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Abstract: Sample correlation matrices are widely used, but for high-dimensional

data little is known about their spectral properties beyond “null models”, which

assume the data have independent coordinates. In the class of spiked models, we

apply random matrix theory to derive asymptotic first-order and distributional re-

sults for both leading eigenvalues and eigenvectors of sample correlation matrices,

assuming a high-dimensional regime in which the ratio p/n, of number of vari-

ables p to sample size n, converges to a positive constant. While the first-order

spectral properties of sample correlation matrices match those of sample covari-

ance matrices, their asymptotic distributions can differ significantly. Indeed, the

correlation-based fluctuations of both sample eigenvalues and eigenvectors are often

remarkably smaller than those of their sample covariance counterparts.
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1. Introduction

Estimating a correlation matrix is a fundamental statistical task. It is widely

applied in areas such as viral sequence analysis and vaccine design in biology

(Dahirel et al. (2011); Quadeer et al. (2014); Quadeer, Morales-Jimenez and

McKay (2018)), large portfolio design in finance (Plerou et al. (2002)), signal

detection in radio astronomy (Leshem and van der Veen (2001)), and collabo-

rative filtering (Liu et al. (2014); Ruan, Meng and Gao (2016)), among many

others. In classical statistical settings, with a limited number of variables p and

a large sample size n, the sample correlation matrix performs well and its statis-

tical properties are well understood; see, for example, Girshick (1939), Konishi

(1979), Fang and Krishnaiah (1982), Schott (1991), Kollo and Neudecker (1993),
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and Boik (2003). Modern applications, however, often exhibit high dimensional-

ity, with large p and, in many cases, limited n. In such cases, sample correlation

matrices become inaccurate owing to an aggregation of statistical noise across

the matrix coordinates that is visible in the eigen-spectrum (El Karoui (2009)).

This is particularly important in principal component analysis (PCA), which

often involves projecting data onto the leading eigenvectors of the sample corre-

lation matrix or, equivalently, onto those of the sample covariance matrix after

standardizing the data.

Despite the extensive use of sample correlation matrices, relatively little is

known about theoretical properties of their eigen-spectra in high dimensions. In

contrast, sample covariance matrices have been studied extensively, and a rich

body of literature now exists (e.g., Yao, Zheng and Bai (2015)). Their asymptotic

properties have typically been described in high-dimensional settings in which the

number of samples and variables both grow large, often though not always at the

same rate, based on the theory of random matrices. Specific first- and second-

order results for the eigenvalues and eigenvectors of sample covariance matrices

are reviewed in Bai and Silverstein (2009), Couillet and Debbah (2011), and Yao,

Zheng and Bai (2015).

For the spectra of high-dimensional sample correlation matrices, current the-

oretical results focus on the simplest “null model” scenario, in which the data are

assumed to be independent. In this null model, correlation matrices share many

of the same asymptotic properties as covariance matrices from independent and

identically distributed (i.i.d.) data, with zero mean and unit variance. Thus,

the empirical eigenvalue distribution converges to the Marchenko–Pastur distri-

bution, almost surely (Jiang (2004b)), and the largest and smallest eigenvalues

converge to the edges of this distribution (Jiang (2004b); Xiao and Zhou (2010)).

Moreover, the rescaled largest and smallest eigenvalues asymptotically follow the

Tracy–Widom law (Bao, Pan and Zhou (2012); Pillai and Yin (2012)). Central

limit theorems (CLTs) for linear spectral statistics have also been derived (Gao

et al. (2017)). A separate line of work studies the maximum absolute off-diagonal

entry of sample correlation matrices, referred to as “coherence” (Jiang (2004a);

Cai and Jiang (2011, 2012)), which has been proposed as a statistic for conduct-

ing independence tests; see also Cochran, Gish and Sinno (1995), Mestre and

Vallet (2017), and the references therein. Hero and Rajaratnam (2011, 2012) use

a related statistic to identify variables exhibiting strong correlations, an approach

referred to as “correlation screening.”

For non-trivial correlation models, however, asymptotic results for the spec-
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tra of sample correlation matrices are quite scarce. Notably, El Karoui (2009)

shows that, for a fairly general class of covariance models with bounded spectral

norm, to first order, the eigenvalues of sample correlation matrices asymptoti-

cally coincide with those of sample covariance matrices with unit-variance data,

generalizing earlier results of Jiang (2004b) and Xiao and Zhou (2010). Under

similar covariance assumptions, recent work also presents CLTs for linear spectral

statistics of sample correlation matrices (Mestre and Vallet (2017)), extending

the work of Gao et al. (2017). First order behavior again coincides with that of

sample covariances. However, the asymptotic fluctuations are quite different for

sample correlation matrices.

This study considers a particular class of correlation matrix models, the so-

called “spiked models,” in which a few large or small eigenvalues of the population

covariance (or correlation) matrix are assumed to be well separated from the rest

(Johnstone (2001)). Spiked covariance models are relevant in applications in

which the primary covariance information lies in a relatively small number of

eigenmodes. Such applications include collaborative signal detection in cognitive

radio systems (Bianchi et al. (2009)), fault detection in sensor networks (Couillet

and Hachem (2013)), adaptive beamforming in array processing (Hachem et al.

(2013); Vallet, Mestre and Loubaton (2015); Yang, McKay and Couillet (2018)),

and protein contact prediction in biology (Cocco, Monasson and Sessak (2011);

Cocco, Monasson and Weigt (2013)). The spectral properties of spiked covari-

ance models have been well studied, with precise analytical results established

for the asymptotic first-order and distributional properties of both eigenvalues

and eigenvectors; see, for example, Baik, Ben Arous and Péché (2005); Baik

and Silverstein (2006); Paul (2007); Bai and Yao (2008); Benaych-Georges and

Nadakuditi (2011); Couillet and Hachem (2013); Bloemendal et al. (2016). For

reviews, see also Couillet and Debbah (2011, Chap. 9) and Yao, Zheng and Bai

(2015, Chap. 11).

Less is known about the spectrum of sample correlation matrices under

spiked models. Although the asymptotic first-order behavior is expected to coin-

cide with that of the sample covariance, as a consequence of El Karoui (2009), a

simple simulation reveals striking differences in the fluctuations of both sample

eigenvalues and eigenvectors; see Figure 1.

Here, we present theoretical results to describe these observed phenomena.

We obtain asymptotic first-order and distribution results for the eigenvalues and

eigenvectors of sample correlation matrices under a spiked model. Paul (2007)

proved theorems for sample covariance matrices in the special case of Gaussian
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(a) Histogram of the largest sample eigenvalue
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(b) Scatter plot of sample-to-population eigenvector projections
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Figure 1. A simple simulation shows remarkable distributional differences between sam-
ple covariance and sample correlation. From n = 200 i.i.d. Gaussian samples, xi ∈ R100,
with covariance Σ = blkdiag(Σs, I90), where (Σs)

10
i,j=1 = (r|i−j|)10i,j=1 , for r = 0.95,

we compute the sample covariance and sample correlation, and show: (a) the empirical
density (normalized histogram) of the largest sample eigenvalue, along with a Gaus-
sian distribution with its estimated mean and standard deviation (solid line), and (b)
a scatter plot of the leading sample eigenvector, projected onto the second (x-axis) and
fourth (y-axis) population eigenvectors. A striking variance reduction is observed in the
sample correlation for both (a) and (b). A similar variance reduction is observed for
different choices of population eigenvectors in (b); the selected choice (being the second
and fourth eigenvectors) facilitates the illustration of an additional correlation effect in
the sample-to-population eigenvector projections.

data. In essence, we present analogs of these theorems for sample correlation

matrices, and extend them to non-Gaussian data. To first order, the eigenvalues

and eigenvectors coincide asymptotically with those of sample covariance ma-

trices; however, their fluctuations can be very different. Indeed, for both the

largest sample correlation eigenvalues (Theorem 1) and the projections of the

corresponding eigenvectors (Theorem 2), the asymptotic variances admit a de-
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composition into three terms. The first term is just the asymptotic variance

for sample covariance matrices generated from Gaussian data; the second adds

corrections due to non-Gaussianity, and the third captures further corrections

due to data normalization imposed by the sample correlation matrix. (This last

amounts to normalizing the entries of the sample covariance matrix using the

sample variances). Consistent with the example shown in Figure 1(a), in the

CLT for the leading sample eigenvalues, the sample correlation eigenvalues often

show lower fluctuations—despite the variance normalization—than those of the

sample covariance eigenvalues. As seen in Figure 1(b), the (normalized) eigenvec-

tor projections are typically asymptotically correlated, even for Gaussian data,

unlike the sample covariance setting of Paul (2007, Thm. 5).

