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S1 Regularity conditions

In order to prove the central limit theorem for σ̂2
n = n−1∑n

t=1(rt − µ̂n)2 as specified below

in (S2.4) of Lemma 1, certain regularity conditions on the functions hi’s given in (2.2) are

required. To specify these conditions, which are collectively called condition J , we adopt the

same approach as by Ho and Hsing (1997). For ` ≥ 1, define

Zi,t,` = µz,i +
∑̀
s=0

Ã
(s)
i ? ηt−s, 1 ≤ i ≤ m, (S1.1)

and denote by Fi and Fi,` the distribution functions of Zi,t and Zi,t,`, respectively. For each

hi, define

hi,j(x) =

∫
hi(x+ y)dFi,j(y) and h

(k)
i,j,λ(x) = sup

|y|≤λ
|h(k)
i,j (x+ y)|, λ ≥ 0, (S1.2)
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provided that the k-th derivative h
(k)
i,j of hi,j exists. Let k be nonnegative integers and λ a

nonnegative real number. We say that h satisfies condition J , if the following properties hold.

Condition J .

1. For i = 1, 2, . . . ,m and k = 0, 1, h
(k)
i,1 (x) is continuous at all x, and

sup
I⊂{0,1,2,...}

E
[
h

(k)
i,1,λ

(
x+

∑
s∈I

Ã
(s)
i ? ηs

)]4
<∞,

where the sup is taken over all subsets I of {0, 1, 2, . . .}.

2. E(hi(Zi,1)− hi(Zi,1,`))2 = o(1) as `→∞.

3. Eη4
i,1 <∞ for 1 ≤ i ≤ m.

S2 Proof of Theorem 1

Throughout the proofs given below, C denotes a generic positive constant whose value may vary

from place to place. For proving Proposition 1, the following two lemmas serve as a preparatory

step.

Lemma 1. Assume that the GMSV model defined by (2.1), (2.2) and (2.3) satisfies the moment

condition that Ev4
i,1 < ∞ for 1 ≤ i ≤ m, and that the conditions for {Ut} and {Vt} stated in

Proposition 1 hold. Then, as n→∞,

√
n (µ̂n − µ)

d−→ N(0, σ2). (S2.3)

Furthermore, if the condition J holds, then

√
n
(
σ̂2
n − σ2) d−→ N

(
0, g2) . (S2.4)
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If {ηt} ∼ N(0,Ση), then

g2 =

m∑
i,j,k,l=1

wiwjwkwl (σU,ikσU,jl + σU,ilσU,jk) eJ
′
4µz(i,j,k,l)+ 1

2
J′
4ΣZ(i,j,k,l)J4

+

m∑
i,j,k,l=1

wiwjwkwle
J′
4µz(i,j,k,l)+ 1

2
J′
2{ΣZ(i,j)+ΣZ(k,l)}J2σU,ijσU,kl

(
eσZ,ik+σZ,il+σZ,jk+σZ,jl − 1

)
×

{
1 +

2

eσZ,ik+σZ,il+σZ,jk+σZ,jl − 1

∞∑
u=1

(
eJ

′
2{ΣZ,{(i,j),(k,l)}(−u)}J2 − 1

)}
, (S2.5)

where J2 = (1, 1)′, J4 = (1, 1, 1, 1)′, µz(i, j, k, l) = (µz,i, µz,j , µz,k, µz,l)
′,

ΣZ(i, j) =

 σZ,ii σZ,ij

σZ,ji σZ,jj

 ,

ΣZ(i, j, k, l) =



σZ,ii σZ,ij σZ,ik σZ,il

σZ,ji σZ,jj σZ,jk σZ,jl

σZ,ki σZ,kj σZ,kk σZ,kl

σZ,li σZ,lj σZ,lk σZ,ll


,

ΣZ = [σZ,ij ] = E
[
(Zt − µz)(Zt − µz)′

]
,

ΣZ(r) = [σZ,ij(r)] = E
[
(Zt − µz)(Zt−r − µz)′

]
,

and

ΣZ,{(i,j),(k,l)}(−u) =

 σZ,ik(−u) σZ,il(−u)

σZ,jk(−u) σZ,jl(−u)

 .

