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Supplementary Material

In this supplementary document, proofs are provided for some of the results presented in the main document.

Specifically, proofs for the Gaussian particularizations of our main results (Corollaries 1 and 2) are given in Section

S1. The proof for the instrumental tightness properties of Lemma 3 is included in Section S2. Finally, proofs for the

key asymptotic properties of normalized bilinear forms (Lemma 1 and Proposition 1) are given in Section S3.

S1 Gaussian particularizations

S1.1 Proof of Corollary 1

Refer to definition (1.4) of κ̌, and introduce also

κ̌1,iji′j′ = Cov(ψij, ψi′j′), κ̌2,iji′j′ = Cov(ψij, χi′j′).

Note that the centering terms in covariances κ̌1 and κ̌2 are respectively EψijEψi′j′ and

EψijEχi′j′ , and that both equal κijκi′j′ . Observe also that the sum

[Pν , κ̌2] =
∑
i,j,i′,j′

Pνiji′j′Cov(ψij, χi′j′)
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is unchanged by swapping the indices (ij) with (i′j′), so

[Pν , κ̌] = [Pν , κ̌1]− 2[Pν , κ̌2] . (S1.1)

Using definition (1.3) of ψij and setting µiji′j′ = E[ξ̄iξ̄j ξ̄i′ ξ̄j′ ],

∑
i,j,i′,j′

Pνiji′j′E(ψijψi′j′) =
1

4

∑
i,j,i′,j′

Pνiji′j′κijκi′j′E(ξ̄2
i + ξ̄2

j )(ξ̄
2
i′ + ξ̄2

j′) =
∑
i,j,i′,j′

Pνiji′j′κijκi′j′µiii′i′ ,

since the latter sum is unaffected by replacing i with j, and i′ with j′.

Now we can insert the centering in κ̌1, and argue in a parallel manner for κ̌2, to obtain

[Pν , κ̌1] =
∑
i,j,i′,j′

Pνiji′j′κijκi′j′(µiii′i′ − 1) = `2
ν

∑
i,i′

(pν,i)
2(pν,i′)

2(µiii′i′ − 1),

[Pν , κ̌2] =
∑
i,j,i′,j′

Pνiji′j′κij(µiii′j′ − κi′j′) = `ν
∑
i,i′,j′

(pν,i)
2pν,i′pν,j′(µiii′j′ − κi′j′),

where in each final equality we used the summation device for indices occurring exactly

twice; for example, if j appears twice,
∑

j κijpν,j = `νpν,i.

To this point, no Gaussian assumption was used. If the data is Gaussian, µiji′j′ =

κijκi′j′ +κii′κjj′ +κij′κji′ , and in particular µiii′i′ − 1 = 2κ2
ii′ , and µiii′j′ −κi′j′ = 2κii′κij′ . We

then obtain

[Pν , κ̌1] = 2`2
ν

∑
i,i′

(pν,iκii′pν,i′)
2 = 2`2

ν tr (PD,νΓPD,ν)
2,

[Pν , κ̌2] = 2`3
ν

∑
i

(pν,i)
4 = 2`3

ν tr (P 4
D,ν),

and inserting these into (S1.1) and then (2.6), we complete the proof.

S1.2 Proof of Corollary 2

If the data is Gaussian, κiji′j′ = 0 and E[ξ̄iξ̄j ξ̄i′ ξ̄j′ ] = κijκi′j′ + κii′κjj′ + κij′κji′ . Hence,

(Σ̃ν)kl = ρ̇−1
ν `k`ν δk,l + [Pkνlν , κ̌], (S1.2)
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and, from the definition of κ̌ in (1.3)-(1.4), we obtain

κ̌iji′j′ =
1

2
κijκi′j′(κ

2
ii′ + κ2

jj′ + κ2
ij′ + κ2

i′j)− κi′j′(κii′κji′ + κij′κjj′)− κij(κii′κij′ + κi′jκjj′) .

