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Abstract: We propose a new test for heteroscedasticity in parametric and partial

linear regression models in multidimensional spaces. When the dimension of the

covariates is large, or even moderate, existing tests for heteroscedasticity perform

badly, owing to the “curse of dimensionality.” To address this problem, we con-

struct a test for heteroscedasticity that uses a projection-based empirical process.

Then, we study the asymptotic properties of the test statistic under the null and

alternative hypotheses. The results show that the test detects the departure of local

alternatives from the null hypothesis at the fastest possible rate during hypothesis

testing. Because the limiting null distribution of the test statistic is not asymp-

totically distribution free, we propose a residual-based bootstrap approach and

investigate the validity of its approximations. Simulations verify the finite-sample

performance of the test. Two real-data analyses are conducted to demonstrate the

proposed test.

Key words and phrases: Heteroscedasticity testing, partial linear models, projec-

tion, U-process.

1. Introduction

In many regression models, the error terms are assumed to have a common

variance. However, ignoring the presence of heteroscedasticity in a regression

model may result in inefficient inferences of the regression coefficients, or even

inconsistent estimators of the variance function. Therefore, regression models

should be tested for heteroscedasticity whenever the error terms are assumed to

have equal variance. Consider the following regression model:

Y = m(Z) + ε, (1.1)

where Y is the dependent variable with a p-dimensional covariate Z, m(·) =

E(Y |Z = ·) is the regression function, and the error term ε satisfies E(ε|Z) =
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0. Thus, the null hypothesis when testing for heteroscedasticity in regression

model (1.1) is as follows:

H0 : V ar(Y |Z) = E(ε2|Z) ≡ C for some constant C > 0;

the alternative hypothesis is that H0 is totally incorrect:

H1 : V ar(Y |Z) = E(ε2|Z) is a nonconstant function of Z.

Many test for heteroscedasticity in regression model (1.1) haven been pro-

posed in the literature. Cook and Weisberg (1983) constructed a score test

for heteroscedasticity in parametric regression models with parametric structure

variance functions. Simonoff and Tsai (1994) proposed a modified score test for

heteroscedasticity in linear models. Muller and Zhao (1995) developed a data-

based test for heteroscedasticity in a general semiparametric variance function

model with a fixed design. Dette and Munk (1998) proposed a consistent test

for heteroscedasticity in a nonparametric regression setting, based on the L2-

distance between the underlying variance function and the constant variance.

Zhu, Fujikoshi and Naito (2001) developed a test for heteroscedasticity based

on residual marked empirical processes. Extending the work of Zheng (1996) on

checking the regression function, Dette (2002); Zheng (2009) proposed residual-

based tests for heteroscedasticity under different regression models. Su and Ullah

(2013) introduced a nonparametric test for conditional heteroscedasticity in non-

linear regression models. Recently, following Stute, Xu and Zhu (2008); Chown

and Müller (2018) proposed a test for heteroscedasticity based on a weighted-

residual empirical distribution function. Lin and Qu (2012) developed a test for

heteroscedasticity in nonlinear semi-parametric regression models, based on the

work of Dette (2002). Furthermore, Dette, Neumeyer and Van Keilegom (2007);

Wang and Zhou (2007); Koul and Song (2010); Pardo-Fernández and Jiménez-

Gamero (2019) considered a more general problem of checking the parametric

form of the conditional variance function in nonparametric regressions.

To motivate the construction of our test statistic, we first give a detailed

comment on two representative tests, namely, those of Zhu, Fujikoshi and Naito

(2001); Zheng (2009). Let E(ε2) = σ2 and η = ε2−σ2. Then, the null hypothesis

H0 is equivalent to E(η|Z) = 0. Consequently,

E[ηE(η|Z)f(Z)] = 0,
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where f(·) is the density function of Z. Based on a consistent estimator of

E[ηE(η|Z)f(Z)], Zheng (2009) proposed the following test statistic:

Tn =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

1

hp
K

(
Zi − Zj

h

)
η̂iη̂j ,

where η̂i = ε̂2i − σ̂2, σ̂2 = (1/n)
∑n

i=1 ε̂
2
i , ε̂i = Yi − m̂(Zi) with m̂(·) being an

estimator of the regression function, K(·) is a p-dimensional multivariate kernel

function, and h is a bandwidth, which converges to zero as n goes to infinity.

However, because Zheng (2009) used nonparametric smooth estimators in its

construction, the test statistic suffers severely from the “curse of dimensionality.”

More specifically, the above test can only detect local alternatives that converge

to the null at a rate of O(1/
√
nhp/2). When p is large, this rate could be very

slow, which would quickly reduce the power of this test.

Zhu, Fujikoshi and Naito (2001) used residual marked empirical processes to

construct a test for heteroscedasticity. Note that

E(η|Z) = 0⇔ E[ηI(Z ≤ t)] = 0 for all t ∈ Rp.

Based on this, Zhu, Fujikoshi and Naito (2001) proposed the following residual

marked empirical process:

Rn(t) =
1√
n

n∑
i=1

η̂iI(Zi ≤ t).