Technical contributions: We build on and extend a set of random matrix tools

for studying spiked covariance models. The companion manuscript (Johnstone

and Yang (2018)) [JY], gives an exposition and parallel treatment for sample

covariance matrices. Important adaptations are needed here to account for the

data normalization imposed by sample correlation matrices. Among key technical

contributions of our work, basic to our main theorems, are asymptotic first-

order and distributional properties for bilinear forms and matrix quadratic forms

with normalized entries, Section 4. A novel regularization-based proof strategy

is used to establish the inconsistency of eigenvector projections in the case of

“subcritical” spiked eigenvalues, Theorem 3.

Model M. Let x ∈ Rm+p be a random vector with finite (4 + δ)th moment for

some δ > 0. Consider the partition

x =

[
ξ

η

]
.

Assume that ξ ∈ Rm has mean zero and covariance Σ, and is independent

of η ∈ Rp, which has i.i.d components ηi with mean zero and unit variance.

Let ΣD = diag(σ21, . . . , σ
2
m) be the diagonal matrix containing the variances

of ξi, and let Γ = Σ
−1/2
D Σ Σ

−1/2
D be the correlation matrix of ξ with eigen-

decomposition Γ = PLP T , where P = [p1, . . . , pm] is the eigenvector matrix, and

L = diag(`1, . . . , `m) contains the spike correlation eigenvalues `1 ≥ · · · ≥ `m > 0.

The correlation matrix of x is therefore Γx = blkdiag(Γ, I), with eigenvalues

`1, . . . , `m,1, . . . , 1, and corresponding eigenvectors p1, . . . , pm, em+1, . . . , em+p,

where pi = [pTi 0Tp ]T and ej is the jth canonical vector (i.e., a vector of all
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zeros, except for a one in the jth coordinate).

Consider a sequence of i.i.d. copies of x, the first n of which fill the columns

of the (m+ p)× n data matrix X = (xij). We assume m is fixed, whereas p and

n increase with

γn =
p

n
→ γ > 0 as p, n→∞.

Notation. Let S = n−1XXT be the sample covariance matrix, and SD =

diag(σ̂21, . . . , σ̂
2
m+p) be the diagonal matrix containing the sample variances. Let

R = S
−1/2
D S S

−1/2
D be the sample correlation matrix, with corresponding νth

sample eigenvalue and eigenvector satisfying

R p̂ν = ˆ̀
ν p̂ν ,

where, for later use, we partition p̂ν = [p̂Tν , v̂
T
ν ]T . Here p̂ν is the subvector of p̂ν

restricted to the first m coordinates.

For ` > 1 +
√
γ, define

ρ(`, γ) = `+ γ
`

`− 1
, ρ̇(`, γ) =

∂ρ(`, γ)

∂`
= 1− γ

(`− 1)2
.

For an index ν, for which `ν > 1 +
√
γ is a simple eigenvalue, set

ρν = ρ(`ν , γ) , ρνn = ρ(`ν , γn) , ρ̇ν = ρ̇(`ν , γ) , ρ̇νn = ρ̇(`ν , γn). (1.1)

We refer to eigenvalues satisfying `ν > 1 +
√
γ as “supercritical,” and those

satisfying `ν ≤ 1 +
√
γ as “subcritical,” with the quantity 1 +

√
γ referred to as

the “phase transition.”

To describe and interpret the variance terms in the limiting distributions to

follow, we need some definitions. Let ξ̄i = ξi/σi and κij = Eξ̄iξ̄j denote the scaled

components of ξ and their covariances; of course κii = 1. The corresponding

scaled fourth-order cumulants are

κiji′j′ = E[ξ̄iξ̄j ξ̄i′ ξ̄j′ ]− κijκi′j′ − κij′κji′ − κii′κjj′ . (1.2)

When ξ is Gaussian, κiji′j′ ≡ 0.

The effect of variance scaling in the correlation matrix is described using

additional quadratic functions of (ξ̄i), defined by

χij = ξ̄iξ̄j , ψij =
κij(ξ̄

2
i + ξ̄2j )

2
(1.3)
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κ̌iji′j′ = Cov(ψij , ψi′j′)− Cov(ψij , χi′j′)− Cov(χij , ψi′j′) . (1.4)

Tensor notation: For convenience, it is useful to consider κiji′j′ and κ̌iji′j′ as

entries of four-dimensional tensor arrays κ and κ̌, respectively, and to define an

additional array Pµµ′νν′
with entries pµ,ipµ′,jpν,i′pν′,j′ . In addition, define Pν as

Pνννν . Finally, for a second array A of the same dimensions,

[Pν , A] =
∑
i,j,i′,j′

P νiji′j′Aiji′j′ .

2. Main Results

Our first main result, proved in Section 5, gives the asymptotic properties of

the largest (spike) eigenvalues of the sample correlation matrix:

Theorem 1. Assume Model M, and that `ν > 1 +
√
γ is a simple eigenvalue.

As p/n→ γ > 0,

(i) ˆ̀
ν

a.s.−−→ ρν , (2.1)

(ii)
√
n(ˆ̀

ν − ρνn)
D−→ N(0, σ̃2ν),

where

σ̃2ν = 2ρ̇ν`
2
ν + ρ̇2ν [Pν , κ] + ρ̇2ν [Pν , κ̌]. (2.2)

Centering at ρνn rather than at ρν is important. If, for example, γn =

γ + an−1/2, then

√
n(ˆ̀

ν − ρν)
D−→ N(a`ν(`ν − 1)−1, σ̃2ν),

and we see a limiting shift. Furthermore, it may also be beneficial to consider

σ̃2νn instead of σ̃2ν , obtained by replacing ρ̇ν with ρ̇νn in (2.2), such that

√
n

(ˆ̀
ν − ρνn)

σ̃νn

D−→ N(0, 1).

The asymptotic first-order limit in (i), which follows as an easy consequence

of El Karoui (2009), coincides with that of the νth largest eigenvalue of a sam-

ple covariance matrix computed from data with population covariance Γ (Paul

(2007)). This implies that, when constructing R, normalizing by the sample

variances has no effect on the leading eigenvalues, at least to first order.

However, key differences are seen when looking at the asymptotic distribu-
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tion, given in (ii), and in the variance formula (2.2) in particular. This can be

readily interpreted. The first term corresponds to the variance in the Gaussian-

covariance case of Paul (2007), again for samples with covariance Γ. The second

provides a correction of that result for non-Gaussian data, see the companion

article [JY]. The third term describes the contribution specific to sample corre-

lation matrices, representing the effect of normalizing the data by the sample

variances. This term is often negative, and is evaluated explicitly for Gaussian

data in Corollary 1 below, proved in the Supplementary Material, S1.1.

Corollary 1. For ξ Gaussian, the asymptotic variance in Theorem 1 simplifies

to

σ̃2ν = 2`2ν ρ̇ν
[
1− ρ̇ν

(
2`ν trP 4

D,ν − tr (PD,νΓPD,ν)2
)]
,

where PD,ν = diag(pν,1, . . . , pν,m).