(S1.3)

With this, we evaluate [Pkνlν , κ̌], where we need to deal with terms of two types: involving

products such as κijκi′j′κ
2
ii′ and such as κi′j′κii′κji′ . For the first type, we use the same

summation device as in Section S1.1, i.e., if for example index j occurs exactly twice,∑
j κijpν,j = `νpν,i, so that

∑
i,j,i′,j′

Pkνlνiji′j′ κijκi′j′κ
2
ii′ = `2

ν

∑
i,i′

pk,i(pν,iκ
2
ii′pν,i′)pl,i′ = `2

ν p
T
kPD,ν(Γ ◦ Γ)PD,νpl = `2

νZkl,

where, recall PD,ν = diag(pν,1, . . . , pν,m). For the second type of terms, by the same device,

∑
i,j,i′,j′

Pkνlνiji′j′ κi′j′κii′κji′ = `k`
2
ν

∑
i′

pk,i′p
2
ν,i′pl,i′ = `k`

2
ν p

T
kP

2
D,νpl = `k`

2
νYkl.

The rest of terms are evaluated similarly, yielding

∑
i,j,i′,j′

Pkνlνiji′j′ κijκi′j′κ
2
jj′ = `k`lZkl,

∑
i,j,i′,j′

Pkνlνiji′j′ κi′j′κij′κjj′ = `k`l`νYkl,

∑
i,j,i′,j′

Pkνlνiji′j′ κijκi′j′κ
2
ij′ = `ν`lZkl,

∑
i,j,i′,j′

Pkνlνiji′j′ κijκii′κij′ = `l`
2
νYkl,

∑
i,j,i′,j′

Pkνlνiji′j′ κijκi′j′κ
2
i′j = `ν`kZkl,

∑
i,j,i′,j′

Pkνlνiji′j′ κijκi′jκjj′ = `k`l`νYkl.

Combining terms according to (S1.2)-(S1.3) leads to the result of Corollary 2.

S2 Proof of Lemma 3, (5.28)–(5.30)

Tightness of Gn(gρ) in (5.28), and a fortiori that of n−1/2Gn(gρ), follows from that of M̂n(z)

in Gao et al. (2017, Proposition 1), itself an adaptation of Lemma 1.1 of Bai and Silverstein

(2004) to the sample correlation setting, and the arguments following that Lemma. Note in
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particular that, with notation xr, C, C̄ from Bai and Silverstein (2004), a complex contour

C ∪ C̄ enclosing the support of Fγ can be chosen, by taking bγ < xr < bγ + 3ε, such that

|gρ(z)| is bounded above by a constant for z ∈ C ∪ C̄.

To prove (5.29), from (5.27) it suffices to show that the matrix valued process {Wn(ρ) ∈

Rm×m, ρ ∈ I} is uniformly tight. Since m stays fixed throughout, we only need to show

tightness for each of the scalar processes formed from the matrix entries eTkWn(ρ)el on I.

Let Pn,En denote probability and expectation conditional on the event Enε = {µ1 ≤

bγ + ε}. We show tightness of Wn(ρ) on I by establishing the moment criterion of Billingsley

(1968, eq. (12.51)): we exhibit C such that for each k, l ≤ m and ρ, ρ′ ∈ I,

En|eTk [Wn(ρ)−Wn(ρ′)]el|2 ≤ C(ρ− ρ′)2.

Write the quadratic form inside the expectation as xT B̌ny − κkl tr B̌n with x = X̄T
1 ek and

y = X̄T
1 el being the kth and lth rows of X̄1 and B̌n = n−1/2[Bn(ρ)− Bn(ρ′)]. Lemma 1 with

p = 2 yields

En|eTk [Wn(ρ)−Wn(ρ′)]el|2 ≤ 2C2ν4En[ tr B̌2
n + ‖n1/2B̌n‖2].

Now n1/2B̌n has eigenvalues (ρ′ − ρ)µi(ρ
′ − µi)−1(ρ− µi)−1, so that on Enε we have tr B̌2

n ≤

‖n1/2B̌n‖2 ≤ C(ρ′ − ρ)2, which establishes the moment condition.