Here, I(Zi ≤ t) = I(Zi1 ≤ t1) · · · I(Zip ≤ tp), and Zij and tj are the j-components

of Zi and t, respectively. The test statistic of Zhu, Fujikoshi and Naito (2001) is

a functional of Rn(t), such as the Cramér−von Mises or Kolmogorov−Smirnov

functional. The authors show that their test can detect local alternatives con-

verging to the null at the parametric rate 1/
√
n, which is the fastest documented

convergence rate in context of hypothesis testing. However, when the dimension

p of the covariates is large, this test also suffers severely from the dimension

problem due to the data sparseness in multidimensional spaces.

The purpose of this study is to develop a test for heteroscedasticity in para-

metric regression models that avoids the drawbacks of those of Zhu, Fujikoshi and

Naito (2001); Zheng (2009) and, thus, can be applied when the dimension of the

covariates is relatively large. Note that Zhu, Fujikoshi and Naito (2001) test is

consistent against local alternatives converging to the null at the parametric rate
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1/
√
n, which is not related to the dimension of the covariates. Nevertheless, their

test still suffers from the “curse of dimensionality” in practice. This is because

their test statistic is based on the indicator function I(Zi ≤ t), which is the prod-

uct of p indicator functions. Therefore, the vector (I(Z1 ≤ t), . . . , I(Zn ≤ t))>

is very sparse for large p, which cause the dimension problem in practice. To

overcome this problem, we propose using the projected covariates α>Zi, rather

than Zi, to construct a residual marked empirical process, yielding a test statistic

that does not involve the product of p indicator functions. Escanciano (2006);

Lavergne and Patilea (2008, 2012) adopted this approach to construct goodness-

of-fit tests for parametric regression models. Because the test is based on one-

dimensional projections, it behaves as if the dimension of the covariates is one.

As a result, this method is less sensitive to the dimension p of the regressors

than is the method of Zhu, Fujikoshi and Naito (2001). We employed resid-

ual marked empirical processes to construct the test statistic. Thus, our test

statistic avoids a nonparametric estimation of E(η|Z), which was used in Zheng

(2009), and can detect local alternatives converging to the null at the paramet-

ric rate 1/
√
n. Furthermore, the new test is easy to compute, does not involve

multidimensional numerical integrations, and exhibits excellent power for large

dimension in finite-sample simulations; see Section 4.

We also use this method to check for heteroscedasticity in partial linear re-

gression models. When the dimension of the covariates is large, a nonparametric

estimation is less accurate, owing to the “curse of dimensionality.” In addition,

partial linear regression models provide a more flexible substitution if the re-

searchers know that some of the covariates enter the regression model linearly.

As a result, this model is widely used in economics, biology, and other related

fields. To construct the test statistic for partial linear regression models, we need

to use locally smoothing methods to estimate the nonlinear part of the regres-

sion function. Although it involves nonparametric estimators, we show that the

limiting distribution has the same form as that in parametric regression models.

Furthermore, we show that the proposed detects local alternatives converging to

the null at rate 1/
√
n under this semi-parametric setting.

Chown and Müller (2018) employed a similar procedure to develop test for

heteroscedasticity that uses a weighted empirical process based on the indicator

function I(ε̂j ≤ t); rather than I(α>Zj ≤ t). This procedure was first proposed

by Stute, Xu and Zhu (2008) for checking parametric regression models in high-

dimensional settings. However, Chown and Müller (2018) test applies only to

location-scale models; that is, Y = m(Z)+
√
V ar(Y |Z)e, where e is independent
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of Z. The independence between e and Z is then employed to construct suitable

test statistics. As in Chown and Müller (2018); Pardo-Fernández and Jiménez-

Gamero (2019) rely on this same restriction. Moreover, they considered one-

dimensional covariate only. Our proposed test statistic does not require this

restriction. In fact, we only need E(ε|Z) = 0, and ε may depend on Z in a more

general way. Another issue is that the weighted function ω(Z) of the empirical

processes suggested by Chown and Müller (2018) also relies on nonparametric

estimations, regardless of the type of regression function. As a result their test

still suffers from the “curse of dimensionality” even for parametric regression

models.

The rest of the paper is organized as follows. In Section 2, we define the

test statistic using a projection-based empirical process. In Section 3, we study

the asymptotic properties of the test statistic under the null and the alternative

hypotheses in parametric and partial linear regression models. In Section 4, a

residual-based bootstrap method is proposed to approximate the null distribu-

tion of the test statistic. Here, we also present our simulation results that com-

pare the performance of the proposed test with that of several existing methods.

Furthermore, we analyze two real data sets to illustrate the proposed method.

Section 5 concludes the paper. All technical proofs are delegated to the online

Supplementary Material.

2. Test Construction

Recall that the null hypothesis H0 is equivalent to E(η|Z) = 0. According

to Lemma 1 of Escanciano (2006) or Lemma 2.1 of Lavergne and Patilea (2008),

we have

E(η|Z) = 0⇐⇒ E(η|α>Z) = 0, ∀ α ∈ Sp,

where Sp = {α : α ∈ Rp and ‖α‖ = 1}. Consequently,

E(η|Z) = 0⇐⇒ E[ηI(α>Z ≤ t)] = 0, ∀ α ∈ Sp, t ∈ R.