The proofs of (S2.3) and (S2.4) are sketched briefly as follows. Because rt is a stationary

sequence of martingale differences in the form of the weighted sum of products of two indepen-

dent processes , (S2.3) follows from the martingale central limit theorem (cf. Theorem 3.2 of

Hall and Heyde (1980)). For (S2.4), recall from Section 3 that rt = µ +
∑m
i=1 wivi,tui,t, and

define ρV,ij = Evi,tvj,t, ρU,ij = Eui,tuj,t,

Wt,1 =

m∑
i=1

w2
i

(
v2
i,t − ρV,ii

)
+ 2

∑
1≤i<j≤m

wiwjρU,ij (vi,tvj,t − ρV,ij) ,
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and

Wt,2 =

m∑
i=1

w2
i v

2
i,t

(
u2
i,t − 1

)
+ 2

∑
1≤i<j≤m

wiwjvi,tvj,t (ui,tuj,t − ρU,ij) .

We can then write

√
n
(
σ̂2
n − σ2) =

n∑
t=1

Wt,1/
√
n+

n∑
t=1

Wt,2/
√
n+Op

(
1/
√
n
)

≡ Πn,1 + Πn,2 +Op
(
1/
√
n
)
.

To prove (S2.4), we first need to show the marginal central limit theorem for both Πn,1 and

Πn,2. The former is straightforward since it is also the sum of stationary martingale differences.

For the latter, we employ the same `-dependence method as used in Ho and Hsing (1997) and

approximate Wt,2 by Wt,2,` of which the terms vi,t = hi(Zi,t)’s are replaced by vi,t,` = hi(Zi,t,`)

(cf. (2.2)). Then the asymptotic normality of Πn,2 follows since Πn,2,` ≡
∑n
t=1 Wt,2,`/

√
n is

asymptotically normal due to `-dependence and the fact that Πn,2 and Πn,2,` are asymptotically

close in the L2 sense of

lim
`→∞

lim sup
n→∞

E (Πn,2 −Πn,2,`)
2 = 0

(cf. Theorem 3.2. of Ho and Hsing (1997)), which requires the use of condition J . Second, with

regard to the joint weak convergence of (Πn,1,Πn,2), applying the Cramér-Wold device will do

the job since Πn,1 and Πn,2 are uncorrelated.

Lemma 2. Under the same assumptions as in Lemma 1, for 0 < α < 1,

qα(T ) =
√
TσΦ−1 (α+O(T−1)

)
+ Tµ (S2.6)

as T →∞.

Proof of Lemma 2. Recall that RT = RT,0. Let σ∗T = (T−1
T∑
t=1

m∑
i,j=1

wiwjvi,tvj,tσU,ij)
1/2.

AT = (qα(T ) − Tµ)
/√

T , R∗T = (RT − Tµ)
/

(
√
Tσ∗T ), and VT be the information σ-field
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generated by {Z1, Z2, ..., ZT }. Since α = P (R∗T < AT /σ
∗
T ), the central limit theorem of (S2.3)

and σ∗T converging to σ with probability one imply that limT→∞AT = Φ−1(α)σ. Then, for any

positive ε such that ε < σ2,

α = E [P (R∗T < AT /σ
∗
T | VT )]

= Φ

(
AT
σ

)
+ E

[
Φ

(
AT
σ∗T

)
− Φ

(
AT
σ

)]
= Φ

(
AT
σ

)
+ E

[(
Φ

(
AT
σ∗T

)
− Φ

(
AT
σ

))
I
(∣∣σ∗2T − σ2

∣∣ > ε
)]

+E

[(
Φ

(
AT
σ∗T

)
− Φ

(
AT
σ

))
I
(∣∣σ∗2T − σ2

∣∣ ≤ ε)]
= Φ

(
AT
σ

)
+ ET,1 + ET,2. (S2.7)

where I (S) is the indicator function of the event S. Using |Φ(x)−Φ(y)| ≤ 1 and the Chebyshev

inequality, we have

|ET,1| ≤ ε−2E
(
σ∗2T − σ2)2 = O(T−1). (S2.8)

Set K(x) = Φ(AT /
√
x). Taylor’s expansion of function K(·) with respect to (σ∗2T − σ2) enables

us to express ET,2 as

ET,2 =
(
−ATφ(AT /σ)/(2σ3)

)
· E
[(
σ∗2T − σ2)+

(
σ∗2T − σ2) (I (∣∣σ∗2T − σ2

∣∣ ≤ ε)− 1
)]

+(1/2)E
[(
σ∗2T − σ2)2 K′′(A∗)I (∣∣σ∗2T − σ2

∣∣ ≤ ε)]
=

(
ATφ(AT /σ)/(2σ3)