To establish (5.30), we work conditionally on Enε. The tightness just established yields,

for given ε, a value M for which the event E ′n defined by

sup
ρ∈I

n1/2‖K(ρ)−K0(ρ; γn)‖ > 1
2
M

has Pn-probability at most ε. For all large enough n such that bγ + 3ε > (1 +
√
γn)2, we

combine this with the eigenvalue perturbation bound

|λν(ρ)− λ0ν(ρ)| ≤ ‖K(ρ)−K0(ρ; γn)‖ (S2.1)
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for ρ ∈ I, where λν(ρ) and λ0ν(ρ) = −ρm(ρ; γn)`ν − ρ are the νth eigenvalues of K(ρ)− ρIm

and K0(ρ; γn)− ρIm respectively. Observe that λ0ν(ρνn) = 0 and

∂ρλ0ν(ρ) = −1− `ν
∫
x(ρ− x)−2Fγ(dx) < −1,

hence for ρn± = ρνn±Mn−1/2, we have λ0ν(ρn−) ≥Mn−1/2 and λ0ν(ρn+) ≤ −Mn−1/2. Now

(S2.1) shows that on event E ′cn , λν(ρn−) ≥ 1
2
Mn−1/2 and λν(ρn+) ≤ −1

2
Mn−1/2. Since λν(ρ)

is continuous in ρ, there exists ρν∗ ∈ (ρν−, ρν+) such that λν(ρν∗) = 0; note from the Schur

complement decomposition

det (R− ρIm+p) = det (R22 − ρIp) det (K(ρ)− ρIm)

that ρν∗ is an eigenvalue of R. This is almost surely ˆ̀
ν , since ˆ̀

ν , ρνn
a.s.−−→ ρν , and ρν =

ρ(`ν , γ) is different from the almost sure limit of any eigenvalue of R adjacent to ˆ̀
ν (given

by (5.20)), because `ν is simple and supercritical. Therefore, we have ˆ̀
ν ∈ (ρn−, ρn+), and

thus |ˆ̀ν − ρνn| ≤Mn−1/2, which proves (5.30).

S3 Proofs of asymptotic properties of normalized bilinear forms

S3.1 Proof of Lemma 1 (Trace Lemma)

Lemma 1 is established by using truncation arguments, similar to Gao et al. (2017, Lemma 5),

but adapted to bilinear forms instead of quadratic forms. Also, in contrast to that result,

we do not consider data that is centered with the sample mean.

Let Cs denote a constant depending only on s, with different instances not necessarily

identical. Define the events Exn , {|n−1‖x‖2 − 1| ≤ ε} and Eyn , {|n−1‖y‖2 − 1| ≤ ε}, for

some ε ∈ (0, 1/2), and use Ēxn , Ēyn to denote their complements. Using Markov’s inequality

and Burkholder inequalities for sums of martingale difference sequences (Bai and Silverstein,
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2009, Lemmas 2.13), we have, for any s ≥ 1,

P [Ēxn ] ≤ ε−s E
∣∣n−1‖x‖2 − 1

∣∣s = (nε)−s E

∣∣∣∣∣
n∑
i=1

(x2
i − 1)

∣∣∣∣∣
s

≤ Cs(nε)−s
( n∑

i=1

E|x2
i − 1|2

)s/2

+
n∑
i=1

E|x2
i − 1|s

 = O
(
n−s/2ν

s/2
4 + n−s+1ν2s

)
,

(S3.1)

and a bound of the same order for P [Ēyn], for the same reason. Now define En = Exn ∩ Eyn

and its complement Ēn. Then P [Ēn] ≤ P [Ēxn ] + P [Ēyn] = O
(
n−s/2ν

s/2
4 + n−s+1ν2s

)
by (S3.1).

Also, since 1 = 1En + 1Ēn(recall that 1A denotes the indicator function on set A), we have

E
∣∣n−1x̄TBȳ − ρn−1 trB

∣∣s = E
∣∣n−1x̄TBȳ − ρn−1 trB

∣∣s 1En + E
∣∣n−1x̄TBȳ − ρn−1 trB

∣∣s 1Ēn .
(S3.2)

We now bound the two terms on the right hand side of (S3.2). For the second term, from

|n−1x̄TBȳ − ρn−1 trB| ≤ 2‖B‖ and (S3.1), we have

E
∣∣n−1x̄TBȳ − ρn−1 trB

∣∣s 1Ēn ≤ 2s‖B‖sP [Ēn] = ‖B‖sO
(
n−s/2ν

s/2
4 + n−s+1ν2s

)
.