Therefore, the null hypothesis H0 is equivalent to∫
Sp

∫
R
|E[ηI(α>Z ≤ t)]|2Fα(dt)dα = 0, (2.1)

where Fα is the cumulative distribution function of α>Z, and dα is the uniform

density on Sp. Then, we propose the following test statistic, which we use to
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check heteroscedasticity in model (1.1):

HCMn =

∫
Sp

∫
R

1

n

∣∣∣∣∣
n∑
j=1

η̂jI(α>Zj ≤ t)

∣∣∣∣∣
2

Fn,α(dt)dα, (2.2)

where Fn,α is the empirical distribution function of the projected covariates

{α>Zj , 1 ≤ j ≤ n}.
Note that the test statistic HCMn involves a multidimensional integral for

large p. Indeed, by some elementary calculations,

HCMn =
1

n

n∑
i,j=1

η̂iη̂j

∫
Sp

∫
R
I(α>Zi ≤ t)I(α>Zj ≤ t)Fn,α(dt)dα

=
1

n2

n∑
i,j,k=1

η̂iη̂j

∫
Sp

I(α>Zi ≤ α>Zk)I(α>Zj ≤ α>Zk)dα.

It is well known that multidimensional numerical integrations are extremely dif-

ficult to handle in practice. However, the following lemma enables us to avoid

multidimensional integrations in the numerical calculations and, thus, obtain

an analytic expression for the test statistic HCMn. Its proof can be found in

Appendix B of Escanciano (2006).

Lemma 1. Let u1, u2 ∈ Rp be two nonzero vectors, and let Sp be the p-dimensional

unit sphere. Then, we have∫
Sp

I(α>u1 ≤ 0)I(α>u2 ≤ 0)dα =
π− < u1, u2 >

2π
,

where dα is the uniform density on Sp, and < u1, u2 >= arccos(u>1 u2/(‖u1‖‖u2‖))
is the angle between u1 and u2.

The integral in Lemma 1 can be viewed as a kernel function. Then, our

test statistic has similar form to that of Zheng (2009). However, in contrast to

the test of Zheng (2009), our test statistic can be viewed as a U -statistic with

a fixed, rather than a varying bandwidth. This is important. From the theory

on U-statistics, we know that those with a fixed bandwidth have a parametric

convergence rate 1/
√
n, which is faster than those with a varying bandwidth.

This supports our theoretical results derived using empirical processes. For fur-

ther information on U -statistics with a fixed bandwidth, see Anderson, Hall and

Titterington (1994); Fan (1998).

The proposed test works for all regression models, and avoids the following
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drawbacks of the tests of Zhu, Fujikoshi and Naito (2001); Zheng (2009): the non-

parametric estimation of E(η|Z), multidimensional numerical integration, and

the low power when the dimension p is large. Note that the test statistic is based

on the residuals ε̂j = Yj−m̂(Zj), that is, it involves the estimator of the regression

function E(Y |Z = ·). Thus, our test works well if it does not involve multidi-

mensional nonparametric estimations of E(Y |Z). In this study we deal only

with parametric and partial linear regression models, because the test statistic

only involves parametric estimations for parametric regression models, and only

involves one-dimensional kernel estimations for partial linear regression models.

It can also be applied to nonparametric regression models. Then, we have to

estimate the unknown regression function in a nonparametric way. Owing to the

sparsity of the data in multidimensional spaces, the behavior of nonparametric

estimations quickly deteriorates when the dimension of the covariates increases.

As a result, the test still suffers from the “curse of dimensionality” for nonpara-

metric regression models in practice. This problem is common to all existing

tests for heteroscedasticity in nonparametric regression, because they all need to

first estimate the unknown regression function. Therefore, dealing with the di-

mension problem when testing for heteroscedasticity in nonparametric regression

models remains a challenging problem.

3. Asymptotic Results

First, we consider the following parametric regression model:

Y = m(Z, β) + ε, E(ε|Z) = 0, (3.1)

where β ∈ Rd, and m(·, β) = E(Y |Z = ·) is the given regression function. Let

β̂n be a consistent estimator of β and ε̂i = Yi −m(Zi, β̂n). Then, η̂i = ε̂2i − σ̂2 =

ε̂2i − (1/n)
∑n

i=1 ε̂
2
i . Define the projected empirical process as follows:

Vn(α, t) =
1√
n

n∑
i=1

η̂iI(α>Zi ≤ t).

The test statistic becomes

HCMn =

∫
Sp

∫
R
|Vn(α, t)|2Fn,α(dt)dα.

To obtain the asymptotic properties of Vn(α, t) under the null and the alter-

natives, we impose several regularity conditions:
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(A1) E(ε4) <∞;

(A2)
√
n(β̂n − β) = Op(1)

(A3) The parametric regression function m(z, γ) is twice continuously differen-

tiable at each γ in a neighborhood of β. Set

m′(z, γ) =
∂m(z, γ)

∂γ
and m′′(z, γ) =

∂m(z, γ)

∂γ>∂γ
.

Assume E‖m′(Z, β)‖2 < ∞ and ‖m′′(z, γ)‖ ≤ M(z), with E|M(Z)|2 < ∞,

for all γ. Here, ‖ · ‖ denotes the Frobenius norm.