Thus, computing the sample correlation results in the asymptotic variance

being scaled by 1− ρ̇ν∆ν , relative to the sample covariance, where

∆ν = 2`ν trP 4
D,ν − tr (PD,νΓPD,ν)2 = 2`ν

∑
i

p4ν,i −
∑
i,j

(pν,i κij pν,j)
2

is often positive, implying that spiked eigenvalues of the sample correlation often

exhibit a smaller variance than those of the sample covariance. Indeed, such

variance reduction occurs iff∑
i,j

(pν,i κij pν,j)
2 < 2`ν

∑
i

p4ν,i =
∑
i,j

pν,i κij pν,j(p
2
ν,i + p2ν,j), (2.3)

with the last identity following from the fact that `νpν,i =
∑

j κij pν,j . Condition

(2.3), and variance reduction, holds in the following cases:

(i) both Γ and pν have nonnegative entries, or

(ii) 2`ν
∑

i p
4
ν,i > 1, or

(iii) 2`ν > `21.

In case (i), the inequalities 0 ≤ pν,iκijpν,j ≤ 2pν,ipν,j ≤ p2ν,i + p2ν,j yield

(2.3). Note that if Γ has nonnegative entries, then the Perron–Frobenius theorem

establishes the existence of an eigenvector with nonnegative components for `1;

furthermore, if Γ has positive entries, by the same theorem, `1 is simple and

associated with an eigenvector with positive components. Case (ii) follows from∑
i,j(pν,i κij pν,j)

2 ≤
∑

i,j(pν,i pν,j)
2 = 1, and holds if `ν > m/2, because

∑
i p

4
ν,i ≥



EIGENSTRUCTURE OF SPIKED CORRELATION MATRICES 579

1/m. Case (iii) follows from the inequalities 2p2ν,ip
2
ν,j ≤ p4ν,i + p4ν,j and

∑
j κ

2
ij =

(Γ2)ii ≤ ‖Γ2‖ = `21. Note that this is rather special, in that it has nothing to do

with eigenvectors, and a necessary condition for it to hold is `1 ≤ 2.

Condition (2.3) can fail, however. For example, for even m and r ∈ (0, 1),

consider

Γ =

(
1 −r
−r 1

)
⊗ 1m/21

T
m/2,

where 1m/2 is the (m/2)-dimensional vector of all ones, which corresponds to

two negatively correlated groups of identical random vectors. This has simple

supercritical eigenvalues `1 = (1 + r)m/2 and `2 = (1− r)m/2 when m > 2(1 +
√
γ)/(1−r), with p2ν,i = m−1 for ν = 1, 2. One finds that ∆2 = (1−2r−r2)/2 < 0

for r >
√

2− 1, although ∆1 > 0 because `1 > m/2, which implies case (ii).

We turn now to the eigenvectors. Again, fix an index ν for which `ν > 1+
√
γ

is a simple eigenvalue of Γ, with corresponding eigenvector pν = [pTν 0Tp ]T . Recall

that p̂ν = [p̂Tν v̂
T
ν ]T is the νth sample eigenvector of R, and let aν = p̂ν/‖p̂ν‖ be

the corresponding normalized subvector of p̂ν , restricted to the first m coordi-

nates. The next result establishes a limit for the eigenvector projection 〈p̂ν , pν〉,
and a CLT for the normalized cross-projections P Taν = [pT1 aν , . . . , p

T
maν ]T ; see

Sections 6.1 and 6.2.

Theorem 2. Assume Model M, and that `ν > 1 +
√
γ is a simple eigenvalue.

Then, as p/n→ γ > 0,

(i) 〈p̂ν , pν〉2
a.s.−−→ ρ̇ν`ν/ρν ,

(ii)
√
n(P Taν − eν)

D−→ N(0,Σν),

where Σν = DνΣ̃νDν with

Dν =

m∑
k 6=ν

(`ν − `k)−1ekeTk (2.4)

Σ̃ν,kl = ρ̇−1ν `k`ν δk,l + [Pkνlν , κ] + [Pkνlν , κ̌], (2.5)

where δk,l = 1 if k = l, and zero otherwise.

The CLT result in (ii) can be rephrased in terms of the entries of aν , for

which we readily obtain
√
n(aν − pν)

D−→ N(0, PΣνP
T ); note that Σν has zeros

in the νth row and the νth column.

As for the eigenvalues, Theorem 2 shows that the spiked eigenvectors of
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sample correlation matrices exhibit the same first-order behavior as those of the

sample covariance (Paul (2007)). The difference again lies in the asymptotic fluc-

tuations, captured by the covariance matrix Σν . Note that this is decomposed

as a product of Dν—a diagonal matrix—and the matrix Σ̃ν , which involves the

three terms in (2.5). These terms have similar interpretations as those discussed

previously in (2.2). That is, the first term captures the asymptotic fluctuations

for a Gaussian-covariance model (Paul (2007)), the second term captures the ef-

fect of non-Gaussianity in the covariance case [JY], and the third term captures

information specific to the correlation case, representing fluctuations due to sam-

ple variance normalization. Note that only the first term is diagonal in general,

suggesting that the eigenvector projections may be asymptotically correlated,

as seen earlier in Figure 1(b), right panel. This holds also for Gaussian data,

evaluated explicitly in Corollary 2 below; see Supplementary Material, S1.2, for

the proof. We note an interesting contrast with the eigenvector projections for

covariance matrices (Paul (2007)), described only by the leading term in (2.5).

Corollary 2. For ξ Gaussian, the asymptotic covariance in Theorem 2 reduces

to Σν = DνΣ̃νDν ,

Σ̃ν =
`ν
ρ̇ν
L+ (`νI + L)

(
1

2
Z − `νY

)
(`νI + L) + `ν(`2νY − LYL) ,

where Z = P TPD,ν(Γ ◦ Γ)PD,νP , Y = P TP 2
D,νP , and ◦ denotes the Hadamard

product.

Thus, for Gaussian data, the entries of the asymptotic covariance matrix are

given by (for k, l 6= ν)

Σν,kl = (`ν − `k)−1(`ν − `l)−1[
`ν
ρ̇ν
`kδk,l + (`ν + `k)(`ν + `l)

Zkl
2
− `ν (`ν(`k + `l) + 2`k`l)Ykl

]
.

Consider now the subcritical case in which ν is such that 1 < `ν ≤ 1 +
√
γ.

Let pν denote the corresponding population eigenvector, and let ˆ̀
ν and p̂ν denote

the corresponding sample eigenvalue and eigenvector, respectively. With proofs

deferred to Sections 5.1 and 6.3, we have the following result:

Theorem 3. Assume Model M, and that 1 < `ν ≤ 1+
√
γ is a simple eigenvalue.

Then, as p/n→ γ > 0,

(i) ˆ̀
ν

a.s.−−→ (1 +
√
γ)2 ,
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(ii) 〈p̂ν , pν〉2
a.s.−−→ 0.

Once again, the asymptotic first-order limits of the sample eigenvalue and its

associated eigenvector are the same as those obtained for the sample covariance

(Paul (2007)).

Recall that our high-dimensional results assume an asymptotic regime where

p/n → γ > 0, as opposed to the classical regime where p is fixed and n → ∞.

The case of fixed p corresponds to γ = 0 and the spectral properties of the sample

correlation matrix are well understood; see, for example, Girshick (1939), Konishi

(1979), Fang and Krishnaiah (1982), Schott (1991), Kollo and Neudecker (1993),

and Boik (2003). When γ = 0, the function ρ(`) reduces to the identity. Indeed,

for fixed p, there is no high-dimensional component η in Model M, and hence no

biasing effect on ρ(`, γ) that occurs when γ > 0. In particular, for fixed p there

is no counterpart to our Theorem 3.

To summarize, in comparison to the high-dimensional (p/n → γ > 0) sam-

ple covariance setting, our results for the spiked eigenvalues and eigenvectors

of sample correlation matrices confirm that the first-order asymptotic behavior

is indeed equivalent to that of sample covariance matrices, in agreement with

previous results and observations (El Karoui (2009); Mestre and Vallet (2017)).

While the eigenvalue limits in Theorem 1 and Theorem 3 follow as a straightfor-

ward consequence of El Karoui (2009), the eigenvector results of Theorem 2-(i)

and Theorem 3-(ii) do not. In contrast to the first-order equivalences, important

differences arise in the fluctuations of both the eigenvalues and eigenvectors, as

shown by the asymptotic distributions of Theorem 1-(ii) and Theorem 2-(ii).

