 0.949 1.288 1.018 1.351

M̃1(X2) 0.960 1.356 0.963 1.286 1.018 1.313

M̃1(X3) 1.800 2.102 1.913 2.318 2.062 2.477

M̃2(X1, X2) 0.847 1.318 0.837 1.245 0.984 1.306

M̃2(X1, X3) 2.025 2.440 2.169 2.601 2.268 2.727

M̃2(X2, X3) 1.992 2.407 2.201 2.671 2.308 2.763

Var(Xj) = 1; Y is generated from

Y = X2
1 +X2

2 + · · ·+X2
10 + ε,

where ε is taken from N(0, 2) and is independent ofX. We denote the 10 possible

models in (2.1) by M0 and Mj(Uj) = 1/{1 + exp(α + βTUj + γY )}, with Uj =

(X1, . . . , Xj) for j = 1, . . . , 9. In addition, we consider θ0 = (0.2,−0.2) for M0,

θ0 = (−0.8, 0.8,−0.2) for M1(U1), θ0 = (−0.8, 0.8, 0.8,−0.2) for M2(U2), θ0 =

(−0.8, 0.8, 0.8, 0.8,−0.4) for M3(U3), θ0 = (−0.8, 1, 1, 1, 1,−0.6) for M4(U4),

θ0 = (−2, 0.8, . . . , 0.8,−0.4) forM5(U5), θ0 = (−2, 0.8, . . . , 0.8,−0.4) forM6(U6),

θ0 = (−0.8, 0.8, . . . , 0.8,−0.8) for M7(U7), θ0 = (−1, 0.8, . . . , 0.8,−0.6) for M8(

U8), and θ0 = (−2, 0.8, . . . , 0.8,−0.6) for M9(U9). For n = 1,000 or 1,500,

we compute the simulation rates for the forward instrument selection procedure

when selecting the correct, best (the most compact correct), and incorrect mod-

els. The results, shown in Table 4, indicate that the procedure performs well,

especially when the dimension of U is small.
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4. Real-Data Example

We consider a data set from the National Health and Nutrition Examination

Survey (NHNES) conducted in 2005 by the United States Centers for Disease

Control and Prevention. The survey was designed to assess the health and nutri-

tional status of adults and children in the United States. The data are available

at www.cdc.gov/nchs/nhanes.htm.

As in Fang and Shao (2016), we consider body fat percentage, measured by

dual-energy X-ray absorptiometry (dxa), as the response variable Y ; body mass

index (bmi), gender, and age as covariates, that is, X = (bmi, gender, age); and

middle-aged and older people (age ≥ 45). This yielded n = 1,591 subjects, 393

(24.7%) of which have missing Y data.

As in the first simulation study in Section 3, we consider the seven candidate

propensity models in (2.1), based on the assumption that the underlying true

propensity model is a logistic model linear in Y and X. Then, we implement

the proposed method to select an instrument Z. Thus, we have seven choices of

instrument: Z = bmi, Z = gender, Z = age, Z = (bmi, gender), Z = (bmi,

age), Z = (gender, age), and Z = (bmi, gender, age). For each choice of Z,

the covariates not included in Z are treated as U . We use the proposed PVC in

(2.6), with a tuning parameter λ̂ obtained from a 10-fold cross-validation. For

each candidate propensity model, the values of the proposed PVC, estimate of

the population mean of dxa, and its standard error are based on a bootstrap

with 200 replications (see Table 4). The proposed PVC method selects M1(bmi)

(i.e., Z =(gender, age)), which is consistent with the results of Fang and Shao

(2016), which were obtained under a different setting in which FY |X is parametric

and the propensity π(Y,U) is unspecified. Of the seven choices of instruments,

the mean estimates based on Z = bmi, Z = (bmi, age), Z = (bmi, gender),

and Z = (bmi, age, gender) differ from the proposed mean estimate based on

Z = (gender, age), indicating that these are wrong choices of instruments. On

the other hand, as mentioned in Section 2, Z = age and Z = gender are correct

choices of instruments if Z = (gender, age) is an instrument; they provide similar

mean estimates, but the estimates based on Z = age and Z = gender have much

larger SEs. Therefore, to ensure an efficient mean estimator, we should select an

instrument with the largest possible dimension.