Conditions (A1) and (A3) are commonly used in the literature on het-

eroscedasticity testing; see, for example, Zheng (2009). Condition (A2) is sat-

isfied for the ordinary least squares estimator and its robust modifications; see,

Chapters 5 and 7 in Koul (2002).

Theorem 1. Assume that the regularity conditions A1–A3 hold. Under H0, we

have

Vn(α, t) −→ V∞(α, t) in distribution,

where V∞(α, t) is a zero-mean Gaussian process with covariance function

K{(α1, t1), (α2, t2)} = E{η2[I(α>1 Z ≤ t1)− Fα1
(t1)][I(α>2 Z ≤ t2)− Fα2

(t2)]}.

Furthermore,

HCMn −→
∫
Sp

∫
R
V∞(α, t)2Fα(dt)dα in distribution.

Next we apply this approach to check for heteroscedasticity in partial linear

regression models. Consider

Y = β>X + g(T ) + ε, E(ε|X,T ) = 0, (3.2)

where T ∈ R, β ∈ Rq, and g(·) is a smooth function. Because the nonlinear part

g(T ) in equation (3.2) is unknown, it has to be estimated in a nonparametric way.

Thus, in theoretical investigations, the decomposition of the proposed projected

empirical process involves a U-process. With the help of the theory on U-process

in the literature, e.g., Nolan and Pollard (1987), we obtain the same asymptotical

property as that in Theorem 1 for partial linear regression models.
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We now use the kernel method to give the estimators of β and g(T ). Note

that

Y − E(Y |T ) = β>[X − E(X|T )] + ε.

Set Ỹ = Y − E(Y |T ) and X̃ = X − E(X|T ). It is easy to see that

β = [EX̃X̃>]−1E(X̃Ỹ ).

Let {(Xi, Ti, Yi)}ni=1 be an independent identically distributed (i.i.d) sample from

the distribution of (X,T, Y ). The estimator of β is given by

β̂n =

(
1

n

n∑
i=1

[Xi − Ê(X|Ti)][Xi − Ê(X|Ti)]>
)−1

(
1

n

n∑
i=1

[Xi − Ê(X|Ti)][Yi − Ê(Y |Ti)]

)
, (3.3)

where

Ê(X|Ti) =
1

n

n∑
j=1,j 6=i

XjKh(Ti − Tj)
f̂i(Ti)

,

Ê(Y |Ti) =
1

n

n∑
j=1,j 6=i

YjKh(Ti − Tj)
f̂i(Ti)

,

and f̂i(Ti) = (1/n)
∑n

j=1,j 6=iKh(Ti − Tj). Here, Kh(t) = (1/h)K(t/h), and K(·)
is a kernel function satisfying the regularity condition (B3), specified below. To

obtain the estimator of g(·), note that g(T ) = E(Y − β>X|T ). Thus, the kernel

estimator of g(T ) has the following form:

ĝ(Ti) =
1

n

n∑
j=1,j 6=i

[Yj − β̂>nXj ]Kh(Ti − Tj)
f̂i(Ti)

. (3.4)

The following regularity conditions are needed in order to derive the asymp-

totic distribution of HCMn in partial linear regression models. In the following,

C is a constant, although the value may vary depending on the context.

(B1) Let E′(Y |T = t) be the derivative of E(Y |T = t), and let F (x|t) be the

conditional distribution function of X, given T = t. Suppose there exists

an open neighborhood Θ1 of zero, such that, for all t and x,
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|E(X|T = t+ u)− E(X|T = u)| ≤ C|u|, ∀ u ∈ Θ1;

|E′(X|T = t+ u)− E′(X|T = u)| ≤ C|u|, ∀ u ∈ Θ1;

|F (x|t+ u)− F (x|t)| ≤ C|u|, ∀ u ∈ Θ1.

(B2) E(Y 4) < ∞, E(‖X‖4) < ∞, and there exists a constant C, such that

|E(ε2|T = t,X = x)| ≤ C, for all t and x.

(B3) The kernel function K(·) is bounded, continuous, symmetric about zero and

satisfies the following: (a) the support of K(·) is the interval [−1, 1]; and

(b)
∫ 1
−1K(u)du = 1 and

∫ 1
−1 |u|K(u)du 6= 0.

(B4) nh4 → 0 and nh2 →∞ as n→∞.

The Conditions (B1), (B2), and (B3) are commonly used to derive the asymp-

totic properties of nonparametric estimators; see, for example, Schick (1996); Zhu

and Ng (2003). Condition (B4) is necessary to obtain the limiting distribution

of the test statistic.

Lemma 2. Under the regularity conditions B1–B4, we have

√
n(β̂n − β) = [EX̃X̃>]−1

1√
n

n∑
i=1

X̃iεi +Op

(
1√
nh

+
√
nh2

)1/2

. (3.5)

Lemma 2 can be found in Zhu and Ng (2003). It indicates that, under

the regularity condition (B4), β̂n is root-n consistent. Now we can obtain the

asymptotic properties of HCMn in partial linear regression models. Set p = q+1

and Zi = (X>i , Ti)
>. The proposed empirical process and the test statistic have

the same form as before,

Vn(α, t) =
1√
n

n∑
i=1

η̂iI(α>Zi ≤ t),

HCMn =

∫
Sp

∫
R
|Vn(α, t)|2Fn,α(dt)dα.