We illustrate these differences with a simple example having covariance Γ =

(1 − r)Im + r1m1Tm, where r ∈ [0, 1]; that is, a model with unit variances and

constant correlation r across all components. Moreover, ξ is assumed to be

Gaussian for simplicity. In this setting, L = diag(`1, 1 − r, . . . , 1 − r), where

`1 = 1+r(m−1) is supercritical iff r >
√
γ/(m−1). Consider the largest sample

eigenvalue ˆ̀
1 in such a supercritical case. From Corollary 1, the asymptotic

variances for the sample covariance and the sample correlation can be computed,

yielding

σ21 = 2`21ρ̇1, σ̃21 = σ21(1− ρ̇1∆),

respectively, with ∆ = 2`1 trP 4
D − tr (PDΓPD)2, and where

PD , PD,1 = m−1/2Im, ρ̇1 = 1− γ

r2(m− 1)2
.
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Figure 2(a) plots these asymptotic variances versus r for various (γ,m). Indeed,

the variance (fluctuation) for the sample correlation is consistently smaller than

for the sample covariance. The difference is striking, becoming extremely large

as r ↗ 1. Similar trends are observed for various choices of m and γ, being

more pronounced for higher m, while not much affected by varying γ. This may

be understood from the fact that, after writing ∆ = r(2 − r) + (1 − r)2m−1 =

1− (1− r)2(1−m−1),

σ̃21
σ21

= 1− ρ̇1∆→


γ

(m− 1)2
as r → 1, m fixed,

(1− r)2 as m→∞, r fixed.

Turn now to the fluctuations of the leading sample eigenvector, in the same

setting as above. Note that, in Corollary 2, for this particular case, one can

deduce from P TΓP = L that

Z = m−1(1− r2)Im + r2e1e
T
1 , Y = m−1Im.

Also from Corollary 2, the asymptotic variances for the normalized sample-to-

population eigenvector projection pT2 a1, in the sample covariance and sample

correlation cases, are computed as

Σcov
1,22 =

`1`2
(rm)2ρ̇1

, Σ1,22 = Σcov
1,22 −

ζ

(rm)2
`1`2(`1 + `2)

m
,

respectively, where ζ = 1 − r + (1/2)(1 + r)(1 + (1 − r)/(rm))−1, and we recall

that `1 = 1− r + rm and `2 = 1− r. These variances are numerically evaluated

in Figure 2(b) for the same parameter choices as before and, again, as functions

of r. Note, however, that for better visual appreciation, the range of r has been

restricted to supercritical values sufficiently above the critical point
√
γ/(m−1),

because the variance explodes at that point. The comparative evaluation again

shows smaller variances for the sample correlation. The variance reduction here

is less visible in the graphs, because both Σ1,22 and Σcov
1,22 vanish as r → 1. The

ratio, however, behaves quite similarly to the variance ratio σ̃21/σ
2
1:

Σ1,22

Σcov
1,22

= 1− ζρ̇1
(`1 + `2)

m
→


γ

(m− 1)2
as r → 1, m fixed,

(1− r)
(

1− r

2

)
as m→∞, r fixed.

We end the discussion of our main results with a few remarks about possible
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(a) Largest sample eigenvalue ˆ̀
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(b) Sample-to-population eigenvector projection pT2 a1
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Figure 2. Differences in the fluctuations of sample eigenvalues and eigenvectors for an
example Gaussian model with Γ = (1− r)Im + r1m1Tm. Asympotic variances are shown

for (a) the largest sample eigenvalue ˆ̀
1, and (b) the normalized sample-to-population

eigenvector projection pT2 a1.

extensions. Our results assume that `ν > 1 is a simple eigenvalue, but exten-

sions for small spikes with `ν < 1 and for spikes with multiplicities should be

possible. Analogous results for eigenvalues have been obtained for sample covari-

ance matrices for `ν < 1, including multiplicities greater than one (e.g., see Bai

and Yao (2008)), giving reason to expect corresponding results for correlation

matrices. Extensions of our results for eigenvalues and eigenvectors of sample

correlation matrices for simple `ν < 1 should be fairly straightforward, though

the cases γ < 1, γ = 1, and γ > 1 would need separate treatment. Extensions for

spikes with multiplicities are also possible, but in this case the eigenvectors are

not well defined and one would need to consider subspace projections, requiring

non-trivial modifications of our technical arguments.
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The remainder of the paper proceeds as follows. First, in Section 3, we in-

troduce key quantities and identities used in the derivations. Section 4 presents

necessary asymptotic properties for bilinear forms and matrix quadratic forms

with normalized entries, with the corresponding proofs relegated to the Supple-

mentary Material, Section S3. These properties provide a foundation for describ-

ing the asymptotic convergence and distribution of eigenvalues and eigenvectors

of sample correlation matrices, derived in Sections 5 and 6 respectively.

As already noted, a parallel treatment for the simpler case of covariance

matrices is given in a supplementary manuscript [JY]. This aims at a unified

exposition of known spectral properties of spiked covariance matrices as a bench-

mark for the current work, along with additional citations to the literature.

3. Preliminaries

We begin with a block representation and some associated reductions for

the sample correlation matrix R. These are well known in the covariance matrix

setting. As with the partition of x in Model M, consider

X =

[
X1

X2

]
, X1 ∈ Rm×n, X2 ∈ Rp×n.

Write SD = blkdiag(SD1, SD2), with SD1 containing the sample variances corre-

sponding to ξ, and SD2 containing those corresponding to η. Define the “nor-

malized” data matrices X̄1 = S
−1/2
D1 X1 and X̄2 = S

−1/2
D2 X2, such that

R = n−1

[
X̄1X̄

T
1 X̄1X̄

T
2

X̄2X̄
T
1 X̄2X̄

T
2

]
=

[
R11 R12

R21 R22

]
; p̂ν =

[
p̂ν
v̂ν

]
.

This partitioning of the eigenvector equation R p̂ν = ˆ̀
ν p̂ν , along with p̂ν =

[p̂Tν , v̂
T
ν ]T , yields

R11p̂ν +R12v̂ν = ˆ̀
ν p̂ν ,

R21p̂ν +R22v̂ν = ˆ̀
ν v̂ν .

From the second equation, v̂ν = (ˆ̀
νIp −R22)

−1R21p̂ν . Substituting this into the

first equation yields

K(ˆ̀
ν)p̂ν = ˆ̀

ν p̂ν , with K(t) = R11 +R12(tIp −R22)
−1R21.
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Thus, ˆ̀
ν is an eigenvalue of K(ˆ̀

ν), with associated eigenvector p̂ν ; this is central

to our derivations. Note that K(ˆ̀
ν) is well defined if ˆ̀

ν is well separated from the

eigenvalues of R22; Section 5.1 shows that this occurs with probability one for

all large n when `ν is supercritical. Furthermore, the normalization condition,

p̂Tν p̂ν + v̂Tν v̂ν = 1 yields

p̂Tν (Im +Qν)p̂ν = 1, Qν = R12(ˆ̀
νIp −R22)

−2R21.

Phrased in terms of the signal-space normalized eigenvector aν = p̂ν/‖p̂ν‖, we

have

K(ˆ̀
ν)aν = ˆ̀

νaν , aTν (Im +Qν)aν = ‖p̂ν‖−2. (3.1)

Note also that the sample-to-population inner product can be rewritten as

〈p̂ν , pν〉 = 〈p̂ν , pν〉 = ‖p̂ν‖〈aν , pν〉. (3.2)

In the derivation of our CLT results, we use an eigenvector perturbation

formula with quadratic error bound given in [JY, Lemma 13], itself a modification

of the arguments in Paul (2007). This yields the key expansion

aν − pν = −RνnDνpν + rν , (3.3)

where

Rνn =
`ν
ρνn

m∑
k 6=ν

(`k − `ν)−1pkp
T
k , Dν = K(ˆ̀

ν)−
(
ρνn
`ν

)
Γ, ‖rν‖ = O(‖Dν‖2).