)
· E
[(
σ∗2T − σ2) I (∣∣σ∗2T − σ2

∣∣ > ε
)]

+(1/2)E
[(
σ∗2T − σ2)2 K′′(A∗)I (∣∣σ∗2T − σ2

∣∣ ≤ ε)]
= ET,2,1 + ET,2,2,

where A∗ lies between σ2 and σ∗2T . Now

|ET,2,1| ≤ C ·
(
E
(
σ∗2T − σ2)2)1/2

P 1/2 (∣∣σ∗2T − σ2
∣∣ > ε

)
= O(T−1),

and, because K′′(A∗)I
(∣∣σ∗2T − σ2

∣∣ ≤ ε) is bounded,

|ET,2,2| ≤ C · E
(
σ∗2T − σ2)2 = O(T−1).
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Hence

|ET,2| = O(T−1). (S2.9)

Then (S2.6) follows from (S2.7), (S2.8) and (S2.9).

Proof of Proposition 1. Let UT = AT /σ
∗
T , where AT is defined previously as (qα(T ) −

Tµ)
/√

T . Then (S2.6) implies

UT = Φ−1(α+O(T−1))
σ

σ∗T
. (S2.10)

Define

H(u) = (Φ(u))−1

∫ u

−∞
xφ(x)dx

= (Φ(u))−1 (−φ(u)), (S2.11)

where φ(·) and Φ(·) are the pdf and cdf of the standard normal distribution, respectively. It

can be seen that H
(
Φ−1(α)

)
is precisely the α-th CTE of standard normal Z defined by

Zα = E
(
Z
∣∣Z < Φ−1(α)

)
=
−φ(Φ−1(α))

α
.

Let GT (α) = AT /σ which is Φ−1(α + O(T−1)) according to Lemma 2. By the same argumet

of conditional on the σ-field VT as employed in proving (S2.7), the α-th CTE of RT is

CTα = E(RT |RT < qα(T ))

= Tµ+
√
TσZα + E

{√
T [σ∗TH(UT )− σH(GT (α))]

}
+
√
Tσ
[
H(GT (α))−H(Φ−1(α))

]
= Tµ+

√
TσZα +BT +B′T . (S2.12)

For any positive ε < σ2, write

BT = E
{√

T [σ∗TH(UT )− σH(GT (α))] ·
(
I
(
σ∗2T > σ2 + ε

)
+ I

(
σ∗2T < σ2 − ε

)
+ I

(∣∣σ∗2T − σ2
∣∣ ≤ ε))}

= BT,1 +BT,2 +BT,3.
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We further express BT,1 as

BT,1 = E
√
T (σ∗T − σ)H(UT ) · I

(
σ∗2T > σ2 + ε

)
+ E
√
Tσ [H(UT )−H(GT (α))] · I

(
σ∗2T > σ2 + ε

)
= BT,1,1 +BT,1,2

Since H(UT ) · I
(
σ∗2T > σ2 + ε

)
is bounded,

|BT,1,1| ≤ CE
√
T |σ∗T − σ| · I

(
σ∗2T > σ2 + ε

)
≤ C

{
E
[√

T (σ∗T − σ)
]2}1/2

· P 1/2 (∣∣σ∗2T − σ2
∣∣ > ε

)
= O(1/

√
T ). (S2.13)

Because |H(UT )−H(GT (α))| · I
(
σ∗2T > σ2 + ε

)
is also bounded, we have

|BT,1,2| ≤ CE
√
T · I

(
σ∗2T > σ2 + ε

)
≤ C
√
TP

(∣∣σ∗2T − σ2
∣∣ > ε

)
= O(1/

√
T ). (S2.14)

To handle BT,2, because σH(GT (α)) is clearly bounded, we focus on σ∗TH(UT )·I
(
σ∗2T < σ2 − ε

)
.