Here η̂i = ε̂2i − σ̂2, σ̂2 = (1/n)
∑n

i=1 ε̂
2
i , and ε̂i = Yi − β̂>nXi − ĝ(Ti).

Theorem 2. Suppose that the regularity conditions B1–B4 hold. Then, under

partial linear models (3.2) and the null hypothesis H0, the results in Theorem 1

continue to hold.
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Note that existing tests for heteroscedasticity in partial linear models usu-

ally assume that the variance function V ar(Y |X,T ) depends only on T . This

condition is not necessary for our test. Under this condition, we can con-

struct a much simpler test using the covariate T , rather than the projected

covariate α>(X>, T )>. Because V ar(Y |X,T ) is a function of T , it follows

that V ar(Y |X,T ) = E(ε2|T ). Thus, the null hypothesis H0 is equivalent to

E(η|T ) = 0. The resulting test statistic is given as follows:

CM (1)
n =

∫
R

∣∣∣∣∣ 1√
n

n∑
i=1

η̂iI(Ti ≤ t)

∣∣∣∣∣
2

dt.

More generally, if T ∈ Rd is a multiple random variable, we also encounter the

dimension problem for large d. Then, we can use the projected covariates α>T

to construct a test for heteroscedasticity. The test statistic becomes

CM (2)
n =

∫
Sd

∫
R

∣∣∣∣∣ 1√
n

n∑
i=1

η̂iI(α>Ti ≤ t)

∣∣∣∣∣
2

Fn,α(dt)dα,

where Fn,α is the empirical distribution function of the projected covariates

{α>Ti : i = 1, . . . , n}. The limiting distributions of CM
(1)
n and CM

(2)
n are

similar to that of HCMn, which we derive here.

Now, we investigate the sensitivity of the proposed test to alternative hy-

potheses. Consider a sequence of local alternatives converging to the null at a

convergence rate cn:

H1n : E(ε2|Z) = σ2 + cns(Z), (3.6)

where s(Z) is not a constant function of Z, and E[s(Z)] = 0 and E[s2(Z)] <∞.

The following theorem shows that the proposed test is consistent against all

global alternatives, and can detect local alternatives converging to the null at a

parametric convergence rate 1/
√
n.

Theorem 3. Suppose the regularity conditions in Theorem 1 or Theorem 2 hold.

Then,

(1) under the alternatives H1n, with
√
ncn → ∞, we have HCMn → ∞ in

probability;

(2) under the alternatives H1n, with cn = 1/
√
n, we have

HCMn −→
∫
Sp

∫
R
[V∞(α, t) + S(α, t)]2Fα(dt)dα in distribution,
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where S(α, t) = E{s(Z)[I(α>Z ≤ t)− Fα(t)]} is a nonrandom shift term .

The proofs of Theorems 1–3 are presented in the online Supplementary ma-

terial. These theorems confirm the claims made in the introduction.

4. Numerical Studies

4.1. Simulation studies

In this subsection, we conduct several simulation studies to investigate the

performance of our test. Because the test is not asymptotically distribution free,

we suggest a residual-based bootstrap to approximate the distribution of the

test statistic. This method was also used by Hsiao and Li (2001); Wang and

Zhou (2007); Su and Ullah (2013); Guo et al. (2019). The procedure for the

residual-based bootstrap is given as follows:

(1). For a given random sample {(Yi, Zi) : i = 1, . . . , n}, obtain the residual

ε̂i = Yi − m̂(Zi), where m̂(·) is the estimator of the regression function.

(2). Obtain the bootstrap error ε∗i by randomly sampling, with replacement,

from the center variables {ε̂i − ¯̂ε : i = 1, . . . , n}, where ¯̂ε = (1/n)
∑n

i=1 ε̂i.

Then define, Y ∗i = m̂(Zi) + ε∗i .

(3). For the bootstrap sample {(Y ∗i , Zi) : i = 1, . . . , n}, obtain the estimator

m̂∗(Zi), and then define the bootstrap residual ε̂∗i = Y ∗i − m̂∗(Zi). Let

η̂∗i = ε̂∗2i − σ̂∗2i and σ̂∗2i = (1/n)
∑n

i=1 ε̂
∗2
i . Thus, the bootstrap test statistic

HCM∗n is calculated based on {(η̂∗i , Zi) : i = 1, . . . , n}.

(4). Repeat steps (2) and (3) many times, say, B times. For a given significance

level τ , the critical value is determined by the upper τ− quantile of the

bootstrap distribution {HCM∗n,j : j = 1, . . . , B} of the test statistic.

Note that m̂(Zi) = m(Zi, β̂n) for the parametric regression model (3.1), and

m̂(Zi) = β̂>nXi + ĝ(Ti), with Zi = (Xi, Ti), for the partial linear regression

model (3.2). The bootstrap estimators m̂∗(Zi) are defined similarly.

The next theorem establishes the validity of the residual-based bootstrap.

Theorem 4. Suppose the regularity conditions in Theorem 1 or Theorem 2 hold.