The derivations of our eigenvalue and eigenvector results, presented in Sec-

tions 5 and 6 respectively, take (3.1), (3.2) and (3.3) as points of departure, and

rely on asymptotic properties of the key objects K(ˆ̀
ν) and Qν . In particular,

K(t) can be expressed as the random matrix quadratic form

K(t) = n−1X̄1Bn(t)X̄T
1 , (3.4)

where, using the Woodbury identity,

Bn(t) = In + n−1X̄T
2 (tIp −R22)

−1X̄2

= t(tIn − n−1X̄T
2 X̄2)

−1.

Thus, our key objects are random quadratic forms involving the normalized data

matrices X̄1 and X̄2. The asymptotic properties of these forms are foundational
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to our results, and are presented next.

4. Quadratic Forms with Normalized Entries

In this section, we establish the first-order (deterministic) convergence and a

CLT for matrix quadratic forms of the type n−1X̄1BnX̄
T
1 , where Bn is a matrix

with bounded spectral norm. While being essential to our purposes, some of

the technical results may be of independent interest; thus, we first present the

general results, and then apply these in the context of Model M.

4.1. First-order convergence

To establish the first-order convergence, we first require some results on bi-

linear forms involving correlated random vectors of unit length. A main technical

result (see Supplementary Material, S3.1) is the following:

Lemma 1. Let B be an n×n nonrandom symmetric matrix, and let x, y ∈ Rn be

random vectors of i.i.d. entries with mean zero, variance one, E|xi|l,E|yi|l ≤ νl,
and E[xiyi] = ρ. Let x̄ =

√
nx/‖x‖ and ȳ =

√
ny/‖y‖. Then, for any s ≥ 1,

E
∣∣n−1x̄TBȳ − ρn−1 trB

∣∣s ≤ Cs[n−s (ν2s trBs +
(
ν4 trB2

)s/2)
+‖B‖s

(
n−s/2ν

s/2
4 + n−s+1ν2s

)]
,

where Cs is a constant depending only on s.

This is a generalization of Gao et al. (2017, Lemma 5), which established

a corresponding bound for normalized quadratic forms. Lemma 1 leads to the

following first-order convergence result:

Corollary 3. Let x, y be random vectors of i.i.d. entries with mean zero, variance

one, E|xi|4+δ,E|yi|4+δ < ∞ for some δ > 0, and E [xiyi] = ρ. Define x̄ =√
nx/‖x‖ and ȳ =

√
ny/‖y‖, and let Bn be a sequence of n × n symmetric

matrices, with ‖Bn‖ bounded. Then,

n−1x̄TBnȳ − n−1ρ trBn
a.s.−−→ 0.

Proof. Because the (4 + δ)th moment and ‖Bn‖ are bounded, from Lemma 1,

E
∣∣n−1x̄TBnȳ − n−1ρ trBn

∣∣2+δ/2 ≤ O(n−(1+δ/4)).

The convergence then follows from Markov’s inequality and the Borel–Cantelli
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lemma.

We now apply this to our Model M with random matrices Bn(X̄2), indepen-

dent of X̄1:

Lemma 2. Assume Model M, and suppose that Bn = Bn(X̄2) is a sequence of

random symmetric matrices, for which ‖Bn‖ is Oa.s.(1). Then,

n−1X̄1Bn(X̄2)X̄
T
1 − n−1 trBn(X̄2)Γ

a.s.−−→ 0.

Proof. This follows from Fubini’s theorem. Specifically, one may use the argu-

ments in the proof of [JY, Lemma 5], applying Corollary 3, and noting that X̄1

is independent of Bn(X̄2).

4.2. Central limit theorem

To establish our main matrix quadratic-form CLT result, we first derive a

CLT for scalar bilinear forms involving normalized random vectors. To this end,

we must introduce some further notation. Consider zero-mean random vectors

(x, y) ∈ RM × RM , with

Cov

(
x

y

)
= C =

(
Cxx Cxy

Cyx Cyy

)
,

where Cxyll′ = E [xlyl′ ]. Assume Cxxll = Cyyll = 1; that is, all components of the

x and y vectors have unit variance and ρl = Cxyll = E [xlyl]. We first introduce

notation for some quadratic functions of xl, yl. Let z, w ∈ RM , with

zl = xlyl, wl =
ρl(x

2
l + y2l )

2
, Czz = Cov(z), Cwz = Cov(z, w), etc.

Let X = (xli)M×n and Y = (yli)M×n be data matrices based on n i.i.d.

observations of (x, y), and define the “normalized” data matrices X̄ = Σ̂
−1/2
x X

and Ȳ = Σ̂
−1/2
y Y , where Σ̂x = diag(σ̂2x1

, . . . , σ̂2xM ), Σ̂y = diag(σ̂2y1 , . . . , σ̂
2
yM ), and

σ̂2xl = n−1
∑n

i=1 x
2
li, σ̂

2
yl = n−1

∑n
i=1 y

2
li. Then, we use the following notation for

the rows x̄Tl· and ȳTl· of the normalized data matrices

X̄ = (x̄li)M×n =

 x̄
T
1·
...

x̄TM ·

 , Ȳ = (ȳli)M×n =

 ȳ
T
1·
...

ȳTM ·

 .
With this setup, we have the following result, proved in the Supplementary
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Material, S3.2:

Proposition 1. Let Bn = (bn,ij) be random symmetric n×n matrices, indepen-

dent of X,Y , such that for some finite β, ‖Bn‖ ≤ β for all n, and

n−1
n∑
i=1

b2n,ii
p−→ ω , n−1 trB2

n
p−→ θ , (n−1 trBn)2

p−→ φ ,

all finite. In addition, define Zn ∈ RM , with components

Zn,l = n−1/2
[
x̄Tl·Bnȳl· − ρl trBn

]
.

Then, Zn
D−→ NM (0, D), with

D = (θ − ω)J + ωK1 + φK2 = θJ + ωK + φK2, (4.1)

where K = K1 − J and J,K1,K2 are matrices defined by

J = Cxy ◦ Cyx + Cxx ◦ Cyy,
K1 = Czz, (4.2)

K2 = Cww − Cwz − Czw.

The entries of K are fourth-order cumulants of x and y:

Kll′ = E(xlylxl′yl′)−E(xlyl)E(xl′yl′)−E(xlyl′)E(ylxl′)−E(xlxl′)E(ylyl′). (4.3)

Hence, K vanishes if x, y are Gaussian.

The corresponding result with unnormalized vectors is established in [JY

Theorem 10]. The terms θJ + ωK appear in that case, and the additional term

φK2 reflects the normalization in x̄l· and ȳl·. As in [JY], the proof is based on the

martingale CLT, rather than the moment method used in Bai and Yao (2008),

which stated a similar result for quadratic forms involving unnormalized random

vectors.

While potentially of independent interest, Proposition 1 is important for our

purposes through its application to Model M.

Proposition 2. Assume Model M, and consider Bn as in Proposition 1. Then,

Wn = n−1/2
[
X̄1BnX̄

T
1 − ( trBn)Γ

] D−→W,

where W is a symmetric m ×m Gaussian matrix with entries Wij, mean zero,
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and covariances given by

Cov[Wij ,Wi′j′ ] = θ(κij′κji′ + κii′κjj′) + ωκiji′j′ + φκ̌iji′j′ , (4.4)

for i ≤ j and i′ ≤ j′.

Proof. The result follows from Proposition 1 by turning the matrix quadratic

form X̄1BnX̄
T
1 into a vector of bilinear forms; see, for example, [JY, Proposition

6] and Bai and Yao (2008, Proposition 3.1). Specifically, use an index l for the

M = m(m + 1)/2 pairs (i, j), with 1 ≤ i ≤ j ≤ m. Build the random vectors

(x, y) for Proposition 1 as follows: if l = (i, j), then set xl = ξi/σi and yl = ξj/σj .