For the first term in (S3.2), use the decomposition

n−1x̄TBȳ − ρn−1 trB =
1

‖x‖‖y‖
[
xTBy − ρ trB

]
+

ρ trB

‖x‖‖y‖
[
1− n−1‖x‖‖y‖

]
, a1 + a2,

and the triangle inequality to write

E
∣∣n−1x̄TBȳ − ρn−1 trB

∣∣s 1En ≤ Cs (E|a1|s1En + E|a2|s1En) .

Noting that ε ∈ (0, 1/2), ‖x‖2 ≥ n/2 and ‖y‖2 ≥ n/2 on En, so that

E|a1|s1En ≤ 2sn−sE
∣∣xTBy − ρ trB

∣∣s ≤ Csn−s [ν2s trBs + (ν4 trB2)s/2
]
,

where the last inequality follows from [JY, Lemma 4]. For a2, for the same reasons and
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|ρ| ≤ 1,

E|a2|s1En ≤ 2s
(
n−1 trB

)s E ∣∣1− n−1‖x‖‖y‖
∣∣s 1En ≤ 2s‖B‖sE

∣∣1− n−1‖x‖‖y‖
∣∣s 1En . (S3.3)

We now show that E |1− n−1‖x‖‖y‖|s 1En = O(n−s/2ν
s/2
4 + n−s+1ν2s). Note that

∣∣1− n−1‖x‖‖y‖
∣∣ ≤ n−1/2‖y‖

∣∣n−1/2‖x‖ − 1
∣∣+
∣∣n−1/2‖y‖ − 1

∣∣ ,
and that, on En and with ε ∈ (0, 1/2), we have n−1/2‖y‖ ≤

√
3/2. Therefore,

E
∣∣1− n−1‖x‖‖y‖

∣∣s 1En ≤ Cs [E ∣∣n−1/2‖x‖ − 1
∣∣s + E

∣∣n−1/2‖y‖ − 1
∣∣s]

≤ Cs
[
E
∣∣n−1‖x‖2 − 1

∣∣s + E
∣∣n−1‖y‖2 − 1

∣∣s] = O
(
n−s/2ν

s/2
4 + n−s+1ν2s

)
,

by the fact that |a− 1| ≤ |a2 − 1| for a ≥ 0, and (S3.1). Combining this bound with (S3.3),

we obtain

E|a2|s1En ≤ Cs‖B‖s
(
n−s/2ν

s/2
4 + n−s+1ν2s

)
.

The proof is complete after combining the different bounds and using them back in (S3.2).

S3.2 Proof of Proposition 1 (CLT)

We use the Cramer-Wold device and show for each c ∈ RM that cTZn
D−→ NM(0, cTDc).

The proof follows a martingale CLT approach of Baik and Silverstein presented in the Ap-

pendix of Capitaine et al. (2009). While here normalized data vectors are considered, a

parallel treatment for bilinear forms with un-normalized data is presented in the companion

manuscript [JY, Theorem 10].

Start with a single bilinear form x̄TBȳ =
∑

i,j x̄ibij ȳj built from n vectors (i = 1, . . . , n)

(x̄i, ȳi) =
(
σ̂−1
x xi, σ̂

−1
y yi

)
∈ R2,
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where the zero mean i.i.d. vectors (xi, yi) have covariance

Cov

x1

y1

 =

1 ρ

ρ 1

 ,

and σ̂2
x = n−1

∑n
i=1 x

2
i and σ̂2

y = n−1
∑n

i=1 y
2
i are the sample variances. Rewrite σ̂2

x = 1 + vx

with vx = n−1
∑n

i=1 x
2
i − 1 = Op(n

−1/2), and use the Taylor expansion of f(a) = 1/
√

1 + a

around a = 0 to obtain

σ̂−1
x = 1− 1

2
vx + op(n

−1/2) , σ̂−1
y = 1− 1

2
vy + op(n

−1/2). (S3.4)