Then,

(1) under the null H0 and the local alternative H1n, the distribution of HCM∗n,

given {(Yi, Zi) : i = 1, . . . , n}, converges to the limiting null distribution of

HCMn in Theorem 1.
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(2) under the alternative H1, the distribution of HCM∗n, given {(Yi, Zi) : i =

1, . . . , n}, converges to a finite limiting distribution.

Theorem 4 indicates that the bootstrap is asymptotically valid. Under the

null hypothesis, the bootstrap distribution gives an asymptotical approximation

to the limiting null distribution of HCMn. Under the local alternatives H1n

and the global alternative H1, the proposed test based on the bootstrap critical

values remains consistent.

Next, we report several simulation results that evaluate the finite-sample

performance of the proposed test. We also compare the performance of the

proposed test with that of the tests of Zhu, Fujikoshi and Naito (2001) TZFNn ,

Zheng (2009) TZHn , and Guo et al. (2019) TGn under different settings of dimen-

sions. Note that Guo et al. (2019) used the characteristic function to construct

a test for heteroscedasticity, based on one-dimensional projections. Thus, their

test is also less sensitive to the dimension of the covariates. Specifically, their

test statistic is based on the fact that the null hypothesis H0 is equivalent to

E[η exp(it>Z)] = 0, for all t ∈ Rp. The test statistic of Guo et al. (2019) is given

as follows:

TGn =

∫
Rp

∣∣∣∣∣ 1n
n∑
j=1

η̂j exp(it>Zj)

∣∣∣∣∣
2

fδ,p(t)dt,

where fδ,p(t) denotes the density of a spherical stable distribution in Rp, with a

characteristic exponent δ ∈ (0, 2]. Note that∫
Rp

cos(t>z)fδ,p(z)dz = exp(−‖t‖δ).

Thus, the test statistic of Guo et al. (2019) has a closed form:

TGn =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

η̂iη̂j exp(−‖Zi − Zj‖δ).

In the following simulations, a = 0 corresponds to the null, and a 6= 0

corresponds to the alternatives. The sample sizes are 100 and 200. The empirical

size and powers are calculated using 1,000 replications at a nominal level 0.05.

The bootstrap sample is set to B = 500. We choose δ = 1.5 in TGn , as suggested

by Guo et al. (2019).

Study 1. The data are generated from the following parametric regression

models:
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H11 : Y = β>Z + |a× β>Z + 0.5| × ε;
H12 : Y = β>Z + exp(a× β>Z)× ε;
H13 : Y = β>Z + |a× sin(β>Z) + 1| × ε;
H14 : Y = exp(−β>Z) + |a× β>Z + 0.5| × ε;

where Z ∼ N(0, Ip), independent of the standard normal error ε, and β =

(1, . . . , 1)>/
√
p. To show the effect of the dimension, p is set to 2, 4, and 8

in each model. Note that model H13 is a high-frequency model, and the other

three are low-frequency models. To determine whether the regression function

affects the performance of the tests, we consider a nonlinear regression function

in model H14.

The simulation results for models H11 and H12 are presented in Table 1.

The remaining results are relegated to the Supplementary material, for brevity.

When p = 2, Zheng (2009)’s test TZHn and the test of Guo et al. (2019) TGn do

not maintain the significance level in some cases, although the other two perform

better. In terms of the empirical power, the tests all work well. However, the

proposed test HCMn and the test of Zhu, Fujikoshi and Naito (2001) TZFNn grow

faster than the other two as a increases. When the dimension p becomes large,

the tests HCMn and TZFNn still control the empirical size. In contrast, the em-

pirical sizes of TZHn and TGn are slightly away from the significance level. In terms

of empirical power, the tests HCMn and TGn outperform the other two. Here,

TZFNn performs worst when p = 8. These finding validate our theoretical results

that the proposed test HCMn is little affected by the dimension of the covari-

ates, and that the tests TZHn and TZFNn suffer severely from the dimensionality

problem. In the high-frequency model H13, we observe that the locally smooth-

ing test TZHn performs much worse than the other tests do. This differs from

the case of model checking, where locally smoothing tests usually outperform

their globally smoothing counterparts in high-frequency models. Furthermore,

we found no significant difference between the empirical size and power of the

regression functions in models H11 and H14.

In the next simulation study, we investigate the performance of the proposed

test in partial linear regression models. We focus on two cases: (1) V ar(ε|X,T )

is a function of (X,T ), and (2) V ar(ε|X,T ) is a function of T .