We first note that for c > 0

lim
x→0

xH(c/x) = c, (S2.15)

which is due to the fact that Φ(z) ≈ φ(z)/|z| as z → −∞ (Chapter 7 of Abramowitz and Stegun,

1972). Then

σ∗TH(UT ) · I
(
σ∗2T < σ2 − ε

)
= σ∗TH

(
σΦ−1(α+O(T−1))/σ∗T

)
I
(
σ∗2T < σ2 − ε

)
7



which by (S2.15) is bounded with probability one. Therefore

|BT,2| ≤ C
√
TP

(
σ∗2T < σ2 − ε

)
≤ C
√
TP

(
|σ∗2T − σ2| > ε

)
≤ C
√
TE(σ∗2T − σ2)2

= O(1/
√
T ). (S2.16)

To deal with BT,3, let H̃(x) =
√
xH(Φ−1(α+O(T−1))/

√
x) and expand BT,3 as

BT,3 =
√
TE

[
H̃(σ∗2T )− H̃(σ2)

]
· I
(∣∣σ∗2T − σ2

∣∣ ≤ ε)
=
√
TH̃ ′(σ2)E

[(
σ∗2 − σ2)+

(
σ∗2 − σ2) (I (∣∣σ∗2T − σ2

∣∣ ≤ ε)− 1
)]

+(
√
T/2)E

[(
σ∗2T − σ2)2 H̃ ′′(U∗)I (∣∣σ∗2T − σ2

∣∣ ≤ ε)]
=
√
TH̃ ′(σ2)E

[
−
(
σ∗2T − σ2) I (∣∣σ∗2T − σ2

∣∣ > ε
)]

+(
√
T/2)E

[(
σ∗2T − σ2)2 H̃ ′′(U∗)I (∣∣σ∗2T − σ2

∣∣ ≤ ε)] ,
where U∗ lies between σ2 and σ∗2T . Using Holder’s and Chebyshev’s inequalities and the bounded

H̃ ′′(U∗)I
(∣∣σ∗2T − σ2

∣∣ ≤ ε), we can bound BT,3 by

|BT,3| ≤ C
(
P 1/2 (∣∣σ∗2T − σ2

∣∣ > ε
)

+
√
TE

(
σ∗2T − σ2)2)

= O(1/
√
T ). (S2.17)

According to the mean value theorem, we have H(GT (α))−H(Φ−1(α)) = O(T−1), which yields

∣∣B′T ∣∣ = O(1/
√
T ). (S2.18)

Combining (S2.12), (S2.13), (S2.14), (S2.16), (S2.17) and (S2.18) gives

CTα = Tµ+
√
TσZα +O(1/

√
T ). (S2.19)

Since n = N · T , the estimation error of the non-parametric estimate ĈTα = Tµ∗ +
√
T σ̂nZα
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proposed in (3.4) for CTα is, by (S2.19),

ĈTα − CTα =


√
T/N

√
n(µ̂n − µ) +N−1/2√n(σ̂n − σ) +O(T−1/2) if µ is unknown,

N−1/2√n(σ̂n − σ) +O(T−1/2) if µ is known.

Equations (3.5) and (3.6) then follow from Lemma 1 and the conditions imposed on T and N

immediately.

S3 Comparison with two sample generation methods

To demonstrate the superiority of our approach, we choose two sample generation methods,

the Markov-chain simulation (MCS) method and the sampling window (SW) method, for the

performance comparison in terms of empirical coverage ratios. The MCS and SW represent two

typical methods that form the category of the second approach mentioned in the Introduction.

Due to the massive amount of computation time needed for carrying out the MCS, we restrict

our attention to the standard univariate SV model and only a moderate set of representative

cases on (T,N) that suffices to show the advantages of the estimator we propose. The standard

univariate SV model is defined as rt = σ̄ exp{Zt/2}ut, where Zt is AR(1) normal and ut is iid

N(0,1), and the parameters of the AR(1) model are the same as those of the marginal return

components used in Subection 4.1. The specific procedures of the two methods, the MCS and

the SW, are as follows.

For the MCS method, we first simulate {rt}t=1,...,n from the true data generating pro-

cess and then follow the Markov-chain simulation procedures outlined by Jacquier, Polson

and Rossi (1994) to estimate the parameters as they demonstrate that the MCS method is

the best as compared to the quasi-maximum likelihood and the method of moments. Fur-

thermore, we use the refined Bayesian MCMC sampler from Kastner and Frühwirth-Schnatter

(2014) which is implemented in the R package ‘stochvol’ (Kastner (2016)) and is available at
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https://CRAN.R-project.org/package=stochvol. Second, based on these estimated parameters,

we simulate {rt}t=1,...,T 1000 times to compute 1000 integrated returns {R1
T , . . . , R

1000
T } from

which one ĈTα is derived. Third, repeat the last step for 1000 times to generate 1000 ĈTα ’s and

then use the 0.025 and 0.975 percentiles of these 1000 ĈTα ’s to form a 95% confidence interval.