As in the second simulation in Section 3, we further include the seven can-

didate propensity models that are logistically linear in (Y 2,X). The results are

also presented in Table 5. The proposed PVC method still selects M1(bmi) from
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Table 4. Instrument selection rates when the dimension of X is 10.

n = 1,000 n = 1,500
Best model Correct Best Wrong Correct Best Wrong
M0 1.000 0.960 0.000 1.000 0.969 0.000
M1(X1) 0.995 0.955 0.005 1.000 0.988 0.000
M2(X1, X2) 0.980 0.795 0.020 0.986 0.916 0.014
M3(X1, X2, X3) 0.975 0.815 0.025 0.978 0.856 0.022
M4(X1, . . . , X4) 0.963 0.563 0.038 0.992 0.711 0.008
M5(X1, . . . , X5) 0.918 0.664 0.092 0.950 0.745 0.050
M6(X1, . . . , X6) 0.900 0.342 0.100 0.915 0.375 0.085
M7(X1, . . . , X7) 0.693 0.288 0.317 0.909 0.424 0.091
M8(X1, . . . , X8) 0.739 0.320 0.261 0.865 0.351 0.135
M9(X1, . . . , X9) 0.530 0.530 0.470 0.733 0.733 0.267

all 14 candidate models, indicating that the propensity models with a term Y 2,

but not Y , are incorrect.

The United States Centers for Disease Control and Prevention indicated

that, in this problem, missing responses may not be ingorable, after examining

missing items in the data files. To determine the effect of addressing nonig-

norable nonresponses, we computed estimates of E(Y ) by assuming ignorable

nonresponses and excluding the Y term in the logistic propensity previously dis-

cussed. The resulting models are denoted by M−Ys (U), and so on. For example,

M−Y1 (bmi) = 1/{1 + exp(α + β × bmi)}. The results are included in Table 5.

Note that the estimate under M−Y0 is equal to the sample mean of observed Y

values, which is 34.44. Regardless of which ignorable propensity model is used,

all estimates of E(Y ) are between 34.17 and 34.68, which are close to the sample

mean of the observed Y data. Thus, in this example, we do see some effect of ad-

dressing nonignorable nonresponses, although the extent of this effect is unknown

in a real data set.

5. Discussion

Handling nonignorable nonresponses is a challenging problem, mainly be-

cause of the identifiability of the nonresponse propensity. A nonresponse instru-

ment plays a crucial role in identifiability, but is often assumed as given in the

literature. Furthermore, to obtain consistent estimators, the imposed paramet-

ric propensity model must be verified. Thus, we have proposed a simultaneous

propensity model and instrument selection criterion in the presence of nonignor-

able nonresponses. We showed that the proposed method consistently selects
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Table 5. Values of PVC, µ̂, and standard error (SE) based on NHNES data

Model (U) Z PVC µ̂ SE

M0 bmi, age, gender 0.24 32.03 0.94

M1(bmi) age, gender 0.19 35.28 0.67

M1(age) bmi, gender 0.22 33.19 0.54

M1(gender) bmi, age 0.24 31.94 2.09

M2(bmi, age) gender 0.21 35.40 1.17

M2(bmi, gender) age 0.25 35.96 1.28

M2(age, gender) bmi 0.26 36.06 1.24

M̃0 bmi, age, gender 0.25 31.92 0.74

M̃1(bmi) age, gender 1.38 31.52 0.58

M̃1(age) bmi, gender 1.37 31.49 0.79

M̃1(gender) bmi, age 1.39 31.36 0.49

M̃2(bmi, age) gender 0.22 35.40 1.09

M̃2(bmi, gender) age 1.40 31.50 0.67

M̃2(age, gender) bmi 0.22 36.02 1.30

M−Y
0 34.44 0.95

M−Y
1 (bmi) 34.68 1.08

M−Y
1 (age) 34.46 0.95

M−Y
1 (gender) 34.16 1.13

M−Y
2 (bmi, age) 34.68 1.09

M−Y
2 (bmi, gender) 34.33 1.08

M−Y
2 (age, gender) 34.17 1.15

M−Y
3 (bmi,age, gender) 34.33 1.10

the most compact correct parametric propensity model and instrument from a

group of candidate models, assuming one of these candidate models is correct

and an instrument exists. The simulation studies and data analysis show that

the proposed method performs well.

The proposed method based on (1.1), (1.2A), and (2.2)–(2.6) can be extended

to the situation where Y is multivariate (with δ changed to a vector of indicators)

or the situation where both Y and X have missing data. By way of illustration,

we consider the situation where Z is always observed, and U and Y have missing

values. Let δY and δU be the indicators of observing Y and U , respectively.