In the resulting covariance matrix C for (x, y), if also l′ = (i′, j′),

Cxyll′ =
E[ξiξj′ ]

(σiσj′)
= κij′ , Cyxll′ = κji′ , Cxxll′ = κii′ , Cyyll′ = κjj′

and, in particular, ρl = Cxyll = κij and ρl′ = κi′j′ , whereas Cxxll = Cyyll =

1. Component Wn,ij corresponds to component Zl in Proposition 1. Thus, we

conclude that Wn
D−→ W , where W is a Gaussian matrix with zero mean and

Cov(Wij ,Wi′,j′) = Dll′ , given by Proposition 1. It remains to interpret the

quantities in (4.1) in terms of Model M. Substituting xl = ξ̄i and yl = ξ̄j into

(4.3) and chasing definitions, we obtain Jll′ = κij′κji′ +κii′κjj′ and Kll′ = κiji′j′ .

Observing that zl = xlyl = χij and wl = ρl(x
2
l + y2l )/2 = ψij , we similarly find

that K2,ll′ = κ̌iji′j′ .

5. Proofs of the Eigenvalue Results

In this section, we derive the main eigenvalue results, presented in Theorem

1 and Theorem 3-(i).

5.1. Preliminaries

Convergence properties of the eigenvalues of R22. It is well known that the

empirical spectral density (ESD) of S22 converges weakly a.s. to the Marchenko–

Pastur (MP) law Fγ , and that the extreme non-trivial eigenvalues converge to the

edges of the support of Fγ . For the sample correlation case, Jiang (2004b) shows

that the same is true for R22. That is, the empirical distribution of the eigenvalues

µ1 ≥ · · · ≥ µp of the “noise” correlation matrix R22 = n−1X̄2X̄
T
2 converges

weakly a.s. to the MP law Fγ , supported on [aγ , bγ ] = [(1 − √γ)2, (1 +
√
γ)2]

if γ ≤ 1, and on {0} ∪ [aγ , bγ ] otherwise. Furthermore, the ESD of the n × n
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companion matrix Cn = n−1X̄T
2 X̄2, denoted by Fn, converges weakly a.s. to the

“companion MP law” Fγ = (1− γ)1[0,∞) + γFγ , where 1A denotes the indicator

function on set A.

In addition, Jiang (2004b) shows that

µ1
a.s.−−→ bγ and µp∧n

a.s.−−→ aγ . (5.1)

Based on these results, if fn → f uniformly as continuous functions on the closure

I of a bounded neighborhood of the support of Fγ , then:∫
fn(x)Fn(dx)

a.s.−−→
∫
f(x)Fγ(dx). (5.2)

If supp(Fn) is not contained in I, then the left side integral may not be defined.

However, such an event occurs for at most finitely many n with probability one.

Almost sure limit of ˆ̀
ν. The statements in Theorem 1-(i) and Theorem 3-(i)

follow easily from known results. Specifically, denote the νth eigenvalue of the

sample covariance S by λ̂ν . The almost sure limits

λ̂ν
a.s.−−→

{
ρν , `ν > 1 +

√
γ,

(1 +
√
γ)2, 1 < `ν ≤ 1 +

√
γ,

(5.3)

were established in Baik and Silverstein (2006). From the proof of El Karoui

(2009, Lemma 1),

max
i=1,...,m

|λ̂i − ˆ̀
i|

a.s.−−→ 0.

Therefore, the same almost sure limits as (5.3) hold for ˆ̀
ν .

High-probability events Jnε, Jnε1. When necessary, we may confine attention

to the event Jnε = {ˆ̀ν > min(ρν , ρνn)− ε, µ1 ≤ bγ + ε} or Jnε1 = {µ1 ≤ bγ + ε},
with ε > 0 chosen such that ρν − bγ ≥ 3ε, because from (2.1) (proven above) and

(5.1), these events occur with probability one for all large n.

Asymptotic expansion of K(ˆ̀
ν). We establish an asymptotic stochastic

expansion for the quadratic form K(ˆ̀
ν). Specifically, using the decomposition

K(ˆ̀
ν) = K(ρνn) +

[
K(ˆ̀

ν)−K(ρνn)
]
, (5.4)

we show that

K(ρνn)
a.s.−−→ −ρν m(ρν ; γ) Γ =

(
ρν
`ν

)
Γ (5.5)
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and

K(ˆ̀
ν)−K(ρνn) = −(ˆ̀

ν − ρνn) [c(ρν)Γ + oa.s.(1)], (5.6)

where, for t /∈ supp(Fγ),

m(t; γ) =

∫
(x− t)−1Fγ(dx), c(t) =

∫
x(t− x)−2Fγ(dx).

Here, m is the Stieltjes transform of the companion distribution Fγ .

In establishing (5.5), start by taking sufficiently large n such that |ρνn−ρν | ≤
ε, with ε defined as above. For such n, on Jnε1, we have

‖Bn(ρνn)‖ ≤ ρν + ε

ε
.

Because Jnε1 holds with probability one for all large n, ‖Bn(ρνn)‖ = Oa.s.(1) and,

therefore, it follows from Lemma 2 that

K(ρνn)− n−1 trBn(ρνn) Γ
a.s.−−→ 0 .

In addition, (5.2) yields

n−1 trBn(ρνn) =

∫
ρνn(ρνn − x)−1Fn(dx)

a.s.−−→
∫
ρν(ρν − x)−1Fγ(dx) = −ρν m(ρν ; γ) .

Explicit evaluation gives m(ρν ; γ) = −1/`ν , [JY, Appendix A], and (5.5) follows.

To establish (5.6), we start by recalling that Cn = n−1X̄T
2 X̄2, and introduce

the resolvent notation Z(t) = (tIn−Cn)−1, such that Bn(t) = tZ(t) and K(t) =

n−1X̄1tZ(t)X̄T
1 . From the resolvent identity, that is, A−1 − B−1 = A−1(B −

A)B−1 for square invertible A and B, and noting that tZ(t) = CnZ(t) + I from

the Woodbury identity, we have, for t1, t2 > bγ ,

t1Z(t1)− t2Z(t2) = −(t1 − t2)CnZ(t1)Z(t2)

and, therefore,

K(ˆ̀
ν)−K(ρνn) = −(ˆ̀

ν − ρνn)n−1X̄1CnZ(ˆ̀
ν)Z(ρνn)X̄T

1 .

Moreover, again by the resolvent identity, Z(ˆ̀
ν) = Z(ρνn)−(ˆ̀

ν−ρνn)Z(ˆ̀
ν)Z(ρνn),
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which yields

K(ˆ̀
ν)−K(ρνn) =− (ˆ̀

ν − ρνn)n−1X̄1Bn1(ρνn, ρνn)X̄T
1

+ (ˆ̀
ν − ρνn)2n−1X̄1Bn2(ˆ̀

ν , ρνn)X̄T
1 ,

(5.7)

with Bnr(t1, t2) defined as

Bnr(t1, t2) = CnZ(t1)Z
r(t2) . (5.8)

We now characterize the first-order behavior of the two matrix quadratic forms

in (5.7). For the first, we simply mirror the arguments of the proof of (5.5) to

obtain

n−1X̄1Bn1(ρνn, ρνn)X̄T
1

a.s.−−→ c(ρν)Γ .

For the second, we again apply similar reasoning, operating on the event Jnε.

Specifically, it is easy to establish that on Jnε, and for n sufficiently large that

|ρνn − ρν | ≤ ε, ‖Bn2(ˆ̀
ν , ρνn)‖ is bounded. Hence, ‖Bn2(ˆ̀

ν , ρνn)‖ = Oa.s.(1), and

it follows from Lemma 2 and (5.2) that

n−1X̄1Bn2(ˆ̀
ν , ρνn)X̄T

1 = Oa.s.(1).

The expansion in (5.6) is obtained by combining the latter two equations with

(5.7).

CLT of K(ρνn). We now specialize Proposition 2 for the matrix quadratic form

K(ρνn).

Proposition 3. Assume Model M, and define ρνn by (1.1) and K(ρνn) by (3.4).