Finally, repeat the above three steps to build 1000 confidence intervals to compute the empirical

coverage ratio.

As an alternative to the model-dependent approach illustrated above, we consider the sam-

pling window (SW) method described in Subection 3.1 following the statement of Proposition

2, which is model-free, also relies on generation of samples, and is widely used in handling de-

pendent data (Politis et al., 1999). We break the procedure into five steps. First, recalling that

n = NT , simulate {rt}t=1,...,n from the true data generating process. Second, divide the sample

into overlapping blocks each consisting of T returns and every two consecutive blocks are 10

observations apart. The overlapping of observations is designed to meet the purpose of generat-

ing sufficiently many blocks of returns to be integrated. Then, we compute the i-th integrated

return R
(i)
T from the i-th block, {r1+(i−1)10, r2+(i−1)10, ..., rT+(i−1)10}, where i ranges from 1

to M = b(N − 1)T/10 + 1c. Here bxc stands for the greatest integer less than or equal to x.

Third, treat the M integrated returns {R(1)
T , . . . , R

(M)
T } as a sample of stationary observations

from which M −M4 + 1 subsamples of integrated returns are generated by the SW method

with window size of M4 = bM/4c, that is, the list of all the subsamples is {R(j)
T , ..., R

(j−1+M4)
T }

with j ranging from 1 to M −M4 + 1. Then we construct M −M4 + 1 CTE’s of which the j-th

CTE is based on its corresponding j-th subsample {R(j)
T , ..., R

(j−1+M4)
T }. Fourth, similar to the

MCS method, the 0.025 and 0.975 percentiles of the M −M4 + 1 CTE’s are respectively used

as the left and right limits of the 95% confidence interval. Finally, repeat the above four steps

1000 times to build 1000 confidence intervals, and calculate the coverage ratios. Only the case
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of unknown mean is reported because it is more realistic in practice to assume that the mean

is unknown. To better illustrate the strength of our approach, we choose T = 168, 210, and

252 for the horizon, which are longer than those in Subection 4.1 and correspond to eight, ten

and twelve months of trading days, respectively. For each T , the number N of blocks is then

determined by a pre-given sample size n = NT ; we consider n = 4200, 6300, 8400 and 12600.

The true CTα is computed by simulating 106 price paths from the true model and α = 0.01

The results that are summarized in Table 1 exhibit some notable features. First of all,

our approach (labeled as E) clearly outperforms the other two methods, the MCS and the SW.

Across all the different choices of n, T and N , the coverage ratios of the E do not vary much

and remain close to the nominal level. However, those of the MCS and the SW are significantly

less than .95 except for a few cases, and the SW in particular suffers huge under coverage.

The increasing trend of the coverage ratios with n for both the MCS and the SW indicates

that the two sample-generation methods require very large sample sizes in order to overcome

the too strong dependence created by the aggregation. The MCS can achieve reasonably good

coverage only when n = 12600. It is also important to note that for a fixed sample size n, the

coverage decreases as the integration length increases. For example, when n = 6300 (or 4200),

the coverage ratios of the MCS drop from 0.913 (or 0.829) to 0.846 (or 0.724) as the return

horizon increases from 168 to 252 days. This serves as further evidence that our approach is

more suitable than the two sample-generation methods for estimating the CTE of integrated

returns. It is also worth mentioning that the computing time the MSC method needs is about

700 times more than our non-parametric method.
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Table 1: Comparison of the coverage ratios of 95% confidence intervals for CTα based on

equation (3.10)(labeled as E) with two sample-generation method: the sampling window

method (SW) and the Markov-chain simulation (MCS) method, with the parameters being

estimated by the Bayesian appraoch of Jacquier, Polson and Rossi (1994). The results are

based on 1000 replicates, and the true CTα is computed by simulating 106 price paths from

the true model. T = 168, 210, and 252, and α = 0.01.
T 168 210 252

n E SW MCS E SW MCS E SW MCS

N 25 20 17

4200 0.944 0.196 0.829 0.952 0.170 0.804 0.942 0.144 0.724

N 38 30 25

6300 0.947 0.349 0.913 0.939 0.342 0.875 0.945 0.325 0.846

N 50 40 33

8400 0.954 0.448 0.932 0.937 0.411 0.926 0.958 0.365 0.893

N 75 60 50

12600 0.944 0.619 0.990 0.946 0.541 0.966 0.939 0.539 0.955
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