Study 2. The data are generated from the following models:

H21 : Y = β>X + T 2 + |a(β>X + T ) + 0.5| × ε;
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Table 1. Empirical sizes and powers of HCMn, TG
n , TZH

n , and TZFN
n for H11 and H12

in Example 1.

a HCMn TG
n TZH

n TZFN
n

n=100 n=200 n=100 n=200 n=100 n=200 n=100 n=200

H11, p = 2 0.0 0.045 0.051 0.058 0.062 0.042 0.033 0.052 0.049

0.1 0.528 0.895 0.391 0.751 0.123 0.286 0.503 0.889

0.2 0.966 1.000 0.921 1.000 0.468 0.889 0.961 1.000

0.3 0.998 1.000 0.990 1.000 0.779 0.990 0.985 1.000

0.4 0.998 1.000 0.999 1.000 0.885 0.998 0.974 1.000

0.5 0.994 1.000 0.999 1.000 0.928 1.000 0.965 0.998

H11, p = 4 0.0 0.055 0.053 0.050 0.057 0.031 0.022 0.063 0.051

0.1 0.398 0.767 0.233 0.481 0.049 0.095 0.131 0.593

0.2 0.874 0.997 0.669 0.958 0.145 0.347 0.426 0.956

0.3 0.963 1.000 0.857 0.999 0.306 0.621 0.541 0.964

0.4 0.970 0.999 0.943 1.000 0.430 0.821 0.419 0.916

0.5 0.944 0.998 0.958 1.000 0.492 0.876 0.297 0.809

H11, p = 8 0.0 0.049 0.049 0.053 0.065 0.045 0.036 0.050 0.049

0.1 0.289 0.600 0.151 0.257 0.055 0.055 0.004 0.004

0.2 0.755 0.980 0.352 0.688 0.108 0.132 0.004 0.010

0.3 0.883 0.997 0.526 0.892 0.138 0.187 0.004 0.010

0.4 0.874 0.990 0.623 0.946 0.167 0.254 0.009 0.009

0.5 0.853 0.988 0.647 0.966 0.247 0.324 0.023 0.014

H12, p = 2 0.0 0.054 0.046 0.043 0.068 0.032 0.056 0.052 0.045

0.1 0.183 0.347 0.138 0.262 0.059 0.080 0.153 0.327

0.2 0.564 0.892 0.440 0.753 0.121 0.295 0.502 0.878

0.3 0.882 0.996 0.747 0.967 0.281 0.692 0.810 0.993

0.4 0.973 0.999 0.927 0.999 0.514 0.900 0.919 0.997

0.5 0.987 0.999 0.983 1.000 0.650 0.964 0.944 0.986

H12, p = 4 0.0 0.050 0.046 0.058 0.048 0.028 0.023 0.057 0.056

0.1 0.127 0.270 0.103 0.157 0.034 0.038 0.040 0.110

0.2 0.424 0.789 0.264 0.479 0.048 0.075 0.104 0.529

0.3 0.702 0.976 0.488 0.856 0.114 0.208 0.210 0.804

0.4 0.862 0.993 0.727 0.976 0.163 0.436 0.294 0.857

0.5 0.910 0.993 0.849 0.996 0.272 0.651 0.317 0.802

H12, p = 8 0.0 0.050 0.046 0.085 0.062 0.039 0.037 0.054 0.047

0.1 0.112 0.193 0.083 0.111 0.055 0.053 0.014 0.001

0.2 0.274 0.618 0.156 0.266 0.063 0.057 0.002 0.003

0.3 0.549 0.919 0.252 0.526 0.089 0.086 0.002 0.000

0.4 0.757 0.973 0.372 0.727 0.113 0.154 0.001 0.002

0.5 0.836 0.972 0.494 0.865 0.140 0.207 0.001 0.002

H22 : Y = β>X + T 2 + exp{a(β>X + T )} × ε;
H23 : Y = β>X + T 2 + |a sin(β>X + T ) + 1| × ε;
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Figure 1. The empirical size curves of HCMn against the different bandwidths and
sample size 100 and 200 with a = 0 in Model H21.

H24 : Y = β>X + exp(T ) + |a(β>X + T ) + 0.5| × ε;
H25 : Y = β>X + exp(T ) + |a sin(β>X + T ) + 1| × ε;
H26 : Y = β>X + T 2 + exp(4aT )× ε;

where X ∼ N(0, Iq), T ∼ U(0, 1), ε ∼ N(0, 1), and β = (1, . . . , 1)>/
√
q. The er-

ror term ε is independent of (X,T ). The dimension q of the covariates X is again

set to 2, 4, and 8. We use the kernel function K(u) = (1/
√

2π) exp(−u2/2). A

further issue is the selection of the bandwidth h. Several data-driven procedures

are available for selecting the bandwidth automatically in estimation problems,

(e.g., generalized cross validation; GCV). In hypothesis testing, how best to se-

lect a bandwidth remains an open problem. Note that the underlying regression

models are different under the null and the alternatives. Eubank and Thomas

(1993) stated that the GCV method works well when choosing the bandwidth

for a homoscedastic model, but may not be useful for a heteroscedastic model.

Thus, it is unknown whether a data-driven procedure exists for selecting the

bandwidth in hypothesis testing. On the other hand, Theorems 2 and 3 show

that the asymptotic property of the test statistic HCMn does not rely on the

choice of h when the regularity condition (B4) is satisfied. Thus, the proposed
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Figure 2. The empirical power curves of HCMn against the different bandwidths and
sample size 100 and 200 with a = 0.2 in Model H21.

test is not overly sensitive to the choices of the smoothing parameter h. Thus,

we consider a wide range of values of h, and empirically choose one as the band-

width. This strategy was also adopted by Zhu, Fujikoshi and Naito (2001); Sun

and Wang (2009), among many others. Let h = j/100, for j = 10, 15, 20, . . . , 100.