The symmetry of B allows the decomposition

n−1
(
x̄TBȳ − ρ trB

)
= n−1

∑
i

(x̄iȳi − ρ)bii + x̄iSi(ȳ) + ȳiSi(x̄), (S3.5)

where Si(ȳ) =
∑i−1

j=1 bij ȳj. The terms in the sum above are not martingale differences, since

the data vectors x̄, ȳ are normalized to unit length. In order to apply the Baik-Silverstein

argument, we aim at finding an alternative decomposition in terms of the unnormalized data

vectors x, y; let us see this, term by term. For the first term, using (S3.4),

n−1
∑
i

(x̄iȳi − ρ)bii = (σ̂xσ̂y n)−1
∑
i

xiyibii − n−1
∑
i

ρ bii

=

[
1− 1

2
(vx + vy) + op(n

−1/2)

]
n−1

∑
i

xiyibii − n−1
∑
i

ρ bii

= n−1
∑
i

(xiyi − ρ)bii −
1

2
(vx + vy)n

−1
∑
i

xiyibii + op(n
−1/2).

(S3.6)

Note that

n−1
∑
i

xiyibii = n−1
∑
i

ρ bii + n−1
∑
i

(xiyi − ρ)bii = n−1
∑
i

ρ bii +Op(n
−1/2)
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and recall that vx and vy are Op(n
−1/2) so that, from (S3.6),

n−1
∑
i

(x̄iȳi − ρ)bii = n−1
∑
i

(xiyi − ρ)bii −
1

2
ρ (n−1 trB) (x2

i + y2
i − 2) + op(n

−1/2).

For the second term in (S3.5),

n−1
∑
i

x̄iSi(ȳ) = (σ̂xσ̂y)
−1 n−1

∑
i

xiSi(y)

where, from the independence of xiyj and bij and the spectral norm bound of B,

n−1
∑
i

xiSi(y) = n−1
∑
i

i−1∑
j=1

xiyjbij = Op(n
−1/2).

This, along with the fact that vx and vy are Op(n
−1/2), yield

n−1
∑
i

x̄iSi(ȳ) =

[
1− 1

2
(vx + vy) + op(n

−1/2)

]
n−1

∑
i

xiSi(y)

= n−1
∑
i

xiSi(y) + op(n
−1/2).

The third term in (S3.5), n−1
∑

i ȳiSi(x̄), is handled similarly. Altogether, we have the

decomposition

n−1
(
x̄TBȳ − ρ trB

)
= n−1

∑
i

(xiyi−ρ)bii−
1

2
ρ (n−1 trB) (x2

i+y
2
i−2)+xiSi(y)+yiSi(x)+op(n

−1/2),

where we can now apply the Baik-Silverstein argument. Specifically, in the setting of the

theorem,

cTZn = n−1/2
∑
l

cl
(
x̄Tl·Bnȳl· − ρl trBn

)
=

n∑
i=1

Zdi + Zyi + Zxi + op(1) =
n∑
i=1

Zni + op(1),

where

√
nZdi =

∑
l

cl
[
(xliyli − ρl)bii − 1

2
ρl (n

−1 trBn) (x2
li + y2

li − 2)
]

=
∑
l

cl b
T
i zli

√
nZyi =

∑
l

clxliSi(yl·)

√
nZxi =

∑
l

clyliSi(xl·)
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are martingale differences w.r.t. Fn,i, the σ-field generated by Bn and {(xlj, ylj), 1 ≤ l ≤

M, 1 ≤ j ≤ i}. In the case of Zd,i we have introduced notation

b̄ = n−1 trBn, bi =

 bii

−b̄

 , zli =

zli − ρl

wli − ρl

 ,

recalling that zli = xliyli and wli = ρl(x
2
li + y2

li)/2.

Let Ei−1 denote conditional expectation w.r.t. Fn,i−1 and apply the martingale CLT.