Instead of (1.1), we assume that

Pr(δY = t, δU = s|Y,U ,Z) = Pr(δY = t, δU = s|Y,U),

where t = 0, 1 and s is a vector of zeros and ones values. Then, we consider the
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collection of all K parametric models M = {πk(Y,Uk,θk), k = 1, . . . ,K}, for

Pr(δY = t, δU = s|Y,U). The proposed PVC can be adopted.

The proposed method has several limitations. First, our method is appli-

cable for small or moderate p only. For high-dimensional covariates, the model

selection and instrument search with nonignorable nonresponses is challenging.

One possible solution is to first apply a proper variable/feature screening method

to reduce the dimensionality of the covariates, and then to apply the proposed

method to the reduced number of covariates. Second, the stepwise selection pro-

cedure has some limitations. For example, the order of covariate entry and the

number of covariates may affect the selected model. Third, the proposed method

relies on the assumption that one of the candidate models is correct and an in-

strument exists. In practice, we may consider a number of potential candidate

models, and try to ensure that at least one is correct. When all candidate models

are incorrect or no instrument exists, we may only derive some procedures that

are approximately valid. Additional research on the case in which no correct

candidate model or instrument exists is still interesting, although challenging,

because no model is perfect in all practical applications. These issues will be

explored in further research.
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Appendix

Proof of Lemma 1: Recall

Ḡkn(θk) = n−1
n∑
i=1

gk(Yi,Xi, δi,θk) and Gk(θk) = E{gk(Y,U , δ,θk)}.

By the law of large number (LLN), it can be shown that Ḡkn(θk)−Gk(θk) = op(1)

for all θk ∈ A. Since both gk(Y,U , δ,θk) and Ḡkn(θk) are continuous at each
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θk ∈ A,

sup
θk∈A

‖Ḡkn(θk)−Gk(θk)‖ = op(1).

This, coupled with GMM identification (i.e., Lemma 2.3 of Newey and McFadden

(1994)), shows that the first-step estimator

θ̃k = θ∗k + op(1).

By the LLN, it can be shown that Ŵ−1
kn = W−1

k (θ∗k) + op(1). Let

Qk(θk) = Gk(θk)
>W−1

k (θ∗k)Gk(θk) and Q̄k(θk) = Ḡkn(θk)
>Ŵ−1

kn Ḡkn(θk).

Based on Lemma 2.3 and Theorem 2.1 of Newey and McFadden (1994), to prove

θ̂k − θ∗k = op(1), it is enough to show that

sup
θk∈A

|Q̄kn(θk)−Qk(θk)| = op(1).

Using the triangle and Cauchy-Schwartz inequalities, we have

sup
θk∈A

|Q̄kn(θk)−Qk(θk)|

≤ sup
θk∈A

∣∣∣{Ḡkn(θk)−Gk(θk)}>Ŵ−1
kn {Ḡkn(θk)−Gk(θk)}

∣∣∣
+ sup
θk∈A

∣∣∣Gk(θk)
>(Ŵ−1

kn + (Ŵ−1
kn )>){Ḡkn(θk)−Gk(θk)}

∣∣∣
+ sup
θk∈A

∣∣∣Gk(θk)
>(Ŵ−1

kn −W
−1
k (θ∗k))Gk(θk)

∣∣∣
≤ sup
θk∈A

∥∥Ḡkn(θk)−Gk(θk)}
∥∥2‖Ŵ−1

kn ‖

+ 2 sup
θk∈A

∥∥Gk(θk)
∥∥∥∥Ḡkn(θk)−Gk(θk)

∥∥‖W−1
k (θ∗k)‖

+ sup
θk∈A

∥∥Gk(θk)
∥∥2‖Ŵ−1

kn −W
−1
k (θ∗k)‖ = op(1).

Thus, we prove that θ̂k = θ∗k + op(1).

Next, we derive the asymptotic normality of θ̂k. With probability approach-

ing one, we have the first-order condition

2Γk(θ̂k)Ŵ
−1
kn Ḡkn(θ̂k) = 0,
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where Γk(θk) = ∂Ḡkn(θk)/∂θk. Expanding Ḡkn(θ̂k) around θk∗ , we have

n1/2(θ̂k − θ∗k) = −[Γ>k (θ̂k)Ŵ
−1
kn Γk(θ̌k)]

−1Γ>k (θ̂k)Ŵ
−1
kn n

1/2Ḡkn(θ∗k),

where θ̌k is between θ̂k and θ0
k. By simple calculation and the LLN, for all

θk ∈ A,

Γk(θk) = E

{
hk(X)>δ

∂πk(Y,U ,θk)
−1

∂θk

}
+ op(1).