The empirical size and power of each dimension are presented in Figures 1 and

2.

From these two figures, we can see that when the bandwidth h is too small,

HCMn cannot maintain the significance level. However, when the bandwidth

h is greater than 0.5, the test statistic HCMn seems robust against different

bandwidths. Thus, we use the bandwidth h = 0.65 in the following simulation

studies.

The empirical size and power values are presented in the Supplementary

Material. We observe that the results are similar to those of Study 1 for the first

five models. The proposed test HCMn still performs best. It seems the nonlinear

part g(·) of a partial linear regression model does not affect the performance of

the test. However, this changes in model H26. When the dimension q of the

covariate X is relatively large, the tests all perform very poorly, because when q

is large, the weight of T that contributes to the test statistics becomes small.
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Figure 3. The scatter plot of the residuals ε̂i against the fitted values Ŷi for the baseball
salary data set.

4.2. Real-data analysis

In this subsection, we analyze two data sets. The first one is a well-known

baseball salary data set ( available from the website http://www4.stat.ncsu.

edu/~boos/var.select/baseball.html), with data on the salary Y and 16 per-

formance measures for each of 337 Major League Baseball players for the 1991

and 1992 seasons. Further details about the variables in the data set are available

from the above website. Recently, Tan and Zhu (2019) analyzed the data set, and

suggested fitting the data set using the following parametric single-index model:

Y = a+ b(β>X) + c(β>X)2 + ε.

Here, we investigate whether heteroscedasticity exists in this model. We first

plot the residuals ε̂ against the fitted values Ŷ in Figure 3, where ε̂ = Y −
â − b̂(β̂>nX) − ĉ(β̂>nX)2 and Ŷ = â + b̂(β̂>nX) + ĉ(β̂>nX)2. This plot shows that

heteroscedasticity may exist. When the proposed test is applied, the p-value is

about zero. This indicates the existence of heteroscedasticity. Thus, a parametric

single-index model with heteroscedasticity is plausible for the salary data set.

In the next example, we consider the ACTG315 data set, which was used

by an AIDS clinical trial group study to identify the relationship between viro-

logic and immunologic responses in AIDS clinical trials. The data set has been

studied by Wu and Wu (2001, 2002); Yang, Xue and Cheng (2009). In general,

the virologic response RNA (measured by viral load) and immunologic response

(measured by CD cell counts) have a negative correlation during clinical trials.

Let viral load be the response variable, and let CD4+cell counts and treatment

time be the covariates. Liang et al. (2004) find that a linear relationship be-

tween viral load and CD4+ cell count, but a nonlinear relationship between viral

http://www4.stat.ncsu.edu/ ~ boos/var.select/baseball.html
http://www4.stat.ncsu.edu/ ~ boos/var.select/baseball.html
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Figure 4. The scatter plot of the residuals ε̂i against the fitted values Ŷi for the ACTG
315 data set.

load and treatment time. Base on these findings, Yang, Xue and Cheng (2009)

suggested a partial linear regression model to fit the data. Xu and Guo (2013)

confirmed this model using a goodness of fit test. The data set contains 317

observations, with 64 CD4+ cell counts missing. To illustrate our test, we clear

the observations with missing variables. Let Y be viral load, T be treatment

time, and X be CD4+cell count. Yang, Xue and Cheng (2009) use the following

model to fit the data:

Y = βX + g(T ) + ε.

We use the proposed test to check for heteroscedasticity in the above models.

When the normal kernel and the bandwidth h = 0.65 are used, the p-value is

about 0.246. Thus, we cannot reject the homoscedasticity assumption in the

partial linear regression model. The scatter plot of the residuals ε̂ against the

fitted values Ŷ is presented in Figure 4, where ε̂ = Y − β̂nX − ĝ(T ) and Ŷ =

β̂nX+ ĝ(T ). This plot confirms that a partial linear model with homoscedasticity

is appropriate for the data set.

5. Conclusion

We propose a test for heteroscedasticity that uses a projected empirical pro-

cess. The proposed test can be viewed as a generalization of the test of Zhu,

Fujikoshi and Naito (2001). When the dimension of the covariate is one, the

proposed test reduces to that of Zhu, Fujikoshi and Naito (2001). Thus, the tests

share several common desirable feathers: both are consistent for all global alter-

natives; the convergence rate does not relate to the dimension of the covariates;

and they can detect local alternatives departing from the null at a parametric

rate 1/
√
n, which is the fastest convergence rate in hypothesis testing. Neverthe-
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less, we use the projection of the covariates rather than the covariates themselves

to construct the residual marked empirical process. Because the proposed test

is based on one-dimensional projections, it performs as if the dimension of the

covariates is one. Thus, our test can significantly alleviate the impact of the

“curse of dimensionality.” The simulation results validate these theoretical re-

sults. Furthermore, our method can easily be extended to a more generalized

problem of testing the parametric form of a variance function. However, the

limiting distributions of the empirical processes may have a more complicated

structure, which may lead to the asymptotic test not being available. This is

beyond the scope of this study, and is left to further research.

Supplementary Material

The online Supplementary Material contains proofs for the main results and

additional simulation results.
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