The limiting variance is found from v2 = plimV 2
n with

V 2
n =

n∑
i=1

Ei−1[Z2
ni] = Vn,dd + 2(Vn,dy + Vn,dx) + Vn,yy + Vn,xx + 2Vn,xy, (S3.7)

where Vn,ab =
∑n

i=1 Ei−1[ZaiZbi] for indices a, b ∈ {d, y, x}. The terms Zyi and Zxi are exactly

as in [JY] and, therefore

Vn,yy = Vn,xx
p−→ 1

2
(θ − ω)cTCxx ◦ Cyyc

Vn,xy
p−→ 1

2
(θ − ω)cTCxy ◦ Cyxc.

We only need to compute Vn,dd, Vn,dx and Vn,dy. Start with Vn,dd =
∑n

i=1 Ei−1[Z2
di], where

nEi−1Z
2
di =

∑
l,l′

clcl′b
T
i Ei−1(zliz

T
li)bi, and Ei−1(zliz

T
li) =

Czz
ll′ Czw

ll′

Cwz
ll′ Cww

ll′


does not depend on i. Consequently

Vn,dd =
∑
l,l′

clcl′
[
(n−1

∑
i

b2
ii)C

zz
ll′ + b̄2(Cww

ll′ − Cwz
ll′ − Czw

ll′ )
]

and plimVn,dd = cT (ωK1 + φK2) c, with K1, K2 given by (4.15).

Turn now to

Vn,dy =
n∑
i=1

Ei−1[ZdiZyi]

=
∑
l,l′

clcl′M
(1)
l,l′

[
n−1

∑
i

biiSi(yl·)

]
−
∑
l,l′

clcl′M
(2)
l,l′

[
n−1

∑
i

Si(yl·)

]
, (S3.8)
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where

M
(1)
l,l′ = E[(xlyl − ρl)xl′ ], M

(2)
l,l′ =

1

2
ρl(n

−1 trBn)E[(x2
l + y2

l − 2)xl′ ].

By [JY, Lemma 12], the two quantities between brackets in (S3.8) converge to zero in prob-

ability and, therefore, Vn,dy
p−→ 0. Similarly, Vn,dx

p−→ 0. Combining terms according to (S3.7)

and the previous limits, we finally get v2 = cTDc, with D as in the theorem.

Finally, we verify the Lindeberg condition. An important closure property, shown in

Capitaine et al. (2009, Appendix), called [A] below, states that, for random variables X1, X2

and positive ε,

E[|X1 +X2|21|X1+X2|≥ε] ≤ 4
(
E[|X1|21|X1|≥ε/2] + E[|X2|21|X2|≥ε/2]

)
.

It suffices to establish the Lindeberg condition for the martingale difference sequences

Z
(1)
li =

1√
n

(xliyli − ρl)bii, Z
(2)
li =

ρl
2
√
n

(n−1 trBn) (x2
li − 1), Z

(3)
li =

ρl
2
√
n

(n−1 trBn) (y2
li − 1),

Z
(4)
li =

1√
n
xliSi(yl·), Z

(5)
li =

1√
n
yliSi(xl·).

This follows just as in [A]; recalling that ‖B‖ ≤ β we have, for ε > 0,

n∑
i=1

E[|Z(1)
li |

21|Z(1)
li |≥ε

] ≤ β2E[(xliyli − ρl)21|xliyli−ρl|≥
√
nε/β]→ 0

as n→∞, by the dominated convergence theorem. The sequences Z
(2)
li and Z

(3)
li are handled

analogously, with (x2
li − 1) and (y2

li − 1) in place of (xliyli − ρl). For Z
(4)
li , it can be easily

shown, as in [A], that E[|Si(yl)|4] = O(1), so that E[|Z(4)
li |4] = O(n−2) and

n∑
i=1

E[|Z(4)
li |

21|Z(4)
li |≥ε

] ≤ (1/ε2)
n∑
i=1

E|Z(4)
li |

4 → 0

as n→∞. The same reasoning applies to the last sequence Z
(5)
li , and the proof is complete.
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