This, together with Ŵ−1
kn = W−1

k (θ∗k) + op(1) and θ̂k = θ∗k + op(1), implies that

[Γ>k (θ̂k)Ŵ
−1
kn Γk(θ̌k)]

−1Γ>k (θ̂k)Ŵ
−1
kn

= [Γk(θ
∗
k)
>W−1

k (θ∗k)Γk(θ
∗
k)]
−1Γk(θ

∗
k)
>W−1

k (θ∗k) + op(1).

By the Slutzky theorem, we can show

n1/2(θ̂k − θ∗k)
L→ N(0, (Γk(θ

∗
k)
>W−1

k (θ∗k)Γk(θ
∗
k))
−1).

Particularly, when the intermittent propensity model is correctly specified, πk(Y,

U ,θ∗k) = πk(Y,U ,θ
0
k), Ŵkn = Wk(θ

0
k) + op(1) and θ̂k = θ0

k + op(1).

Proof of Lemma 2: Notice

|VC(1)−VC(k)| ≤ 1

n

n∑
i=1

|F̂1(Xi)− F̂k(Xi)|.

We just need to show n−1/2
∑n

i=1 |F̂1(Xi)− F̂k(Xi)| = Op(1). Note that

n−1/2
n∑
i=1

|F̂k(Xi)− F̂1(Xi)|

= n−1/2
n∑
i=1

∣∣∣∣∣ 1n
n∑
j=1

δjI(Xj ≤Xi)

{
1

πk(Yj ,Uj , θ̂k)
− 1

π1(Yj ,Uj , θ̂1)

}∣∣∣∣∣
Let

A
(1)
ni =

1

n

n∑
j=1

δjI(Xj ≤Xi)

{
1

πk(Yj ,Uj , θ̂k)
− 1

πk(Yj ,Uj ,θ
∗
k)

}
,

A
(2)
ni = − 1

n

n∑
j=1

δjI(Xj ≤Xi)

{
1

π1(Yj ,Uj , θ̂1)
− 1

π1(Yj ,Uj ,θ∗1)

}
,
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A
(3)
ni =

1

n

n∑
j=1

δjI(Xj ≤Xi)

{
1

πk(Yj ,Uj ,θ
∗
k)
− 1

π1(Yj ,Uj ,θ∗1)

}
.

We have

n−1/2
n∑
i=1

|F̂k(Xi)− F̂1(Xi)| = n−1/2
n∑
i=1

|A(1)
ni +A

(2)
ni +A

(3)
ni |

≤ n−1/2

(
n∑
i=1

|A(1)
ni |+

n∑
i=1

|A(2)
ni |+

n∑
i=1

|A(3)
ni |

)
.

For n−1/2
∑n

i=1 |A
(1)
ni |, we have

n−1/2
n∑
i=1

|A(1)
ni |

≤ n−3/2
n∑
i=1

n∑
j=1

∣∣∣∣∣δjI(Xj ≤Xi)

{
1

πk(Yj ,Uj , θ̂k)
− 1

πk(Yj ,Uj ,θ
∗
k)

}∣∣∣∣∣
≤ n−3/2

n∑
i=1

n∑
j=1

∣∣∣∣∣ 1

πk(Yj ,Uj , θ̂k)
− 1

πk(Yj ,Uj ,θ
∗
k)

∣∣∣∣∣
= n−3/2

n∑
i=1

n∑
j=1

∣∣∣∣∣∂π−1
k (Yj ,Uj ,θ

∗
k)

∂θk
(θ̂k − θ∗k) + op(θ̂k − θ∗k)

∣∣∣∣∣
≤ |
√
n(θ̂k − θ∗k)| ×

1

n

n∑
j=1

∣∣∣∣∣∂π−1
k (Yj ,Uj ,θ

∗
k)

∂θk

∣∣∣∣∣+ op(1)

= |
√
n(θ̂k − θ∗k)| × E

∣∣∣∣∣∂π−1
k (Y,U ,θ∗k)

∂θk

∣∣∣∣∣+ op(1)

= Op(1).

Similarly, we can show that n−1/2
∑n

i=1 |A
(2)
ni | = Op(1) and n−1/2

∑n
i=1 |A

(3)
ni | =

Op(1).
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