Then,

Wn(ρνn) =
√
n
[
K(ρνn)− n−1 trBn(ρνn)Γ

] D−→W ν ,

which is a symmetric Gaussian random matrix with entries W ν
ij, mean zero, and

covariances given by

Cov[W ν
ij ,W

ν
i′j′ ] =

ρ2ν
`2ν ρ̇ν

(κij′κji′ + κii′κjj′) +
ρ2ν
`2ν

(κiji′j′ + κ̌iji′j′), (5.9)

where ρν and ρ̇ν are defined in (1.1), and the terms in parentheses are defined in

(1.2) and (1.4).

Proof. Recall that Jnε1 = {µ1 ≤ bγ + ε}, and consider sufficiently large n such

that ρνn > ρν − ε. Then, we may apply Proposition 2 with Bn = Bn(ρνn)1Jnε1 ,
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which is independent of X̄1, and for which ‖Bn‖ is bounded. Specifically, the

result follows by applying Proposition 2 to Wn(ρνn)1Jnε1 , along with the fact that

1Jnε1
a.s.−−→ 1, and particularizing ω, θ, and φ in (4.4). These quantities, denoted

respectively by ων , θν , and φν , can be computed as in [JY, Appendix A], yielding

ων = φν =
(`ν − 1 + γ)2

(`ν − 1)2
=
ρ2ν
`2ν

, θν =
(`ν − 1 + γ)2

(`ν − 1)2 − γ
=
ων
ρ̇ν
.

Tightness properties. Lastly, we establish some tightness properties essential

to the derivation of our second-order results.

We first establish a refinement of (5.5). Define K0(ρ; γ) := −ρm(ρ; γ)Γ, such

that (5.5) is rewritten as K(ρνn)
a.s.−−→ K0(ρν ; γ). Set gρ(x) = ρ(ρ − x)−1, and

write

trBn(ρ) =

n∑
i=1

ρ(ρ− µi)−1 =

n∑
i=1

gρ(µi).

In addition, introducing

Gn(g) :=

n∑
i=1

g(µi)− n
∫
g(x)Fγn(dx),

we have

K(ρ)−K0(ρ; γn) = K(ρ)− n−1 trBn(ρ)Γ

+ ρn−1

[
n∑
i=1

(ρ− µi)−1 − n
∫

(ρ− x)−1Fγn(dx)

]
Γ

= n−1/2Wn(ρ) + n−1Gn(gρ)Γ. (5.10)

Lemma 3. Assume that Model M holds, and that `ν > 1 +
√
γ is simple. For

some b > ρ1, let I denote the interval [bγ + 3ε, b]. Then,

{Gn(gρ), ρ ∈ I} is uniformly tight, (5.11)

{n1/2[K(ρ)−K0(ρ; γn)], ρ ∈ I} is uniformly tight, (5.12)

ˆ̀
ν − ρνn = Op(n

−1/2), (5.13)

aν − pν = Op(n
−1/2). (5.14)

Proof. The proofs of (5.11)–(5.13) appear in the Supplementary Material, S2.

We show (5.14) using the expansion aν − pν = −RνnDνpν + rν , given in (3.3),
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from which we recall ‖rν‖ = O(‖Dν‖2) and note that ‖Rνn‖ ≤ C and Dν =

K(ˆ̀
ν)−K0(ρνn; γn). We then have aν − pν = Op(‖Dν‖+ ‖Dν‖2). Furthermore,

from

‖Dν‖ ≤ ‖K(ˆ̀
ν)−K(ρνn)‖+ ‖K(ρνn)−K0(ρνn; γn)‖,

the first term is Op(n
−1/2) by (5.6) and (5.13), as is the second term by (5.12).

Hence,

‖Dν‖ = Op(n
−1/2), (5.15)

and the proof is completed.

5.2. Eigenvalue fluctuations (Theorem 1-(ii))

The proof of Theorem 1-(ii) relies on the key expansion

√
n(ˆ̀

ν − ρνn)[1 + c(ρν)`ν + op(1)] = pTνWn(ρνn)pν + op(1), (5.16)

which is obtained by combining the vector equations K(ˆ̀
ν)aν = ˆ̀

νaν and K0(ρνn;

γn)pν = ρνnpν with expansions (5.7) for K(ˆ̀
ν)−K(ρνn) and (5.10) for K(ρνn)−

K0(ρνn; γn). Specifically, we first use [K(ˆ̀
ν)− ˆ̀

νIm]aν = 0 to obtain

pTν [K(ˆ̀
ν)− ˆ̀

νIm]pν = (aν − pν)T [K(ˆ̀
ν)− ˆ̀

νIm](aν − pν) = Op(n
−1), (5.17)

because ‖K(ˆ̀
ν) − ˆ̀

νIm‖ = Op(1) from (5.4)–(5.6) and (2.1), and aν − pν =

Op(n
−1/2) from Lemma 3. In addition, because [K0(ρνn; γn) − ρνnIm]pν = 0, it

follows that

pTν [K(ˆ̀
ν)− ˆ̀

νIm]pν = pTν [K(ˆ̀
ν)−K0(ρνn; γn)− (ˆ̀

ν − ρνn)Im]pν

= pTν [K(ˆ̀
ν)−K(ρνn)− (ˆ̀

ν − ρνn)Im]pν

+ pTν [K(ρνn)−K0(ρνn; γn)]pν

=− (ˆ̀
ν − ρνn)[1 + c(ρν)`ν + op(1)]

+ n−1/2pTνWn(ρνn)pν + op(n
−1/2), (5.18)

where the last equality follows from (5.6), (5.10), and (5.11). Combining (5.17)

and (5.18) yields (5.16).

The asymptotic normality of
√
n(ˆ̀

ν − ρνn) now follows from Proposition 3,

with asymptotic variance

σ̃2ν = [1 + c(ρν)`ν ]−2 Var
[
pTνW

νpν
]

=

(
ρ̇ν`ν
ρν

)2 ∑
i,j,i′,j′

Pνiji′j′Cov[W ν
ij ,W

ν
i′j′ ],
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where W ν is the m×m symmetric Gaussian random matrix defined in Proposi-

tion 3, with covariance Cov[W ν
ij ,W

ν
i′j′ ] given by (5.9). Using this in the developed

expression for the variance above leads to

σ̃2ν = ρ̇ν
∑
i,j,i′,j′

Pνiji′j′(κij′κji′ + κii′κjj′) + ρ̇2ν [Pν , κ+ κ̌]. (5.19)

By symmetry and the eigen equation (Γpν)i =
∑

j κijpν,j = `νpν,i, we have∑
i,j,i′,j′

Pνiji′j′κii′κjj′ =
∑
i,j,i′,j′

Pνiji′j′κij′κji′ =
∑
i,j

pν,ipν,j(Γpν)i(Γpν)j

= `2ν
∑
i,j

(pν,ipν,j)
2 = `2ν .

Therefore, the first sum in (5.19) reduces to 2ρ̇ν`
2
ν , yielding formula (2.2) of

Theorem 1.

6. Proofs of the Eigenvector Results

We now derive the main eigenvector results, presented in Theorem 2 and

Theorem 3-(ii).

6.1. Eigenvector inconsistency (Theorem 2-(i ))

The convergence result of Theorem 2-(i) follows from two facts: aν
a.s.−−→ pν

and Qν
a.s.−−→ c(ρν)Γ, which are shown below. Once these facts are established,

from (3.1),

‖p̂ν‖−2
a.s.−−→ pTν (Im + c(ρν)Γ)pν = 1 + c(ρν)`ν =

ρν
`ν ρ̇ν

,

which leads to

a.s. lim 〈p̂ν , pν〉2 = a.s. lim 〈p̂ν , pν〉2 = a.s. lim ‖p̂ν‖2 =
`ν ρ̇ν
ρν

.

Proof of aν
a.s.−−→ pν. This is a direct consequence of (3.3) and

Dν = K(ρνn)−
(
ρνn
`ν

)
Γ +K(ˆ̀

ν)−K(ρνn)
a.s.−−→ 0,

which follows from (5.5), (5.6), and the fact that ˆ̀
ν − ρνn

a.s.−−→ 0, given in (2.1).

Proof of Qν
a.s.−−→ c(ρν)Γ. With Ž(t) = (tIp −R22)

−1, we have
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Qν = R12Ž
2(ρν)R21 +R12[Ž

2(ˆ̀
ν)− Ž2(ρν)]R21 , Qν1 +Qν2.

Rewrite Qν1 = n−1X̄1B̌n1X̄
T
1 , with B̌n1 = n−1X̄T

2 Ž
2(ρν)X̄2. On the high-

probability event Jnε1 = {µ1 ≤ bγ+ε}, with ε > 0 such that ρν−bγ ≥ 2ε, it is eas-

ily established that ‖B̌n1‖ is bounded and, consequently, that ‖B̌n1‖ = Oa.s.(1).

Hence, Lemma 2 can be applied to Qν1. Moreover, from (5.2) and noting that

n−1 tr B̌n1 = n−1 trBn1(ρν , ρν) ,

with Bn1 defined in (5.8), we have

n−1 tr B̌n1
a.s.−−→

∫
x(ρν − x)−2Fγ(dx) = c(ρν) .

This and Lemma 2 imply that Qν1
a.s.−−→ c(ρν)Γ.

It remains to show Qν2
a.s.−−→ 0. Using a variant of the resolvent identity, that

is, A−2 −B−2 = −A−2(A2 −B2)B−2 for square invertible A and B, we rewrite

Qν2 = −2(ˆ̀
ν − ρν)n−1X̄1B̌n2X̄

T
1 ,

with B̌n2 = n−1X̄T
2 Ž

2(ˆ̀
ν)[(1/2)(ˆ̀

ν +ρν)I−R22]Ž
2(ρν)X̄2. Working on the high-

probability event Jnε, it can be verified that ‖B̌n2‖ = Oa.s.(1). Thus, Lemma 2

together with (5.2) imply that n−1X̄1B̌n2X̄
T
1 = Oa.s.(1). Because ˆ̀

ν
a.s.−−→ ρν , we

conclude that Qν2
a.s.−−→ 0.

6.2. Eigenvector fluctuations (Theorem 2-(ii ))

Again, we use the key expansion (3.3). Because ‖rν‖ = O(‖Dν‖2) = Op(n
−1)

from (5.15), we have

√
n(aν − pν) = −Rνn

√
nDνpν + op(1).

Furthermore, using a similar decomposition to the derivation of (5.18),

√
nDν =

√
n [K(ˆ̀

ν)−K(ρνn)] +
√
n [K(ρνn)−K0(ρνn, γn)]

= Wn(ρνn)−
√
n(ˆ̀

ν − ρνn)c(ρν)Γ + op(1),

where we use (5.6) and (5.10), along with (5.11) and (5.13) of Lemma 3. Hence,

noting that RνnΓpν = `νRνnpν = 0 from the definition of Rνn in (3.3), we have

√
n(aν − pν) = −RνnWn(ρνn)pν + op(1),
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or equivalently,

√
n(P Taν − eν) = −R̃νnW̃n(ρνn)eν + op(1),

where

R̃νn =
`ν
ρνn

m∑
k 6=ν

(`k − `ν)−1eke
T
k , W̃n(ρνn) = P TWn(ρνn)P.

The CLT for P Taν now follows from Proposition 3. In particular,

√
n(P Taν − eν)

D−→ R̃νwν ∼ N(0,Σν),

where R̃ν = (`ν/ρν)Dν , recall (2.4), and wν = P TW νpν , with W ν defined in

Proposition 3. The covariance matrix Σν = R̃νE[wνw
T
ν ]R̃ν = DνΣ̃νDν , with

Σ̃ν = (`ν/ρν)2E[wνw
T
ν ]. The kth component of wν is given by wν(k) = pTkW

νpν =∑
i,j pk,iW

ν
ijpν,j and, therefore,

Σ̃ν,kl =
∑
i,j,i′,j′

pk,ipν,jpl,i′pν,j′

(
`ν
ρν

)2

Cov[W ν
ij ,W

ν
i′j′ ] . (6.1)

Theorem 2-(ii) follows after substituting (5.9) for Cov[W ν
ij ,W

ν
i′j′ ] and noting that,

when k, l 6= ν,∑
i,j,i′,j′

pk,ipν,jpl,i′pν,j′(κii′κjj′ +κij′κji′) = pTk Γpl ·pTν Γpν+pTk Γpν ·pTν Γpl = δkl`k`ν .

6.3. Eigenvector inconsistency in the subcritical case (Theorem 3-(ii ))

From (3.1) and (3.2), it suffices to show that aTνQνaν
a.s.−−→ ∞ in order for

Theorem 3-(ii) to hold. We establish this by showing that λmin(Qν)
a.s.−−→∞. The

approach uses a regularized version of Qν ,

Qνε(t) = R12[(tIp −R22)
2 + ε2Ip]

−1R21,

for ε > 0. Observe that Qν � Qνε(ˆ̀
ν), such that

lim inf λmin(Qν) ≥ lim inf λmin(Qνε(ˆ̀
ν)) = lim inf λmin(Qνε(bγ) + ∆νε),

where ∆νε := Qνε(ˆ̀
ν)−Qνε(bγ). Recall that ˆ̀

ν
a.s.−−→ bγ . We show that ∆νε

a.s.−−→ 0,

and

Qνε(bγ)
a.s.−−→

∫
x[(bγ − x)2 + ε2]−1Fγ(dx) · Γ = cγ(ε)Γ, (6.2)
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say. Because λmin(·) is a continuous function on m ×m matrices, we conclude

that

lim inf λmin(Qν) ≥ cγ(ε)λmin(Γ), (6.3)

and because cγ(ε) ≥ c(bγ + ε) and c(bγ + ε)↗∞ as ε↘ 0, by [JY, Appendix A],

we obtain λmin(Qν)
a.s.−−→∞. We write Qνε(t) = n−1X̄1B̌nε(t)X̄1, with

B̌nε(t) = n−1X̄T
2 [(tIp − n−1X̄2X̄

T
2 )2 + ε2Ip]

−1X̄2

= H diag{fε(µi, t)}HT ,

if we write the singular-value decomposition of n−1/2X̄2 = VM1/2HT , withM =

diag(µi)
p
i=1, and define fε(µ, t) = µ[(t−µ)2+ε2]−1. Evidently, ‖B̌nε(t)‖ ≤ ε−2µ1 is

bounded almost surely. Thus, Lemma 2 may be applied to Qνε(bγ), and because

n−1 tr B̌nε(bγ)
a.s.−−→

∫
fε(x, bγ)Fγ(dx) = cγ(ε)

from (5.2), our claim (6.2) follows.

Now consider ∆νε. Fix a ∈ Rm such that ‖a‖2 = 1, and set b = n−1/2HT X̄T
1 a.

We have

aT∆νεa =

p∑
i=1

b2i [fε(µi,
ˆ̀
ν)− fε(µi, bγ)].

Because |∂fε(µ, t)/∂t| = |2µ(t − µ)|/[(t − µ)2 + ε2]2 ≤ µ/ε3, for µ, ε > 0, by the

arithmetic-mean–geometric-mean inequality, we have

|aT∆νεa| ≤ µ1ε−3|ˆ̀ν − bγ | · ‖b‖22 = µ1ε
−3|ˆ̀ν − bγ |aTR11a ≤ µ1ε−3|ˆ̀ν − bγ |ˆ̀1

a.s.→ 0,

from Cauchy’s interlacing inequality for eigenvalues of symmetric matrices, The-

orem 1-(i) and Theorem 3-(i). Therefore, ∆νε
a.s.−−→ 0, and the proof of (6.3) and,

hence, of Theorem 3-(ii) is complete.

Supplementary Material

The online Supplementary Material provides proofs for the following: (i)

the Gaussian particularizations of our main results (Corollaries 1 and 2); (ii) the

instrumental tightness properties in Lemma 3; and (iii) the asymptotic properties

of normalized bilinear forms in Lemma 1 and Proposition 1; see Sections S1, S2,

and S3, respectively.
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